Existence of a non-entire twist for a class of L-functions

by
G. Molteni (Milano)

1. Settings and results. Given an integer $\mathbf{d} \geq 1$, we consider the class $\mathcal{C}_{\mathbf{d}}$ of functions with the following properties:

- (Arithmetical conditions) If $f \in \mathcal{C}_{\mathbf{d}}$, then

$$
f(s)=\prod_{p} \prod_{j=1}^{\mathrm{d}}\left(1-\alpha_{j}(p) p^{-s}\right)^{-1}
$$

where $\left|\alpha_{j}(p)\right| \leq 1$ for all j, p. As a consequence of this hypothesis f has a Dirichlet series representation $f(s)=\sum_{n} a_{n} n^{-s}$ that is absolutely convergent for $\sigma>1$.

- (Analytical conditions) For all integers $q \geq 1$ and all primitive characters $\chi \bmod q$, the twisted function $(f \otimes \chi)(s):=\sum_{n} \chi(n) a_{n} n^{-s}$ has continuation to \mathbb{C} as a meromorphic function with at most a pole at $s=1$; moreover, $(s-1)^{m}(f \otimes \chi)(s)$ is an entire function of finite order for some integer m, and $f \otimes \chi$ satisfies a functional equation of type

$$
(f \otimes \chi)(1-s)=q^{\mathbf{d}(s-1 / 2)} \Phi_{\chi}^{f}(s)(\bar{f} \otimes \bar{\chi})(s)
$$

where $\bar{f}(s):=\sum_{n} \bar{a}_{n} n^{-s}, \Phi_{\chi}^{f}(s)$ is an holomorphic function in $\sigma>0$ and satisfies the estimate $\left|\Phi_{\chi}^{f}(s)\right|<c(\sigma, \chi)|t|^{B(\sigma, \chi)}$ for $|t| \geq 1$ on each vertical line $\sigma+i t$, for some constants $c(\sigma, \chi), B(\sigma, \chi)>0$. Moreover, we assume that there exists $\widetilde{\sigma}>0$ such that $c(\sigma, \chi)=c(\sigma)$ and $B(\sigma, \chi)=B(\sigma)$ for $\sigma>\widetilde{\sigma}$.

- In addition, for $f \in \mathcal{C}_{1}$ we assume that $\Phi_{\chi}^{f}(s) \ll|t|^{\sigma}$ uniformly for $|t|>1$ and σ sufficiently large.

Remark 1. The above conditions are inspired by the work of Duke and Iwaniec [1].

REMARK 2. With these hypotheses, $\mathcal{C}_{\mathbf{d}^{\prime}} \subseteq \mathcal{C}_{\mathbf{d}}$ when $\mathbf{d}^{\prime} \leq \mathbf{d}$, so the really interesting parameter associated with $f \in \mathcal{C}_{\mathbf{d}}$ is $\mathbf{d}(f):=\min \left\{\mathbf{d}^{\prime}: f \in \mathcal{C}_{\mathbf{d}^{\prime}}\right\}$; in the following we will assume that $\mathbf{d}(f)=\mathbf{d}$ whenever we write $f \in \mathcal{C}_{\mathbf{d}}$.

[^0]Remark 3. The third condition is compatible with our knowledge of \mathcal{C}_{1} and is necessary in a technical point of Section 2.

Remark 4. The set $\bigcup_{d} \mathcal{C}_{\mathbf{d}}$ has a lot of algebraic structure provided by the product and the Rankin-Selberg convolution: in fact, let $f \in \mathcal{C}_{\mathbf{d}}$ and $g \in \mathcal{C}_{\mathbf{d}^{\prime}}$; then the identity $(f g) \otimes \chi=(f \otimes \chi)(g \otimes \chi)$ shows that $f g \in \mathcal{C}_{\mathbf{d}+\mathbf{d}^{\prime}}$. Moreover, if we assume that $f \otimes g$ satisfies the analytical conditions, then $f \otimes g \in \mathcal{C}_{\text {d }^{\prime}}$.

It is not completely trivial to show that the usual Dirichlet L-functions $L(s, \kappa)$ are in \mathcal{C}_{1}, the non-trivial part being the existence of a χ-uniform estimate for $f \otimes \chi=L(s, \kappa \chi)$; we prove this in the appendix.

Likewise, it can be proved that the normalized L-functions associated with holomorphic newforms for the Hecke group $\Gamma_{0}(N)$ with multiplier κ are in \mathcal{C}_{2} : in this case we know that the twisted function $L \otimes \chi$ is again a normalized L-function associated with a newform for a $\Gamma_{0}(\tilde{N})$ and a new multiplier, so in this case $f \otimes \chi$ is always an entire function (see Theorem 4.3.12 in [4]).

Moreover, let L be a normalized function associated with a holomorphic newform for $\mathrm{SL}_{2}(\mathbb{Z})$ and let $L\left(s, \operatorname{sym}^{m}\right)$ be the m-symmetric function generated by L, introduced by Serre in connection with the Sato-Tate conjecture. For $m \geq 1$ the Langlands program implies that $L\left(s, \operatorname{sym}^{m}\right) \in \mathcal{C}_{m+1}$ and that the twist $L\left(s, \operatorname{sym}^{m}\right) \otimes \chi$ is entire for all χ. For small values of m these conjectures are consequences of important results proved in the literature. In particular they are true for $m=1$ (case already quoted) and for $m=2$ (from Shimura [8]). They are "almost" true for $m=3,4,5$ too, in the sense that for those values of m the functional equation and the meromorphic continuation to \mathbb{C} have been established (Shahidi $[6,7]$), but that the singularities are reduced at most to a pole at $s=1$ is not yet proved.

Definition. We say that $f \in \mathcal{C}_{\mathbf{d}}$ has the $*$-property when $f \otimes \chi$ is an entire function for all primitive χ (hence f is entire as well, since $f=f \otimes \chi_{0}$ with $q=1$).

The previous remarks show that there are elements with the $*$-property in $\mathcal{C}_{\mathbf{d}}$ for $\mathbf{d}=2,3$ (see Remark 2) and conjecturally for every $\mathbf{d} \geq 2$, but not every element of $\mathcal{C}_{\mathbf{d}}$ has the $*$-property, as the function $\zeta^{2}(s)$ shows. However, there is strong evidence, but no proof, that the elements of $\mathcal{C}_{\mathbf{d}}$ with $\mathbf{d} \geq 2$ have the $*$-property if they are not a product or Rankin-Selberg convolution of functions in some $\mathcal{C}_{\mathrm{d}^{\prime}}$ (see Remark 4). The main result of this paper is that the restriction to $\mathbf{d} \geq 2$ is in fact a necessary condition for the *-property.

Theorem. Let $f \in \mathcal{C}_{1}$ have the $*$-property. Then f is the constant function $f(s)=1$.

The class $\mathcal{C}_{\mathbf{d}}$ appears to be related to the Selberg class $\mathcal{S}_{\mathbf{d}}$ (see [5] and [3]) but there are some important differences. Firstly, in $\mathcal{C}_{\mathbf{d}}$ the kernel Φ_{χ}^{f} of the functional equation is not necessarily a product of Γ-factors; secondly, in $\mathcal{C}_{\mathbf{d}}$ we assume a "well-behaviour" of $f \otimes \chi$ that probably holds in $\mathcal{S}_{\mathbf{d}}$ as well, but $f \otimes \chi$ does not necessarily belong to $\mathcal{S}_{\mathbf{d}}$. Finally, in our arithmetical definition d is always an integer, while in the Selberg setting every positive real value is in principle possible for \mathbf{d}, as a consequence of a different (analytical) definition. In all the known cases the two definitions provide the same result: this reveals that there are deep aspects of the theory that are not yet well understood. Kaczorowski and Perelli [3] have proved that the Dirichlet L functions $L(s, \kappa)$ and their shifts are the only elements of \mathcal{S}_{1}, so it is natural to conjecture that these functions exhaust \mathcal{C}_{1} as well. We are not able to prove this conjecture at present; however, our Theorem agrees with this conjecture.

The Theorem is a consequence of the following two lemmas.
Lemma 1. Let $f(s)=\sum_{n} a_{n} n^{-s} \in \mathcal{C}_{1}$ and $g(s)=\sum_{n} b_{n} n^{-s} \in \mathcal{C}_{\mathbf{d}}$ for some $\mathbf{d} \geq 2$, and assume that f and g have the $*$-property. Then

$$
\sum_{x / 2<n<x} a_{n} b_{n} \eta^{2}(n / x) \ll_{A} x^{-A} \quad \forall A>0
$$

with an arbitrary positive function $\eta \in C_{0}^{\infty}([1 / 2,1])$.
Lemma 2. Let $\sum_{k} h_{k} x^{k}=\prod_{j=1}^{u}\left(1-\beta_{j} x\right)^{-1}$ with $0<\left|\beta_{j}\right| \leq 1$ for any j. Assume that $\left|\beta_{j}\right|=1$ for some j and let $m_{i}=\#\left\{j: \beta_{j}=\beta_{i}\right.$ with $\left.\left|\beta_{i}\right|=1\right\}$, $M=\max \left\{m_{i}\right\}$. Then $h_{k}=\Omega\left(k^{M-1}\right)$; in particular $h_{k}=\Omega(1)$.

For the proof of Lemma 1 we follow, with some non-trivial simplifications, the approach used by Duke and Iwaniec [1] to treat a similar problem. Section 2 is devoted to the proof of this lemma.

Lemma 2 is an easy consequence of explicit computations of linear algebra (see Section 3).

Proof of the Theorem. If we assume the lemmas, the proof of the Theorem is simple; in fact Lemma 1 implies

$$
\begin{equation*}
\left|a_{n} b_{n}\right|<c(A) n^{-A} \quad \forall A>0 . \tag{1}
\end{equation*}
$$

We write $f(s)=\prod_{p}\left(1-\alpha(p) p^{-s}\right)^{-1}, g(s)=\prod_{p} \prod_{j=1}^{\mathrm{d}}\left(1-\beta_{j}(p) p^{-s}\right)^{-1}$. Given any prime p, we select a function g such that $\left|\beta_{j}(p)\right|=1$ for some j (this is always possible, for example in \mathcal{C}_{2} with g a normalized L-function associated with a holomorphic newform for $\mathrm{SL}_{2}(\mathbb{Z})$). Then the sequence $b_{p^{k}}$ satisfies the hypothesis of Lemma 2, so there is a subsequence $\left\{b_{p^{k}}\right\}$ such that $\left|b_{p^{k_{n}}}\right|>c$ for some positive constant c and every n. The complete
multiplicativity of a_{n} and (1) give

$$
|\alpha(p)|^{k_{n}} c=\left|a_{p^{k_{n}}}\right| c \leq\left|a_{p^{k_{n}}} b_{p^{k_{n}}}\right| \leq c(A) p^{-k_{n} A}
$$

so $|\alpha(p)| \leq(c(A) / c)^{1 / k_{n}} p^{-A}$, and hence taking $n \rightarrow \infty$, for any p and A we have $|\alpha(p)| \leq p^{-A}$. Therefore $\alpha(p)=0$ for every p, and the result follows.

2. Proof of Lemma 1

2.1. Preliminary identities

Remark 5. Here and in the following section $\int_{\sigma>a}$ is the integral on the vertical line with abscissa $\sigma>a$.

Let η be as in Lemma $1, Y(x):=\sum_{q} \eta(q / \sqrt{x}) \sim \sqrt{x} \int_{\mathbb{R}} \eta(u) d u$, and define

$$
\mathcal{D}(x):=\sum_{n} a_{n} b_{n} \eta^{2}(n / x)
$$

In order to analyze the asymptotic behaviour of $\mathcal{D}(x)$ and prove the lemma, we begin by performing the same transformations as in Section 3 of [1], with some little changes. In particular, the decomposition of $a_{r m}$ is now obvious by complete multiplicativity, and the other arithmetical functions $b_{r}(b), c_{t}(c), d_{t}(d)$, which are necessary for the decomposition of $b_{r n}$ and to relax the constraints $(m, t)=1$ and $(n, t)=1$ respectively, are now defined by

$$
\begin{align*}
& b_{r n}=\sum_{b n^{\prime}=n, b \mid r^{\mathbf{d}-1}} b_{r}(b) b_{n^{\prime}}, \quad b_{r}(b) \ll r^{\varepsilon}, \tag{2a}\\
& \sum_{d n^{\prime}=n, d \mid t^{\mathbf{d}}} d_{t}(d) b_{n^{\prime}}=\left\{\begin{array}{ll}
b_{n} & \text { if }(n, t)=1, \\
0 & \text { otherwise },
\end{array} \quad d_{t}(d) \ll t^{\varepsilon},\right. \tag{2b}\\
& \sum_{c m^{\prime}=m, c \mid t} c_{t}(c) a_{m^{\prime}}=\left\{\begin{array}{ll}
a_{m} & \text { if }(m, t)=1, \\
0 & \text { otherwise },
\end{array} c_{t}(c) \ll t^{\varepsilon} .\right. \tag{2c}
\end{align*}
$$

The existence of $b_{r}(b)$ for $\mathbf{d}=2$ is proved in [2], and the general case is similar; the existence of $c_{t}(c)$ and $d_{t}(d)$ is granted by the Euler product (in particular $c_{t}(c)=\mu(c) a_{c}$, with μ the Möbius function).

The result of these transformations is the following identity, which is analogous to (9) of [1]:

$$
\begin{align*}
Y \mathcal{D}(x)= & \sum_{q, r, t} \phi(q t)^{-1} \sum_{\substack{(b, q t)=1 \\
b \mid r^{\mathrm{d}-1}}} a_{r} b_{r}(b) \sum_{\substack{(c d, q)=1 \\
c|t, d| t^{\mathrm{d}}}} c_{t}(c) d_{t}(d) \tag{3}\\
& \times \sum_{\chi \bmod q}^{*} \sum_{m, n} \chi(c m) \bar{\chi}(b d n) a_{m} b_{n} h\left(\frac{c r m}{x}, \frac{b d r n}{x}, \frac{q r t}{\sqrt{x}}\right),
\end{align*}
$$

where $h(x, y, z):=\eta(x) \eta(y)(\eta(z)-\eta(|x-y| / z))$ has support in $[1 / 2,1] \times$ $[1 / 2,1] \times(0,1]$ and \sum^{*} is a sum over the primitive characters only.

Now we adapt to our case the argument in Section 4 of [1], but we avoid using the Kloosterman sums.

Let

$$
\varrho_{1}:=c r / x, \quad \varrho_{2}:=b d r / x, \quad z:=q r t / \sqrt{x}, \quad \mathfrak{h}(u, v):=h\left(\varrho_{1} u, \varrho_{2} v, z\right)
$$

and

$$
\Delta(\chi):=\sum_{m, n} \chi(m) \bar{\chi}(n) a_{m} b_{n} \mathfrak{h}(m, n)
$$

Then $\mathfrak{h}(u, v)$ is a smooth function with compact support that is zero in $\left\{|u|<1 /\left(2 \varrho_{1}\right)\right\} \times\left\{|v|<1 /\left(2 \varrho_{2}\right)\right\}$, hence

$$
\check{\mathfrak{h}}\left(s_{1}, s_{2}\right):=\int_{0}^{\infty} \int_{0}^{\infty} \mathfrak{h}(u, v) u^{-s_{1}} v^{-s_{2}} d u d v
$$

is entire in $\mathbb{C} \times \mathbb{C}$.
Moreover, the equality $\check{\mathfrak{h}}\left(s_{1}, s_{2}\right)=\varrho_{1}^{s_{1}-1} \varrho_{2}^{s_{2}-1} \check{h}\left(s_{1}, s_{2}, z\right)$ holds with

$$
\begin{equation*}
\check{h}\left(s_{1}, s_{2}, z\right):=\int_{0}^{\infty} \int_{0}^{\infty} h(u, v, z) u^{-s_{1}} v^{-s_{2}} d u d v \tag{4}
\end{equation*}
$$

therefore

$$
\varrho_{1}^{-s_{1}} \varrho_{2}^{-s_{2}} \check{h}\left(1-s_{1}, 1-s_{2}, z\right)=\int_{0}^{\infty} \int_{0}^{\infty} \mathfrak{h}(u, v) u^{s_{1}-1} v^{s_{2}-1} d u d v
$$

The inverse of this Mellin integral gives

$$
\mathfrak{h}(u, v)=\frac{-1}{4 \pi^{2}} \iint_{\sigma_{1}, \sigma_{2}>1} \check{h}\left(1-s_{1}, 1-s_{2}, z\right)\left(\varrho_{1} u\right)^{-s_{1}}\left(\varrho_{2} v\right)^{-s_{2}} d s_{1} d s_{2}
$$

therefore
$\Delta(\chi)=\frac{-1}{4 \pi^{2}} \iint_{\sigma_{1}, \sigma_{2}>1} \check{h}\left(1-s_{1}, 1-s_{2}, z\right)(f \otimes \chi)\left(s_{1}\right)(g \otimes \bar{\chi})\left(s_{2}\right) \varrho_{1}^{-s_{1}} \varrho_{2}^{-s_{2}} d s_{1} d s_{2}$ for the uniform convergence of $\sum a_{n} n^{-s}$ and $\sum b_{n} n^{-s}$ in $\sigma>1+\varepsilon$.

The functions $f \otimes \chi$ and $g \otimes \bar{\chi}$ are entire by the $*$-property and have a polynomial behaviour on the vertical strips by the hypothesis on the functional equations. In the next subsection we prove that \breve{h} tends to zero on the vertical lines more quickly than any power, so the changes $s_{1} \mapsto 1-s_{1}$, $s_{2} \mapsto 1-s_{2}$ and the subsequent applications of the Fubini and Cauchy theorems give
$\Delta(\chi)=\frac{-1}{4 \pi^{2}} \iint_{\sigma_{1}, \sigma_{2}>1} \check{h}\left(s_{1}, s_{2}, z\right)(f \otimes \chi)\left(1-s_{1}\right)(g \otimes \bar{\chi})\left(1-s_{2}\right) \varrho_{1}^{s_{1}-1} \varrho_{2}^{s_{2}-1} d s_{1} d s_{2}$.

Now we introduce the functional equations and the Dirichlet series again, thus getting

$$
\Delta(\chi)=\frac{q^{-(1+\mathbf{d}) / 2}}{\varrho_{1} \varrho_{2}} \sum_{m, n} \bar{\chi}(m) \chi(n) \bar{a}_{m} \bar{b}_{n} \mathcal{H}_{\chi}\left(\frac{m}{q \varrho_{1}}, \frac{n}{q^{\mathbf{d}} \varrho_{2}}, \frac{q r t}{\sqrt{x}}\right)
$$

where

$$
\begin{equation*}
\mathcal{H}_{\chi}(u, v, z):=\frac{-1}{4 \pi^{2}} \iiint_{\sigma_{1}, \sigma_{2}>0} \check{h}\left(s_{1}, s_{2}, z\right) \Phi_{\chi}^{f}\left(s_{1}\right) \Phi_{\bar{\chi}}^{g}\left(s_{2}\right) u^{-s_{1}} v^{-s_{2}} d s_{1} d s_{2} . \tag{5}
\end{equation*}
$$

In the definition of \mathcal{H}_{χ} we can allow every positive value for σ_{1} and σ_{2} by the hypothesis about Φ_{χ}^{f} and Φ_{χ}^{g} and the behaviour of \check{h} on the vertical lines. Substituting this expression in (3) we obtain the final equality

$$
\begin{equation*}
Y \mathcal{D}(x)=x^{2} \sum_{r t<\sqrt{x}} a_{r} \sum_{\substack{b \mid r^{\mathbf{d}-1} \\(b, t)=1}} \sum_{\substack{c|t \\ d| t^{\mathbf{d}}}} b_{r}(b) c_{t}(c) d_{t}(d) \frac{\mathcal{E}}{b c d r^{2}} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{E}:= & \sum_{\substack{m, n, q \\
(b c d m n, q)=1}} \frac{q^{-(1+\mathbf{d}) / 2}}{\varphi(q t)} \bar{a}_{m} \bar{b}_{n} \tag{7}\\
& \times \sum_{\chi \bmod q}^{*} \chi(c n \overline{b d m}) \mathcal{H}_{\chi}\left(\frac{m x}{c r q}, \frac{n x}{b d r q^{\mathbf{d}}}, \frac{q r t}{\sqrt{x}}\right),
\end{align*}
$$

which is analogous to (10) of [1].

2.2. Estimate of \mathcal{H}_{χ}

REMARK 6. In this and the following sections ε is an arbitrary (small) positive parameter not always with the same value.

We recall that $h(u, v, z)=\eta(u) \eta(v)(\eta(z)-\eta(|u-v| / z))$ has support in $[1 / 2,1] \times[1 / 2,1] \times(0,1]$ and the definitions of $\check{h}\left(s_{1}, s_{2}, z\right)$ and $\mathcal{H}_{\chi}(u, v, z)$ in (4) and (5).

By partial integration we have, for all $A, B \geq 0$,

$$
\begin{aligned}
\check{h}\left(s_{1}, s_{2}, z\right)= & \int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial h(u, v, z)}{\partial^{A} u \partial^{B} v} \\
& \times \frac{u^{A-s_{1}}}{\left(s_{1}-A\right) \ldots\left(s_{1}-1\right)} \cdot \frac{v^{B-s_{2}}}{\left(s_{2}-B\right) \ldots\left(s_{2}-1\right)} d u d v
\end{aligned}
$$

moreover, $z^{A+B} \frac{\partial h(u, v, z)}{\partial^{A} u \partial^{B} v}$ is uniformly bounded on its support, since it is a polynomial expression in $z, \eta^{(i)}(u), \eta^{(j)}(v), \eta^{(k)}(|u-v| / z)$, so the former relation gives the estimate

$$
\begin{equation*}
\check{h}\left(s_{1}, s_{2}, z\right) \ll z^{-A-B}\left(1+\left|s_{1}\right|\right)^{-A}\left(1+\left|s_{2}\right|\right)^{-B} \quad \forall A, B \geq 0 \tag{8}
\end{equation*}
$$

where the implied constant depends only on $A, B, \sigma_{1}, \sigma_{2}$. Hence (8) is uniform on the vertical lines. Therefore

$$
\mathcal{H}_{\chi} \ll u^{-\sigma_{1}} v^{-\sigma_{2}} z^{-A-B} \iint_{\sigma_{1}, \sigma_{2}>0} \frac{\left|\Phi_{\chi}^{f}\left(s_{1}\right)\right|}{\left(1+\left|s_{1}\right|\right)^{A}} \cdot \frac{\left|\Phi_{\bar{\chi}}^{g}\left(s_{2}\right)\right|}{\left(1+\left|s_{2}\right|\right)^{B}} d t_{1} d t_{2},
$$

the estimate being independent of the character χ if σ_{1} and σ_{2} are sufficiently large. Moreover, we have supposed that $\Phi_{\chi}^{f}\left(s_{1}\right) \ll|t|{ }^{\sigma_{1}}$ and $\Phi_{\chi}^{f}\left(s_{2}\right) \ll$ $|t|^{B\left(\sigma_{2}\right)}$ for $|t|>1$ and σ_{i} large, so

$$
\mathcal{H}_{\chi} \ll u^{-\sigma_{1}} v^{-\sigma_{2}} z^{-A-B} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(1+\left|t_{1}\right|\right)^{\sigma_{1}-A}\left(1+\left|t_{2}\right|\right)^{B\left(\sigma_{2}\right)-B} d t_{1} d t_{2},
$$

where by (8) we have supposed A and B sufficiently large to assure the convergence of the integral. Choosing $A=\sigma_{1}+1+\varepsilon$ and $B=B\left(\sigma_{2}\right)+1+\varepsilon$, we have

$$
\begin{aligned}
\mathcal{H}_{\chi} & <_{\sigma_{1}, \sigma_{2}} u^{-\sigma_{1}} v^{-\sigma_{2}} z^{-\sigma_{1}-B\left(\sigma_{2}\right)-2-\varepsilon} \\
& =u^{-\left(\sigma_{1}-B\left(\sigma_{2}\right)-2-\varepsilon\right) / 2} v^{-\sigma_{2}}\left(u z^{2}\right)^{-\left(\sigma_{1}+B\left(\sigma_{2}\right)+2+\varepsilon\right) / 2}
\end{aligned}
$$

for all σ_{1}, σ_{2} large, therefore

$$
\mathcal{H}_{\chi}<_{A, D} u^{-A} v^{-D}\left(u z^{2}\right)^{-\widetilde{B}}
$$

for all $A, D>0$ large, for some $\widetilde{B}=\widetilde{B}(A, D)>0$. Hence
(9) $\mathcal{H}_{\chi}\left(\frac{m x}{c r q}, \frac{n x}{b d r q^{\mathbf{d}}}, \frac{q r t}{\sqrt{x}}\right) \ll_{A, D}\left(\frac{c r q}{m x}\right)^{A}\left(\frac{b d r q^{\mathbf{d}}}{n x}\right)^{D}\left(\frac{m x}{c r q} \cdot \frac{q^{2} r^{2} t^{2}}{x}\right)^{-\widetilde{B}}$.

In view of the support of $h, \mathcal{H}_{\chi}(u, v, z)$ is zero when $z>1$, so we can greatly simplify the estimate (9) by assuming $0<z \leq 1$, i.e., $q \leq Q:=\sqrt{x} /(r t)$. In fact

$$
\frac{c r q}{m x} \leq \frac{c r}{m x} \cdot \frac{x^{1 / 2}}{r t} \leq \frac{x^{-1 / 2}}{m}
$$

by (2c),

$$
\frac{b d r q^{\mathbf{d}}}{n x} \leq \frac{b}{r^{\mathbf{d}-1}} \cdot \frac{d}{t^{\mathbf{d}}} \cdot \frac{x^{(\mathbf{d}-2) / 2}}{n} \leq \frac{x^{(\mathbf{d}-2) / 2}}{n}
$$

by (2a) and (2b), and

$$
\frac{m x}{c r q} \cdot \frac{q^{2} r^{2} t^{2}}{x} \geq 1
$$

by (2c). Thus (9) becomes

$$
\mathcal{H}_{\chi}\left(\frac{m x}{c r q}, \frac{n x}{b d r q^{\mathbf{d}}}, \frac{q r t}{\sqrt{x}}\right) \ll_{A, D} \frac{x^{-A / 2+(\mathbf{d}-2) D / 2}}{m^{A} n^{D}} \quad \forall A, D>0 .
$$

Finally, with a suitable choice of $D=D(A)$ we have

$$
\begin{equation*}
\mathcal{H}_{\chi}\left(\frac{m x}{c r q}, \frac{n x}{b d r q^{\mathbf{d}}}, \frac{q r t}{\sqrt{x}}\right) \ll_{A} \frac{x^{-A}}{m^{A} n^{A}} \quad \forall A>0, \tag{10}
\end{equation*}
$$

uniformly in χ.
2.3. Estimate of \mathcal{E}. Estimate (10) is so strong that we can bound \mathcal{E} trivially, using the uniformity in χ and taking the absolute values in (7), thus getting

$$
\begin{equation*}
\mathcal{E} \ll A_{A} \sum_{q \leq Q} \frac{q^{(1-\mathbf{d}) / 2}}{\varphi(q t)} \sum_{m} \frac{\left|a_{m}\right|}{m^{A}} \sum_{n} \frac{\left|b_{n}\right|}{n^{A}} x^{-A}<_{A} \frac{x^{-A}}{t^{1-\varepsilon}} \quad \forall A>1, \tag{11}
\end{equation*}
$$

where the q-series is convergent since we have assumed $\mathbf{d} \geq 2$, and the same holds for the m and n-series when $A>1$.
2.4. Proof of Lemma 1. The bound in (11), the trivial estimates $a_{r}, b_{r}(b)$ $\ll r^{\varepsilon}, c_{t}(c), d_{t}(d) \ll t^{\varepsilon}$ and $b, c, d \geq 1$ give, when introduced in (6),

$$
\begin{aligned}
Y \mathcal{D}(x) & \lll A x^{2-A} \sum_{r t \leq \sqrt{x}} \frac{r^{\varepsilon} t^{\varepsilon}}{r^{2} t} \sum_{\substack{b\left|r^{d-1} \\
c\right| t, d \mid t^{\mathrm{d}}}} 1<_{A} x^{2-A} \sum_{r t \leq \sqrt{x}} \frac{r^{\varepsilon} t^{\varepsilon}}{r^{2} t} \\
& \ll A_{A} x^{2+\varepsilon-A} \quad \forall A>1 .
\end{aligned}
$$

This completes the proof of Lemma 1 , since $Y \asymp \sqrt{x}$.

3. Some explicit formulas

3.1. Proof of Lemma 2. Writing

$$
\sum_{k} h_{k} x^{k}=\prod_{j=1}^{u}\left(1-\beta_{j} x\right)^{-1}
$$

we have

$$
\begin{equation*}
h_{k}=\sum_{\substack{a_{1}+\ldots+a_{u}=k \\ a_{i} \geq 0}} \beta_{1}^{a_{1}} \ldots \beta_{u}^{a_{u}} . \tag{12}
\end{equation*}
$$

Let s_{1}, \ldots, s_{u} be the elementary symmetric polynomials in the β_{j}. Then the identity $\left(1-s_{1} x+\ldots+(-1)^{u} s_{u} x^{u}\right) \sum_{k} h_{k} x^{k}=1$ gives the recursive relations

$$
\begin{cases}h_{k}-s_{1} h_{k-1}+s_{2} h_{k-2}+\ldots+(-1)^{u} s_{u} h_{k-u}=0 & \text { if } k>0, \tag{13}\\ h_{0}=1, & \text { if } k<0 \\ h_{k}=0 & \end{cases}
$$

The recursion can be solved in this way: denoting by v_{n} the column vector
$\left(h_{n}, h_{n-1}, \ldots, h_{n-u+1}\right)^{t},(13)$ is equivalent to $v_{0}=(1,0, \ldots, 0)^{t}$ and $v_{n}=$ $\mathcal{A} v_{n-1}$, i.e., $v_{n}=\mathcal{A}^{n} v_{0}$ with

$$
\mathcal{A}:=\left(\begin{array}{ccccc}
s_{1} & -s_{2} & s_{3} & \ldots & (-1)^{u} s_{u} \\
& & I_{u-1} & & 0
\end{array}\right)
$$

where I_{u-1} is the identity matrix of order $u-1$.
It is known that $\beta_{1}, \ldots, \beta_{u}$ are the eigenvalues of \mathcal{A} having $w_{j}:=$ $\left(\beta_{j}^{u-1}, \beta_{j}^{u-2}, \ldots, 1\right)^{t}$ as eigenvectors, so \mathcal{A} is diagonalizable if we suppose $\beta_{i} \neq \beta_{j}$ for all $i \neq j$; in this case we set $\mathcal{M}:=\left(w_{1}, \ldots, w_{u}\right)$ so that $\mathcal{G}:=$ $\mathcal{M}^{-1} \mathcal{A} \mathcal{M}$ is diagonal, $\mathcal{G}=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{u}\right)$. Hence $v_{n}=\mathcal{M} \mathcal{G}^{n} \mathcal{M}^{-1} v_{0}$ and if $V\left(c_{1}, \ldots, c_{u}\right)$ denotes the Vandermonde determinant $\prod_{1 \leq i<j \leq u}\left(c_{i}-c_{j}\right)$, it follows that

$$
\begin{equation*}
h_{k}=\sum_{j=1}^{u} \beta_{j}^{k+u-1}(-1)^{j+1} \frac{V\left(\beta_{1}, . \stackrel{j}{.}, \beta_{u}\right)}{V\left(\beta_{1}, \ldots, \beta_{u}\right)}=\sum_{j=1}^{u} \frac{\beta_{j}^{k+u-1}}{\prod_{i \neq j}\left(\beta_{i}-\beta_{j}\right)} \tag{14}
\end{equation*}
$$

In the general case suppose $\beta_{1}, \ldots, \beta_{l}$ distinct and let $m_{i}=\#\left\{j: \beta_{j}=\beta_{i}\right\}$ for $i=1, \ldots, l$. Then (12) can be written as

$$
h_{k}=\sum_{\substack{a_{1}+\ldots+a_{l}=k \\ a_{i} \geq 0}} \beta_{1}^{a_{1}} \ldots \beta_{l}^{a_{l}}\left(\sum_{\substack{c_{1}+\ldots+c_{m_{1}}=a_{1} \\ c_{i} \geq 0}} 1\right) \ldots\left(\sum_{\substack{c_{1}+\ldots+c_{m_{l}}=a_{l} \\ c_{i} \geq 0}} 1\right) .
$$

But $\sum_{c_{1}+\ldots+c_{m}=a, c_{i} \geq 0} 1=\binom{a+m-1}{m-1}=: P_{m}(a)$ is a polynomial in a of degree $m-1$ and $a^{k} \beta^{a}=\left(\beta \frac{d}{d \beta}\right)^{k} \beta^{a}$, so that the former equality becomes

$$
\begin{equation*}
h_{k}=P_{m_{1}}\left(\beta_{1} \frac{\partial}{\partial \beta_{1}}\right) \ldots P_{m_{l}}\left(\beta_{l} \frac{\partial}{\partial \beta_{l}}\right) \sum_{\substack{a_{1}+\ldots+a_{l}=k \\ a_{i} \geq 0}} \beta_{1}^{a_{1}} \ldots \beta_{l}^{a_{l}} \tag{15}
\end{equation*}
$$

We substitute (14) in (15) obtaining

$$
\begin{equation*}
h_{k}=P_{m_{1}}\left(\beta_{1} \frac{\partial}{\partial \beta_{1}}\right) \ldots P_{m_{l}}\left(\beta_{l} \frac{\partial}{\partial \beta_{l}}\right) \sum_{j=1}^{l} \frac{\beta_{j}^{k+l-1}}{\prod_{i \neq j}\left(\beta_{i}-\beta_{j}\right)} \tag{16}
\end{equation*}
$$

which finally gives the relation

$$
\begin{equation*}
h_{k}=\sum_{j=1}^{l} p_{j}(k) \beta_{j}^{k} \tag{17}
\end{equation*}
$$

where each $p_{j}(k)$ is a polynomial of degree $\leq m_{j}-1$ in the k variable.
We prove that $\partial_{k} p_{j}=m_{j}-1$; it is sufficient to prove that the coefficient of $k^{m_{1}-1} \beta_{1}^{k}$ in (16) is not zero. But this coefficient is

$$
\begin{aligned}
\beta_{1}^{l-1} P_{m_{2}}\left(\beta_{2} \frac{\partial}{\partial \beta_{2}}\right) & \ldots P_{m_{l}}\left(\beta_{l} \frac{\partial}{\partial \beta_{l}}\right) \frac{1}{\prod_{i=2}^{l}\left(\beta_{i}-\beta_{1}\right)} \\
= & \beta_{1}^{l-1} \prod_{i=2}^{l} P_{m_{i}}\left(\beta_{i} \frac{\partial}{\partial \beta_{i}}\right) \frac{1}{\beta_{i}-\beta_{1}}=\prod_{i=2}^{l} P_{m_{i}}\left(x_{i} \frac{\partial}{\partial x_{i}}\right) \frac{1}{x_{i}-1} \\
& =\prod_{i=2}^{l} \frac{-1}{\left(1-x_{i}\right)^{m_{i}}},
\end{aligned}
$$

where $x_{i}:=\beta_{i} / \beta_{1} \neq 1$ by hypothesis, and hence this expression is obviously non-zero.

Now we can prove Lemma 2. The terms with $\left|\beta_{j}\right|<1$ in (17) are $o(1)$, the others β_{j} are of absolute value 1 by the hypothesis of Lemma 2 . Let M be the maximum multiplicity of the terms with absolute value 1 ; then we know that in (17) there are terms of order k^{M-1}. Collecting these terms we have

$$
h_{k}=k^{M-1}\left(\sum_{j=1}^{l} r_{j} e^{i k \theta_{j}}+O(1 / k)\right),
$$

for some real θ_{j} with $\theta_{i} \neq \theta_{j}$ for $i \neq j$, and $r_{j} \neq 0$. Lemma 2 follows if we prove that $R_{k}:=\sum_{j=1}^{l} r_{j} e^{i k \theta_{j}} \nrightarrow 0$ as $k \rightarrow \infty$. By contradiction let us assume that $R_{k} \rightarrow 0$. Then $R_{k} e^{-i k \theta_{1}} \rightarrow 0$ as well, and by the Cesàro mean value we have

$$
o(1)=\frac{1}{N} \sum_{k=1}^{N} R_{k} e^{-i k \theta_{1}}=\sum_{j=1}^{l} r_{j} \frac{1}{N} \sum_{k=1}^{N} e^{i k\left(\theta_{j}-\theta_{1}\right)}=r_{1}+O(1 / N),
$$

a contradiction.
3.2. A remarkable relation. We show here the deduction of an interesting formula, identity (18) below, for the p-component of the coefficients of $L_{f}\left(s\right.$, sym $\left.^{m}\right)$, where f is a holomorphic newform for $\mathrm{SL}_{2}(\mathbb{Z})$. This formula is not necessary for the proof of our Theorem, but in some sense it completes the topics presented in the previous section. If we introduce the polynomials

$$
D_{u}(N):=\left|\begin{array}{cccc}
\beta_{1}^{N} & \beta_{2}^{N} & \ldots & \beta_{u}^{N} \\
\beta_{1}^{u-2} & \beta_{2}^{u-2} & \ldots & \beta_{u}^{u-2} \\
\beta_{1}^{u-3} & \beta_{2}^{u-3} & \ldots & \beta_{u}^{u-3} \\
\vdots & \vdots & & \vdots \\
\beta_{1} & \beta_{2} & \ldots & \beta_{u} \\
1 & 1 & \ldots & 1
\end{array}\right| \text {, }
$$

identity (14) can be formulated as $h_{k}=D_{u}(k+u-1) / D_{u}(u-1)$.

Now we suppose that $u=m+1$ and $\left\{\beta_{j}\right\}_{j=1}^{u} \equiv\left\{z^{m-2 j}\right\}_{j=0}^{m}$ with $|z|=1$: this happens when we consider the m-symmetric power of an L-function associated with a normalized newform for $\mathrm{SL}_{2}(\mathbb{Z})$, with $\left(1-z p^{-s}\right)\left(1-\bar{z} p^{-s}\right)$ the decomposition of its local polynomials. In this case

$$
D_{m+1}(N)=\left|\begin{array}{cccc}
z^{m N} & z^{(m-2) N} & \ldots & \bar{z}^{m N} \\
z^{m(m-1)} & z^{(m-2)(m-1)} & \ldots & \bar{z}^{m(m-1)} \\
z^{m(m-2)} & z^{(m-2)(m-2)} & \ldots & \bar{z}^{m(m-2)} \\
\vdots & \vdots & & \vdots \\
z^{m} & z^{m-2} & \ldots & \bar{z}^{m} \\
1 & 1 & \ldots & 1
\end{array}\right|
$$

From long and not completely elementary calculations involving the Gauss polynomials, which we do not report here, it is possible to verify that

$$
D_{m+1}(N)=\left(\prod_{j=1}^{m-1}\left(z^{j}-\bar{z}^{j}\right)^{m-j}\right)\left(\prod_{j=0}^{m-1}\left(z^{N-j}-\bar{z}^{N-j}\right)\right)
$$

Setting $z=: e^{i \theta}$, one gets

$$
\begin{equation*}
h_{k}=\prod_{j=1}^{m} \frac{\sin (k+j) \theta}{\sin j \theta} . \tag{18}
\end{equation*}
$$

For $m=1,(18)$ is the well known trigonometric expression for the p-part of the coefficients of $L_{f}(s)$.

Appendix. Writing $f(s)=L(s, \kappa)$ with κ a primitive character modulo q_{0}, we want prove that $f \in \mathcal{C}_{1}$, so we have to study the functional equation of $f \otimes \chi$ where χ is a primitive character modulo q. Let v be the character modulo $q_{1}\left(q_{1} \mid q_{0} q\right)$ that induces $\kappa \chi$. Then the identity $f \otimes \chi=$ $L(s, v) \prod_{p \mid q_{0} q}\left(1-v(p) p^{-s}\right)$ holds. It follows that $f \otimes \chi$ satisfies the functional equation

$$
\begin{aligned}
f & \otimes \chi(1-s) \\
& =i^{-\nu_{v}} \varepsilon_{v} q_{1}^{(2 s-1) / 2} \pi^{-(2 s-1) / 2} \frac{\Gamma\left(\left(s+\nu_{v}\right) / 2\right)}{\Gamma\left(\left(1-s+\nu_{v}\right) / 2\right)} \prod_{p \mid q_{0} q} \frac{1-v(p) p^{s-1}}{1-\bar{v}(p) p^{-s}} \bar{f} \otimes \bar{\chi}(s)
\end{aligned}
$$

where ν_{v} is the parity of v and $\varepsilon_{v}=\tau(v) / \sqrt{q_{1}}$ (phase of the Gauss sum). We write the functional equation selecting the following components:

$$
f \otimes \chi(1-s)=q^{(2 s-1) / 2} \alpha_{v} \Psi_{\nu_{v}}(s) \widetilde{\Psi}(\kappa, \chi, s) \bar{f} \otimes \bar{\chi}(s)
$$

where

$$
\begin{aligned}
\alpha_{v} & :=i^{-\nu_{v}} \varepsilon_{v} \\
\Psi_{\nu_{v}}(s) & :=\left(\frac{q_{0}}{\pi}\right)^{(2 s-1) / 2} \frac{\Gamma\left(\left(s+\nu_{v}\right) / 2\right)}{\Gamma\left(\left(1-s+\nu_{v}\right) / 2\right)}
\end{aligned}
$$

$$
\widetilde{\Psi}(\kappa, \chi, s):=\left(\frac{q_{1}}{q_{0} q}\right)^{(2 s-1) / 2} \prod_{p \mid q_{0} q} \frac{1-v(p) p^{s-1}}{1-\bar{v}(p) p^{-s}}
$$

Here $\left|\alpha_{v}\right|=1, \Psi_{\nu_{v}}(s)$ is a holomorphic function in $\sigma>0$ that depends only on the parity of v, with a $|t|^{\sigma}$ behaviour on the vertical lines by the Stirling formula, and $\widetilde{\Psi}(\kappa, \chi, s)$ is a holomorphic function in $\sigma>0$, bounded on the vertical strips but depending on the character χ. Verifying that $f \in \mathcal{C}_{1}$ means then proving that $\widetilde{\Psi}(\kappa, \chi, s)$ is bounded uniformly in t and χ for large and fixed σ; we prove this for $\sigma>0$. In fact

$$
\begin{align*}
|\widetilde{\Psi}(\kappa, \chi, s)| & \leq\left(\frac{q_{1}}{q_{0} q}\right)^{(2 \sigma-1) / 2} \prod_{\substack{p \mid q_{0} q \\
p \nmid q_{1}}} \frac{1+p^{\sigma-1}}{1-p^{-\sigma}} \tag{19}\\
& \leq\left(\frac{1}{M}\right)^{(2 \sigma-1) / 2} \prod_{p \mid M} \frac{1+p^{\sigma-1}}{1-p^{-\sigma}}
\end{align*}
$$

since $\left(1+p^{\sigma-1}\right) /\left(1-p^{-\sigma}\right)>1$ and $M:=q_{0} q / q_{1}$ is an integer. If we assume $\sigma \geq 1$, (19) implies that

$$
\begin{equation*}
|\widetilde{\Psi}(\kappa, \chi, s)| \leq\left(\frac{1}{M}\right)^{(2 \sigma-1) / 2} \prod_{p \mid M} p^{\sigma-1} \prod_{p \mid M} \frac{1+p^{1-\sigma}}{1-p^{-\sigma}} \leq \frac{c(\varepsilon)}{M^{1 / 2-\varepsilon}} \tag{20}
\end{equation*}
$$

where we have used $\left(1+p^{1-\sigma}\right) /\left(1-p^{-\sigma}\right) \leq 4$ for all p. Estimate (20) is particularly interesting because it is uniform in the character κ also.

The bound (20) holds in $\sigma>1$, and it is sufficient to prove that $L(s, \kappa) \in$ \mathcal{C}_{1}, but we further observe that an estimate uniform in χ but not in κ is still possible for $0<\sigma$; in fact, we will prove that $M \mid \operatorname{MCD}\left(q_{0}^{2}, q^{2}\right)$, thus from (19) we have

$$
|\widetilde{\Psi}(\kappa, \chi, s)| \leq \max \left(1, q_{0}^{1-2 \sigma}\right) \prod_{p \mid q_{0}} \frac{1+p^{\sigma-1}}{1-p^{-\sigma}}
$$

which is independent of χ.
For a proof of $M \mid \operatorname{MCD}\left(q_{0}^{2}, q^{2}\right)$, let $q_{0}=\prod_{p} p^{a_{p}}, q=\prod_{p} p^{b_{p}}, q_{1}=\prod_{p} p^{c_{p}}$ be the p-parts of the moduli and $\kappa=\prod_{p} \kappa_{p^{a_{p}}}, \chi=\prod_{p} \chi_{p^{b_{p}}}$ and $v=\prod_{p} v_{p^{c_{p}}}$ be the p-parts of the characters. Then $\kappa_{p^{a_{p}}}, \chi_{p^{b_{p}}}$ and $v_{p^{c_{p}}}$ are primitive and $v_{p^{c_{p}}}$ induces $\kappa_{p^{a_{p}}} \chi_{p^{b_{p}}}$. We prove that if $a_{p} \neq b_{p}$, then $c_{p}=\max \left(a_{p}, b_{p}\right)$. In fact let $a_{p}<b_{p}$ and by contradiction $c_{p}<b_{p}$. Then $\bar{\kappa}_{p^{a_{p}}}$ is a character modulo $p^{a_{p}}$ so $\bar{\kappa}_{p^{a_{p}}} v_{p^{c_{p}}}$ is a character modulo $\max \left(p^{a_{p}}, p^{c_{p}}\right)<p^{b_{p}}$, hence it induces a character mod $p^{b_{p}}$ that cannot be primitive. This is a contradiction since $\chi_{p^{b_{p}}}$ is the induced character. It follows that

$$
M=\prod_{p} \frac{p^{a_{p}} p^{b_{p}}}{p^{c_{p}}}=\prod_{p \mid q_{0}} \frac{p^{a_{p}} p^{b_{p}}}{p^{c_{p}}} \prod_{p \nmid q_{0}} \frac{p^{b_{p}}}{p^{c_{p}}}=\prod_{p \mid q_{0}} p^{a_{p}+b_{p}-c_{p}}
$$

but $a_{p} \neq b_{p}$ implies $a_{p}+b_{p}-c_{p}=\min \left(a_{p}, b_{p}\right)$ and $a_{p}=b_{p}$ implies $a_{p}+b_{p}-$ $c_{p} \leq 2 a_{p}$, hence $M \mid q_{0}^{2}$. In a similar way we prove that $M \mid q^{2}$.

Acknowledgments. This paper is part of my Ph.D. thesis. I wish to thank Prof. A. Perelli, my thesis advisor, for many interesting discussions and suggestions about this subject.

References

[1] W. Duke and H. Iwaniec, Convolution L-series, Compositio Math. 91 (1994), 145-158.
[2] —, 一, Estimates for coefficients of L-functions II, in: Proc. Amalfi Conf. Analytic Number Theory (1989), E. Bombieri et al. (eds.), Università di Salerno, 1992, 71-82.
[3] J. Kaczorowski and A. Perelli, On the structure of the Selberg class, $I: 0 \leq d \leq 1$, Acta Math. 182 (1999), 207-241.
[4] T. Miyake, Modular Forms, Springer, 1989.
[5] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Collected Papers, Vol. II, Springer, 1991, 47-63; also in: Proc. Amalfi Conf. Analytic Number Theory (1989), E. Bombieri et al. (eds.), Università di Salerno, 1992, 367385.
[6] F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1980), 297-355.
[7] -, Third symmetric power L-functions for GL(2), Compositio Math. 70 (1989), 245-275.
[8] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79-98.

Dipartimento di Matematica
Università di Milano
Via Saldini 50
I-20133 Milano, Italy
E-mail: molteni@mat.unimi.it

[^0]: 2000 Mathematics Subject Classification: Primary 11M41; Secondary 11M99.

