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1. Introduction. Let A ⊆ {1, . . . , N} and η = |A|/N . In [4] Roth
studied how well can A be distributed in arithmetic progressions. If the
sequence n, n + q, . . . , n + (k − 1)q has t elements in {1, . . . , N} then it is
reasonable to think that a well-distributed sequence would have “about” ηt
elements in this sequence if k is “big enough” relative to N . Thus if we set

V (n, q, k) =
∣∣∣
∑

0≤i<k
n+iq∈A

1− η
∑

0≤i<k
1≤n+iq≤N

1
∣∣∣

for a well-distributed sequence, then V (n, q, bb√Nc/2c) should be “small”
for every integer n, 1 ≤ q ≤ b√Nc. (It is easy to see that if η = 0 or 1 then
V (n, q, k) = 0 for every n, q, k.) Roth proved that there does not exist a
non-trivial well-distributed A in this sense, because for every A there exist
integers n, 1 ≤ q ≤ b√Nc with V (n, q, b√N/2c) ≥ c

√
η(1− η)N1/4 (and

the constant c is absolute). This means that unless A is empty or equal to
{1, . . . , N} it cannot be well-distributed simultaneously among and within
all congruence classes. Later it was shown that Roth’s estimate is sharp,
that is, for every N positive integer there exists A ⊆ {1, . . . , N} (with a
“small” value of |η − 1/2|) for which V (n, q, b√N/2c) ≤ c′

√
η(1− η)N1/4

for every integer n, 1 ≤ q ≤ b√Nc [2].
In the first part of this paper we prove a similar statement about the

distribution of the sums a1 + a2 where a1, a2 ∈ A. First we have to define
what is considered well-distributed in this case. Define

f(n) =
∑

a1+a2=n
a1,a2∈A

1 and g(n) =
∑

1≤k≤N
1≤n−k≤N

1.

If A were constructed using probability methods in a way that the proba-
bility of choosing each integer k ∈ {1, . . . , N} in A were η (independently)
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368 B. Valkó

then the expected value of f(n) would be “roughly” η2g(n). Therefore it is
reasonable to study

A(n, q, k) =
∣∣∣
k−1∑

i=0

(f(n+ iq)− η2g(n+ iq))
∣∣∣.

(If η = 0 or 1 then A(n, q, k) = 0 for every n, q, k.)
In Section 2 two theorems will be proved. Theorem 1 will show that unless

η = 0 or 1 the sums a1 + a2 with a1, a2 ∈ A cannot be well-distributed in
this sense, because there exist integers n and q with 1 ≤ q ≤ b√Nc and
A(n, q, bb√Nc/2c) ≥ cη(1− η)N3/4. Theorem 5 will give an upper estimate
on how good an inequality of this kind can be.

In Section 3 we study the corresponding problem in residue classes. Con-
sider a subset of the residues modulo N : A ⊆ {0, 1, . . . , N − 1}. The sums
a1 + a2 with a1, a2 ∈ A are well-distributed if the numbers of sums in each
residue class are about the same. Theorem 9 and its corollary states that
these sums cannot be well-distributed this way, and inequalities similar to
those in the previous part can be shown. Theorems 11 and 12 show that
these results are nearly best possible.

2. Irregularities of distribution of sums relative to arithmetic
progressions. We use the notations introduced in the introduction.

Theorem 1. If ε > 0 and N > Nε then for every A ⊆ {1, . . . , N} there
exist integers n and q with 1 ≤ q ≤ b√Nc and

A(n, q, bb
√
Nc/2c) ≥

(
1

6
√

3π
− ε
)
η(1− η)N3/4.

From now on we denote b√Nc by Q, bb√Nc/2c by Q1, and e2πiα by
e(α). The basis of the proof of Theorem 1 is the following result of [4] which
was also the main tool for Roth.

Theorem 2. Let M be a positive integer , R ≥ 2 integer , R1 = bR/2c,
let s1, . . . , sM be complex numbers and sj = 0 if j ≤ 0 or j > M . Denote∑k−1
i=0 sn+iq by D(n, q, k). Then there exist integers n and q with 1 ≤ q < R

and

|D(n, q,R1)| ≥ 2
π
R1

( M∑
m=1

|sm|2
)1/2

(
M +

R2

4

)−1/2

R−1/2.

Theorem 2 is a corollary of the following inequality:
R∑
q=1

M∑

n=1−(R1−1)q

|D(n, q,R1)|2 ≥
(

2
π
R1

)2 M∑
m=1

|sm|2.
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We only give a short outline of the proof, details are left to the reader. Define

S(α) =
M∑
n=1

sne(nα) and HM (α) =
M−1∑
n=1

e(nα).

Then |HM (α)| = |sin(πMα)/sin(πα)| and from that it is easy to prove
that |HM (α)| ≥ (2/π)M if |α| ≤ 1/(2M). It is well known that for every
α there exist positive integers p and q with (p, q) = 1, p and q ≤ R and
|α−p/q| ≤ 1/(qR) (so that |qα−p| ≤ 1/(2R1)). From this and the previous
inequality we have

R∑
q=1

|HR1(qα)|2 ≥
(

2
π
R1

)2

.

Now consider

J =
1\
0

|S(α)|2
R∑
q=1

|HR1(qα)|2 dα.

Clearly,

J ≥ min
α

R∑
q=1

|HR1(qα)|2
1\
0

|S(α)|2 dα ≥
(

2
π
R1

)2 M∑
m=1

|sm|2.

On the other hand, by Parseval’s formula,

J =
R∑
q=1

M∑

n=1−(R1−1)q

|D(n, q,R1)|2.

From this the desired inequality and the theorem follow.

We also need the following lemma:

Lemma 3. If N ≥ 8 then
2N∑

i=1

(f(i)− η2g(i))2 ≥ 1
48

(η(1− η)N)2.

P r o o f. If η = 0 or 1 (i.e. η(1− η) = 0) then
2N∑

i=1

(f(i)− η2g(i))2 = 0.

If |A| = 1 (so that η = 1/N) and A = {a} then
2N∑

i=1

(f(i)− η2g(i))2 ≥ (f(2a)− η2g(2a))2 ≥
(

1− 1
N2N

)2

= (η(1− η)N)2.

If |A| = N − 1 (so that η = 1− 1/N) and A = {1, . . . , N}\{a} then f(a) =
= g(a) = a − 1 and f(N + a + 1) = g(N + a + 1) = max(N − a − 1, 0).
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Clearly,

max(g(a), g(N + a+ 1)) ≥ N/3
and thus

2N∑

i=1

(f(i)− η2g(i))2 ≥
(
N

3
− η2N

3

)2

=
1
9

((1− η2)N)2 ≥ 1
9

(η(1− η)N)2.

Therefore we can suppose 2 ≤ |A| ≤ N − 2. Let

F (α) =
2N∑

i=1

f(i)e(iα) and G(α) =
2N∑

i=1

η2g(i)e(iα).

From the definitions of f(n) and g(n) it follows that

F (α) =
(∑

a∈A
e(aα)

)2

and

G(α) = η2
( N∑

i=1

e(iα)
)2

= η2
(
e((N + 1)α)− e(α)

e(α)− 1

)2

.

Clearly,

(1)
2N∑

i=1

(f(i)− η2g(i))2 =
1\
0

|F (α)−G(α)|2 dα.

From the Cauchy–Schwarz inequality we have

(2)
( 1\

0

|F (α)−G(α)|2 dα
)1/2

≥
1\
0

|F (α)−G(α)| dα.

As 2 ≥ |e(bN/2cα)− 1|, we get

(3) 4
1\
0

|F (α)−G(α)| dα ≥
1\
0

|F (α)−G(α)||e(bN/2cα)− 1|2 dα.

Now

|F (α)−G(α)||e(bN/2cα)− 1|2
≥ |F (α)(e(bN/2cα)− 1)2| − |G(α)(e(bN/2cα)− 1)2|.
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But
1\
0

|G(α)(e(bN/2cα)− 1)2| dα

=
1\
0

η2

∣∣∣∣
(
e((N + 1)α)− e(α)

e(α)− 1

)2

(e(bN/2cα)− 1)2

∣∣∣∣ dα

= η2
1\
0

∣∣∣∣
e(bN/2cα)− 1

e(α)− 1
(e((N + 1)α)− e(α))

∣∣∣∣
2

dα

= η2
1\
0

∣∣∣
bN/2c−1∑

i=0

e(iα)
∣∣∣
2
|e((N + 1)α)− e(α)|2 dα

= η2
1\
0

∣∣∣−
bN/2c∑

i=1

e(iα) +
N+bN/2c∑

i=N+1

e(iα)
∣∣∣
2
dα = 2η2bN/2c ≤ η2N.

Therefore
1\
0

|F (α)−G(α)||e(bN/2cα)− 1|2 dα ≥
1\
0

|F (α)(e(bN/2cα)− 1)2| dα− η2N.

Clearly,

F (α)(e(bN/2cα)− 1)2

=
((∑

a∈A
e(aα)

)
(e(bN/2cα)− 1)

)2
=
(N+bN/2c∑

i=1

aie(iα)
)2

where

ai =

{−1 if i ∈ A and i− bN/2c 6∈ A,
1 if i 6∈ A and i− bN/2c ∈ A,
0 otherwise.

We have
1\
0

|F (α)(e(bN/2cα)− 1)2| dα =
N+bN/2c∑

i=1

|ai|2 =
N+bN/2c∑

i=1

|ai|,

therefore the value of the integral equals the number of integers i for which
ai 6= 0. If 1 ≤ i ≤ bN/2c and i ∈ A then ai = −1 because i − bN/2c ≤ 0
and hence i− bN/2c 6∈ A. Similarly, if N − bN/2c < i ≤ N and i ∈ A then
ai+bN/2c = 1. If i ∈ A then 1 ≤ i ≤ bN/2c or N − bN/2c < i ≤ N and if
N is odd i may also be equal to bN/2c + 1. From the previous arguments
it follows that the value of the integral is at least |A| − 1 = ηN − 1 and
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therefore
1\
0

|F (α)−G(α)||e(bN/2cα)− 1|2 dα ≥ ηN − η2N − 1 = η(1− η)N − 1.

Since 2 ≤ |A| ≤ N − 2 and N ≥ 8, we have η(1− η)N ≥ 2(N − 2)/N ≥ 3/2
and η(1− η)N − 1 ≥ 1

3η(1− η)N . Thus, according to (1)–(3), the statement
of Lemma 3 follows.

Proof of Theorem 1. We use Theorem 2. Let M = 2N , sj = f(j)−η2g(j)
if 1 ≤ j ≤ M , and R = Q = b√Nc. Then there exist integers n and q with
1 ≤ q < Q and

|A(n, q,Q1)| ≥ 2
π
Q1

( 2N∑
m=1

|sm|2
)1/2

(
2N +

Q2

4

)−1/2

Q−1/2.

From Lemma 3,

( 2N∑
m=1

|sm|2
)1/2

≥ 1

4
√

3
η(1− η)N if N ≥ 8.

Thus

2
π
Q1

( 2N∑
m=1

|sm|2
)1/2

(
2N +

Q2

4

)−1/2

Q−1/2 ≥
(

1

6
√

3π
− ε
)
η(1− η)N3/4

if N ≥ Nε and Theorem 1 follows. (Indeed, the proof also shows that the
inequality in Theorem 1 is valid in a mean square sense.)

Theorem 1 gave a lower estimate for maxn, 1≤q≤QA(n, q,Q1). The aim
of the following theorem is to show how far we can go with the lower es-
timate. It states that for every sufficiently large positive integer N there
exists A ⊆ {1, . . . , N} (with η ≈ 1/2) for which A(n, q,Q1) ≤ cN if n
and q are integers with 1 ≤ q ≤ Q and for “most of the pairs” n and q,
A(n, q,Q1) ≤ c1N

5/6 logN (and the constants are absolute). For the proof
we adapt Sárközy’s construction used for an upper estimate related to Roth’s
problem [1].

Theorem 4. Let N be a positive integer , Q = b√Nc, Q1 = bQ/2c.
Let p be a prime number with N2/3 < p ≤ 2N2/3. Define A ⊂ {1, . . . , N}
by letting a ∈ A exactly if a ∈ {1, . . . , N} and

(
a
p

)
= 1 where

(
y
p

)
is the

Legendre symbol (with
(
y
p

)
= 0 if y ≡ 0 mod p). For this A, |η − 1/2| ≤

c1N
−2/3 logN and A(n, q,Q1) ≤ c2N for all integers n and q with 1 ≤ q ≤ Q

(the constants are absolute). Also if N > Nε then for at least (1− ε) · 100%
of the pairs (n, q) with 1 ≤ q ≤ Q and 1 − (Q − 1)q ≤ n ≤ N we have
A(n, q,Q1) ≤ c3N5/6 logN (with an absolute constant c3).
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The following lemma of Mauduit and Sárközy [3] (a corollary of A. Weil’s
theorem [6]) will be used several times during the proof of Theorem 4:

Theorem 5. If p is a prime number , h(x) ∈ Fp[x] is a polynomial of
degree k such that it is not of the form b(h1(x))2 with b ∈ Fp and h1(x) ∈
Fp[x], and X,Y are integers with 0 < Y ≤ p then

∣∣∣∣
∑

X<n≤X+Y

(
h(n)
p

)∣∣∣∣ < 9k
√
p log p.

Lemma 6. For the set A in Theorem 4 we have

|η − 1/2| ≤ c1N−2/3 logN.

P r o o f. It is well known that if x ≥ 1 then there exists a prime p with
x < p ≤ 2x. This proves the existence of a proper prime for our construction.

Consider the following sets:

Bj =
{
i

∣∣∣∣
(
i

p

)
= j, 1 ≤ i ≤ N

}
with j = −1, 0, 1.

Clearly,

|B0| =
⌊
N

p

⌋
, B1 = A,

N∑

i=1

(
i

p

)
= |B1| − |B−1| = 2ηN −N +

⌊
N

p

⌋
.

With
∑a+p
i=a

(
i
p

)
= 0 and using Theorem 5 (or the Pólya–Vinogradov in-

equality) we have
∣∣∣∣
N∑

i=1

(
i

p

)∣∣∣∣ =
∣∣∣∣

N∑

i=bN/pcp

(
i

p

)∣∣∣∣ ≤ 9
√
p log p.

Thus |2ηN −N | ≤ 9
√
p log p+ bN/pc and

|η − 1/2| ≤ 1
2N

(9
√
p log p+ bN/pc).

With N2/3 < p ≤ 2N2/3 Lemma 6 follows.

Lemma 7. If 2 ≤ n ≤ 2N then
∣∣∣∣f(n)−

x1∑

k=x0

((k
p

)
+ 1

2

)((n−k
p

)
+ 1

2

)∣∣∣∣ ≤ cN1/3

where x0 = 1 and x1 = n− 1 if 2 ≤ n ≤ N , and x0 = n−N and x1 = N if
N + 1 ≤ n ≤ 2N . (The constant c is absolute.)
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P r o o f. First let n be fixed with 2 ≤ n ≤ N . Then

f(n) =
∑

a1+a2=n
a1,a2∈A

1 =
n−1∑

k=1

αk

where αk = 1 if k, n− k ∈ A and αk = 0 otherwise.
Define C1 = {k | k or n− k ≡ 0 mod p, 1 ≤ k ≤ n− 1} and C = {1, . . . ,

n − 1} \ C1. Then f(n) =
∑
k∈C αk +

∑
k∈C1

αk. If k ∈ C then
(
k
p

)
= ±1,

and αk = 1 if and only if
(
k
p

)
=
(
n−k
p

)
= 1. Hence it is easy to see that if

k ∈ C then

αk =
((k

p

)
+ 1

2

)((n−k
p

)
+ 1

2

)
,

and if k ∈ C1 then αk = 0 and
((k

p

)
+ 1

2

)((n−k
p

)
+ 1

2

)
=

(
n
p

)
+ 1

4
.

Therefore
∣∣∣∣f(n)−

n−1∑

k=1

((k
p

)
+ 1

2

)((n−k
p

)
+ 1

2

)∣∣∣∣

=
∣∣∣∣
∑

k∈C1

(
αk −

((k
p

)
+ 1

2

)((n−k
p

)
+ 1

2

))∣∣∣∣

= |C1|
∣∣∣∣
(
n
p

)
+ 1

4

∣∣∣∣ ≤ 2
⌊
n− 1
p

⌋∣∣∣∣
(
n
p

)
+ 1

4

∣∣∣∣.

Thus ∣∣∣∣f(n)−
n−1∑

k=1

((k
p

)
+ 1

2

)((n−k
p

)
+ 1

2

)∣∣∣∣ ≤
⌊
n− 1
p

⌋
≤ N

p

and since N2/3 < p ≤ 2N2/3 Lemma 7 follows with c = 1.
If N + 1 ≤ n ≤ 2N then

f(n) =
∑

a1+a2=n
a1,a2∈A

1 =
N∑

k=N−n
αk

where αk = 1 if k, n − k ∈ A and αk = 0 otherwise. The proof can be
finished as in the previous case.

Lemma 8. If 2 ≤ n ≤ 2N and p -n then
∣∣∣∣
1
4
g(n)−

x1∑

k=x0

((k
p

)
+ 1

2

)((n−k
p

)
+ 1

2

)∣∣∣∣ ≤ cN1/3 logN
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where x0 = 1 and x1 = n− 1 if 2 ≤ n ≤ N , and x0 = n−N and x1 = N if
N + 1 ≤ n ≤ 2N. (The constant c is absolute.) If p |n then

∣∣∣∣
1
4
g(n)−

x1∑

k=x0

((k
p

)
+ 1

2

)((n−k
p

)
+ 1

2

)∣∣∣∣ ≤ N.

P r o o f. First let n be fixed with 2 ≤ n ≤ N and p -n. Then

g(n) =
∑

1≤k≤N
1≤n−k≤N

1 = n− 1,

and

1
4
g(n)−

x1∑

k=x0

((k
p

)
+ 1

2

)((n−k
p

)
+ 1

2

)

=
1
4

(n− 1)− 1
4

n−1∑

k=1

(
k(n− k)

p

)
− 1

2

n−1∑

k=1

(
k

p

)
− 1

4
(n− 1)

= −1
4

n−1∑

k=1

(
k(n− k)

p

)
− 1

2

n−1∑

k=1

(
k

p

)
.

It is well known that if (a, p) = 1 then
∑p
k=1

(k(a−k)
p

)
= −(−1

p

)
(cf. [5,

Ch. 5]). Also, if p -n then x(n− x) is not of the form b(h1(x))2 in Fp[x] and
hence we can use Theorem 5. It follows that

∣∣∣∣
n−1∑

k=1

(
k(n− k)

p

)∣∣∣∣ ≤
⌊
n− 1
p

⌋
+ 18

√
p log p ≤ N

p
+ 18

√
p log p.

From
∑a+p
k=a

(
k
p

)
= 0 and Theorem 5,

∣∣∣∣
n−1∑

k=1

(
k

p

)∣∣∣∣ ≤ 9
√
p log p.

From these inequalities and N2/3 < p ≤ 2N2/3 the desired inequality follows
in this case.

If n is an integer with N + 1 ≤ n ≤ 2N and p -n then

g(n) =
∑

1≤k≤N
1≤n−k≤N

1 = 2N − n+ 1.

The proof can be finished as in the previous case.
If n is an integer with 1 ≤ n ≤ 2N and p | n then

n−1∑

k=1

(
k(n− k)

p

)
=
n−1∑

k=1

(−k2

p

)
= (n− 1)

(−1
p

)
,
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therefore we cannot use the previous proof. But from

0 ≤
x1∑

k=x0

((k
p

)
+ 1

2

)((n−k
p

)
+ 1

2

)
≤ N

and g(n) ≤ N we have
∣∣∣∣
1
4
g(n)−

x1∑

k=x0

((k
p

)
+ 1

2

)((n−k
p

)
+ 1

2

)∣∣∣∣ ≤ N,

and this concludes the proof of Lemma 8.

Proof of Theorem 4. Using Lemma 6 and g(n) ≤ N we have
∣∣∣∣
1
4
g(n)− η2g(n)

∣∣∣∣ = g(n)
∣∣∣∣
1
2

+ η

∣∣∣∣
∣∣∣∣
1
2
− η
∣∣∣∣

≤ N 3
2
c1N

−2/3 logN ≤ c′1N1/3 logN.

Now from Lemmas 7 and 8 it follows that if 2 ≤ n ≤ 2N and p -n then
|f(n) − η2g(n)| ≤ cN1/3 logN (the constant c is absolute) and if p |n then
|f(n) − η2g(n)| ≤ N . It is also clear that if n < 2 or 2N < n then f(n) =
g(n) = 0. First let n and q be fixed with 1 ≤ q ≤ Q. Since Q1 ≤

√
N/2 and p

is a prime withN2/3 < p, at most one of the integers n, n+q, . . . , n+(Q1−1)q
is divisible by p. Therefore

A(n, q,Q1) =
∣∣∣
Q1−1∑

k=0

(f(n+ kq)− η2g(n+ kq))
∣∣∣

≤ cN1/3Q logN +N ≤ cN5/6 logN +N.

This shows that A(n, q,Q1) ≤ c′N where the constant is absolute. But it
also shows that if none of the integers n, n+ q, . . . , n+ (Q1− 1)q is divisible
by p then A(n, q,Q1) ≤ cN5/6 logN .

If we consider all sequences of the form n, n+ q, . . . , n+ (Q1 − 1)q with
1 ≤ q ≤ Q which intersect {1, . . . , N} (these are the ones with 1−(Q−1)q ≤
n ≤ N) it can be seen that at least (1−2Q/p) ·100% of them do not contain
an element divisible by p. Since 2Q/p ≤ 4N−1/3 ≤ ε if N ≥ Nε this proves
the last statement of Theorem 4.

Remark 1. The author conjectures that Theorem 1 is sharp (or at least it
is sharp up to a log power), i.e. for every sufficiently large positive integer N
there exists anA ⊆ {1, . . . , N} for which ε < |A|/n < 1−ε and A(n, q,Q1) ≤
cN3/4 (or cN3/4(logN)c1) if n and q are integers with 1 ≤ q ≤ Q.
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3. Irregularities of distribution of sums of residues. Let A ⊆
{0, 1, . . . , q − 1} and η = |A|/q. Set

h(i) =
∑

a1+a2≡i mod q
a1,a2∈A

1.

Clearly, (1/q)
∑q−1
i=0 h(i) = η2q and thus if the sums a1 + a2 are well-

distributed modulo q then the value of max0≤i≤q−1 |h(i) − η2q| is small.
The following theorem and its corollary give a lower estimation for this
maximum.

Theorem 9. For every A ⊆ {0, 1, . . . , q − 1} (with q ≥ 2),
q−1∑

i=0

(h(i)− η2q)2 ≥ q3

q − 1
η2(1− η)2.

Corollary 10. For every A ⊆ {0, 1, . . . , q−1} (with q ≥ 2) there exists
an integer i with 0 ≤ i ≤ q − 1 and |h(i)− η2q| ≥ √q η(1− η).

P r o o f (of Theorem 9). Define S(α) =
∑
a∈A e(aα). It is clear that if k

is an integer then

(S(k/q))2 =
q−1∑

i=0

h(i)e(ik/q).

It is well known that if B(α) =
∑q−1
j=0 bie(jα) then

1
q

q−1∑

k=0

∣∣∣∣B
(
k

q

)∣∣∣∣
2

=
q−1∑

j=0

|bj |2.

With bj = h(j)− η2q (0 ≤ j ≤ q − 1) we have
q−1∑

i=0

(h(i)− η2q)2 =
1
q

q−1∑

k=0

∣∣∣∣B
(
k

q

)∣∣∣∣
2

.

Now B(0) =
∑q−1
i=0 h(i)− η2q2 = 0 and if 1 ≤ k ≤ q − 1 then

B

(
k

q

)
=

q−1∑

j=0

(h(j)− η2q)e
(
j
k

q

)
=

q−1∑

j=0

h(j)e
(
j
k

q

)
− η2q

q−1∑

j=0

e

(
j
k

q

)

=
q−1∑

j=0

h(j)e
(
j
k

q

)
=
(
S

(
k

q

))2

.

Thus
q−1∑

i=0

(h(i)− η2q)2 =
1
q

q−1∑

k=1

∣∣∣∣S
(
k

q

)∣∣∣∣
4

.
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As S(0) = |A| = ηq we have

1
q

q−1∑

k=1

∣∣∣∣S
(
k

q

)∣∣∣∣
2

=
1
q

q−1∑

k=0

∣∣∣∣S
(
k

q

)∣∣∣∣
2

− 1
q
η2q2 = ηq − η2q = qη(1− η).

Using Cauchy’s inequality we obtain

q−1∑

i=0

(h(i)− η2q)2 =
1
q

q−1∑

k=1

∣∣∣∣S
(
k

q

)∣∣∣∣
4

≥ 1
q(q − 1)

( q−1∑

k=1

∣∣∣∣S
(
k

q

)∣∣∣∣
2)2

=
1

q(q − 1)
q4η2(1− η)2 =

q3

q − 1
η2(1− η)2.

This completes the proof of Theorem 9.

Remark 2. As a generalization of Theorem 9 we may study the distri-
bution of sums of the form of

∑k
i=1 ai in residues where a1, . . . , ak ∈ A and

k ≥ 2 is a fixed integer. Define

hk(n) =
∑

a1+...+ak≡nmod q
a1,...,ak∈A

1.

Clearly,

1
q

q−1∑

i=0

hk(i) = ηkqk−1

and using a similar argument to that for Theorem 9 it can be proved that

q−1∑

i=0

(hk(i)− ηkqk−1)2 ≥ q2k−1

(q − 1)k−1 η
k(1− η)k.

The following theorems show how sharp Theorem 9 and its corollary
are. Theorem 11 shows that Theorem 9 is sharp for an infinite number of
integers and the next theorem proves that Corollary 10 is sharp up to a log
power. (From this it also follows that Theorem 9 is sharp up to a log power
for every integer.)

Theorem 11. Let p be a prime. Define A ⊂ {0, 1, . . . , p − 1} by setting
a ∈ A exactly if a ∈ {0, 1, . . . , p− 1} and

(
a
p

)
= 1. For this subset we have

p−1∑

i=0

(h(i)− η2p)2 ≤ p3

p− 1
η2(1− η)2 + p.

P r o o f. Clearly, we have |A| = (p − 1)/2, η = 1/2 − 1/(2p) and η2p
= (p − 1)2/(4p) = (p − 2)/4 + 1/(4p). Since

(
a
p

)
=
(−1
p

)(
p−a
p

)
we have
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h(0) = 0 if
(−1
p

)
= −1 and h(0) = (p− 1)/2 if

(−1
p

)
= 1. Thus

(h(0)− η2p)2 ≤
(
p− 1

2
− (p− 1)2

4p

)2

=
p2

16
− 1

8
+

1
16p2 .

Suppose 1 ≤ a ≤ p− 1. We will show that

h(a) =
p−1∑

i=0

((
i
p

)
+ 1
)((

a−i
p

)
+ 1
)

4
−
(
a
p

)
+ 1

2

=
∑

0≤i≤p−1
i 6=0,a

((
i
p

)
+ 1
)((

a−i
p

)
+ 1
)

4
.

With f(n) =
∑
a1+a2=n, a1,a2∈A 1 it is clear that h(a) = f(a) + f(a + p).

Now, i and a− i are both in A if and only if
((

i
p

)
+1
)((

a−i
p

)
+1
)
/4 = 1, and

otherwise
((

i
p

)
+ 1
)((

a−i
p

)
+ 1
)
/4 = 0 if i 6= 0, a. Similarly i and a + p − i

are both in A if and only if
((

i
p

)
+ 1
)((

a−i
p

)
+ 1
)
/4 = 1, and otherwise((

i
p

)
+ 1
)((

a−i
p

)
+ 1
)
/4 = 0 if i 6= 0, a. Thus it follows that

∑

0≤i≤p−1
i 6=0,a

((
i
p

)
+ 1
)((

a−i
p

)
+ 1
)

4
= f(a) + f(a+ p) = h(a).

We have
p−1∑

i=0

((
i
p

)
+ 1
)((

a−i
p

)
+ 1
)

4
−
(
a
p

)
+ 1

2

=
1
4

p−1∑

i=0

(
i(a− i)

p

)
+

1
2

p−1∑

i=0

(
i

p

)
+
p− 2

4
− 1

2

(
a

p

)
.

Since
∑p−1
i=0

(
i
p

)
= 0 and

∑p−1
i=0

( i(a−i)
p

)
= −(−1

p

)
, we get

h(a) =
p− 2

4
− 1

4

(−1
p

)
− 1

2

(
a

p

)
if 1 ≤ a ≤ p− 1.

Then

(h(a)− η2p)2 =
(
p− 2

4
− 1

4

(−1
p

)
− 1

2

(
a

p

)
− p− 2

4
− 1

4p

)2

≤ 1.

Therefore
p−1∑

i=0

(h(i)− η2p)2 ≤ p2

16
− 1

8
+

1
16p2 + p− 1.
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But
p3

p− 1
η2(1− η)2 + p =

1
16
p2 +

17
16
p− 1

16
− 1

16p
and from this the statement of the theorem follows.

Theorem 12. Let q > 1 be an integer and p a prime with 2q < p ≤ 4q.
Define A ⊂ {1, . . . , q} by setting a ∈ A exactly if a ∈ {1, . . . , q} and

(
a
p

)
= 1

(this gives a subset of the residue classes modulo q). For this subset we have
|η − 1/2| ≤ 9 log(4q)/

√
q and

|h(i)− η2q| ≤ 50
√
q log(4q)

for every 0 ≤ i ≤ q − 1.

P r o o f. It is known that there exists a prime p with 2q < p ≤ 4q. From
the definition of the set A it is easy to see that

q∑

i=1

(
i

p

)
= qη − q(1− η) = q(2η − 1)

and by Theorem 5 (or the Pólya–Vinogradov inequality) we have

q|2η − 1| =
∣∣∣∣
q∑

i=1

(
i

p

)∣∣∣∣ ≤ 9
√
p log p ≤ 18

√
q log(4q),

and thus ∣∣∣∣η −
1
2

∣∣∣∣ ≤ 9
log(4q)√

q
.

Let a be an integer with 1 ≤ a ≤ q. With the technique already used we
can prove that

f(a) =
a−1∑

i=1

((
i
p

)
+ 1
)((

a−i
p

)
+ 1
)

4

=
1
4

a−1∑

i=1

(
i(a− i)

p

)
+

1
2

a−1∑

i=1

(
i

p

)
+
a− 1

4
.

Since 1 ≤ a < p, x(a− x) is not of the form b(h1(x))2 in Fp[x] therefore we
can use Theorem 5 for the first sum, and clearly also for the second:
∣∣∣∣
1
4

a−1∑

i=1

(
i(a− i)

p

)
+

1
2

a−1∑

i=1

(
i

p

)∣∣∣∣ ≤
(

18
4

+
9
2

)√
p log p ≤ 18

√
q log(4q).

Hence ∣∣∣∣f(a)− a− 1
2

∣∣∣∣ ≤ 18
√
q log(4q).
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Similarly

f(a+ q) =
q∑

i=a

((
i
p

)
+ 1
)((

q+a−i
p

)
+ 1
)

4

=
1
4

q∑

i=a

(
i(q + a− i)

p

)
+

1
2

q∑

i=a

(
i

p

)
+
q − a+ 1

4
.

As 1 ≤ a+ q < p, it can be shown as before that∣∣∣∣f(a+ q)− q − a+ 1
4

∣∣∣∣ ≤ 18
√
q log(4q).

If 1 ≤ i ≤ q then h(i) = f(i) + f(q + i) (and h(q) = h(0)) and from the
inequalities just proved, |h(i)− q/4| ≤ 36

√
q log(4q) for every 1 ≤ i ≤ q.

Clearly∣∣∣∣
q

4
− η2q

∣∣∣∣ =
q

4
|2η − 1||2η + 1| ≤ 3

4
q|2η − 1| ≤ 27

2
√
q log(4q).

Therefore

|h(i)− η2q| ≤
∣∣∣∣h(i)− q

4

∣∣∣∣+
∣∣∣∣
q

4
− η2q

∣∣∣∣ ≤
99
2
√
q log(4q)

for every 0 ≤ i ≤ q − 1 and this concludes the proof of Theorem 12.

Acknowledgments. The author wishes to thank Prof. A. Sárközy for
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[2] J. Matou šek and J. Spencer, Discrepancy in arithmetic progressions, J. Amer.
Math. Soc. 9 (1996), 195–204.
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