Existence of a non-entire twist for a class of *L*-functions

by

G. MOLTENI (Milano)

1. Settings and results. Given an integer $d \ge 1$, we consider the class C_d of functions with the following properties:

• (Arithmetical conditions) If $f \in C_{\mathbf{d}}$, then

$$f(s) = \prod_{p} \prod_{j=1}^{\mathbf{d}} (1 - \alpha_j(p)p^{-s})^{-1}$$

where $|\alpha_j(p)| \leq 1$ for all j, p. As a consequence of this hypothesis f has a Dirichlet series representation $f(s) = \sum_n a_n n^{-s}$ that is absolutely convergent for $\sigma > 1$.

• (Analytical conditions) For all integers $q \ge 1$ and all primitive characters $\chi \mod q$, the twisted function $(f \otimes \chi)(s) := \sum_n \chi(n) a_n n^{-s}$ has continuation to \mathbb{C} as a meromorphic function with at most a pole at s = 1; moreover, $(s-1)^m (f \otimes \chi)(s)$ is an entire function of finite order for some integer m, and $f \otimes \chi$ satisfies a functional equation of type

$$(f \otimes \chi)(1-s) = q^{\mathbf{d}(s-1/2)} \Phi_{\chi}^{f}(s)(\overline{f} \otimes \overline{\chi})(s)$$

where $\overline{f}(s) := \sum_{n} \overline{a}_{n} n^{-s}$, $\Phi_{\chi}^{f}(s)$ is an holomorphic function in $\sigma > 0$ and satisfies the estimate $|\Phi_{\chi}^{f}(s)| < c(\sigma, \chi)|t|^{B(\sigma, \chi)}$ for $|t| \ge 1$ on each vertical line $\sigma + it$, for some constants $c(\sigma, \chi)$, $B(\sigma, \chi) > 0$. Moreover, we assume that there exists $\widetilde{\sigma} > 0$ such that $c(\sigma, \chi) = c(\sigma)$ and $B(\sigma, \chi) = B(\sigma)$ for $\sigma > \widetilde{\sigma}$.

• In addition, for $f \in C_1$ we assume that $\Phi^f_{\chi}(s) \ll |t|^{\sigma}$ uniformly for |t| > 1 and σ sufficiently large.

REMARK 1. The above conditions are inspired by the work of Duke and Iwaniec [1].

REMARK 2. With these hypotheses, $C_{\mathbf{d}'} \subseteq C_{\mathbf{d}}$ when $\mathbf{d}' \leq \mathbf{d}$, so the really interesting parameter associated with $f \in C_{\mathbf{d}}$ is $\mathbf{d}(f) := \min{\{\mathbf{d}' : f \in C_{\mathbf{d}'}\}};$ in the following we will assume that $\mathbf{d}(f) = \mathbf{d}$ whenever we write $f \in C_{\mathbf{d}}$.

2000 Mathematics Subject Classification: Primary 11M41; Secondary 11M99.

[53]

REMARK 3. The third condition is compatible with our knowledge of C_1 and is necessary in a technical point of Section 2.

REMARK 4. The set $\bigcup_{\mathbf{d}} C_{\mathbf{d}}$ has a lot of algebraic structure provided by the product and the Rankin–Selberg convolution: in fact, let $f \in C_{\mathbf{d}}$ and $g \in C_{\mathbf{d}'}$; then the identity $(fg) \otimes \chi = (f \otimes \chi)(g \otimes \chi)$ shows that $fg \in C_{\mathbf{d}+\mathbf{d}'}$. Moreover, if we assume that $f \otimes g$ satisfies the analytical conditions, then $f \otimes g \in C_{\mathbf{dd}'}$.

It is not completely trivial to show that the usual Dirichlet *L*-functions $L(s,\kappa)$ are in \mathcal{C}_1 , the non-trivial part being the existence of a χ -uniform estimate for $f \otimes \chi = L(s,\kappa\chi)$; we prove this in the appendix.

Likewise, it can be proved that the normalized *L*-functions associated with holomorphic newforms for the Hecke group $\Gamma_0(N)$ with multiplier κ are in \mathcal{C}_2 : in this case we know that the twisted function $L \otimes \chi$ is again a normalized *L*-function associated with a newform for a $\Gamma_0(\tilde{N})$ and a new multiplier, so in this case $f \otimes \chi$ is always an entire function (see Theorem 4.3.12 in [4]).

Moreover, let L be a normalized function associated with a holomorphic newform for $\operatorname{SL}_2(\mathbb{Z})$ and let $L(s, \operatorname{sym}^m)$ be the *m*-symmetric function generated by L, introduced by Serre in connection with the Sato–Tate conjecture. For $m \geq 1$ the Langlands program implies that $L(s, \operatorname{sym}^m) \in \mathcal{C}_{m+1}$ and that the twist $L(s, \operatorname{sym}^m) \otimes \chi$ is entire for all χ . For small values of m these conjectures are consequences of important results proved in the literature. In particular they are true for m = 1 (case already quoted) and for m = 2 (from Shimura [8]). They are "almost" true for m = 3, 4, 5 too, in the sense that for those values of m the functional equation and the meromorphic continuation to \mathbb{C} have been established (Shahidi [6, 7]), but that the singularities are reduced at most to a pole at s = 1 is not yet proved.

DEFINITION. We say that $f \in C_{\mathbf{d}}$ has the *-property when $f \otimes \chi$ is an entire function for all primitive χ (hence f is entire as well, since $f = f \otimes \chi_0$ with q = 1).

The previous remarks show that there are elements with the *-property in $C_{\mathbf{d}}$ for $\mathbf{d} = 2, 3$ (see Remark 2) and conjecturally for every $\mathbf{d} \geq 2$, but not every element of $C_{\mathbf{d}}$ has the *-property, as the function $\zeta^2(s)$ shows. However, there is strong evidence, but no proof, that the elements of $C_{\mathbf{d}}$ with $\mathbf{d} \geq 2$ have the *-property if they are not a product or Rankin–Selberg convolution of functions in some $C_{\mathbf{d}'}$ (see Remark 4). The main result of this paper is that the restriction to $\mathbf{d} \geq 2$ is in fact a necessary condition for the *-property.

THEOREM. Let $f \in C_1$ have the *-property. Then f is the constant function f(s) = 1. The class $C_{\mathbf{d}}$ appears to be related to the Selberg class $S_{\mathbf{d}}$ (see [5] and [3]) but there are some important differences. Firstly, in $C_{\mathbf{d}}$ the kernel Φ_{χ}^{f} of the functional equation is not necessarily a product of Γ -factors; secondly, in $C_{\mathbf{d}}$ we assume a "well-behaviour" of $f \otimes \chi$ that probably holds in $S_{\mathbf{d}}$ as well, but $f \otimes \chi$ does not necessarily belong to $S_{\mathbf{d}}$. Finally, in our arithmetical definition \mathbf{d} is always an integer, while in the Selberg setting every positive real value is in principle possible for \mathbf{d} , as a consequence of a different (analytical) definition. In all the known cases the two definitions provide the same result: this reveals that there are deep aspects of the theory that are not yet well understood. Kaczorowski and Perelli [3] have proved that the Dirichlet Lfunctions $L(s, \kappa)$ and their shifts are the only elements of S_1 , so it is natural to conjecture that these functions exhaust C_1 as well. We are not able to prove this conjecture at present; however, our Theorem agrees with this conjecture.

The Theorem is a consequence of the following two lemmas.

LEMMA 1. Let $f(s) = \sum_{n} a_n n^{-s} \in C_1$ and $g(s) = \sum_{n} b_n n^{-s} \in C_d$ for some $d \geq 2$, and assume that f and g have the *-property. Then

$$\sum_{1/2 < n < x} a_n b_n \eta^2(n/x) \ll_A x^{-A} \quad \forall A > 0$$

with an arbitrary positive function $\eta \in C_0^{\infty}([1/2, 1])$.

x

LEMMA 2. Let $\sum_k h_k x^k = \prod_{j=1}^u (1-\beta_j x)^{-1}$ with $0 < |\beta_j| \le 1$ for any j. Assume that $|\beta_j| = 1$ for some j and let $m_i = \#\{j : \beta_j = \beta_i \text{ with } |\beta_i| = 1\},$ $M = \max\{m_i\}.$ Then $h_k = \Omega(k^{M-1});$ in particular $h_k = \Omega(1).$

For the proof of Lemma 1 we follow, with some non-trivial simplifications, the approach used by Duke and Iwaniec [1] to treat a similar problem. Section 2 is devoted to the proof of this lemma.

Lemma 2 is an easy consequence of explicit computations of linear algebra (see Section 3).

Proof of the Theorem. If we assume the lemmas, the proof of the Theorem is simple; in fact Lemma 1 implies

(1)
$$|a_n b_n| < c(A)n^{-A} \quad \forall A > 0.$$

We write $f(s) = \prod_p (1 - \alpha(p)p^{-s})^{-1}$, $g(s) = \prod_p \prod_{j=1}^d (1 - \beta_j(p)p^{-s})^{-1}$. Given any prime p, we select a function g such that $|\beta_j(p)| = 1$ for some j (this is always possible, for example in C_2 with g a normalized L-function associated with a holomorphic newform for $SL_2(\mathbb{Z})$). Then the sequence b_{p^k} satisfies the hypothesis of Lemma 2, so there is a subsequence $\{b_{p^{k_n}}\}$ such that $|b_{p^{k_n}}| > c$ for some positive constant c and every n. The complete multiplicativity of a_n and (1) give

$$|\alpha(p)|^{k_n} c = |a_{p^{k_n}}| c \le |a_{p^{k_n}} b_{p^{k_n}}| \le c(A) p^{-k_n A},$$

so $|\alpha(p)| \leq (c(A)/c)^{1/k_n} p^{-A}$, and hence taking $n \to \infty$, for any p and A we have $|\alpha(p)| \leq p^{-A}$. Therefore $\alpha(p) = 0$ for every p, and the result follows.

2. Proof of Lemma 1

2.1. Preliminary identities

REMARK 5. Here and in the following section $\int_{\sigma>a}$ is the integral on the vertical line with abscissa $\sigma > a$.

Let η be as in Lemma 1, $Y(x):=\sum_q \eta(q/\sqrt{x})\sim \sqrt{x}\int_{\mathbb{R}}\eta(u)\,du,$ and define

$$\mathcal{D}(x) := \sum_{n} a_n b_n \eta^2 (n/x)$$

In order to analyze the asymptotic behaviour of $\mathcal{D}(x)$ and prove the lemma, we begin by performing the same transformations as in Section 3 of [1], with some little changes. In particular, the decomposition of a_{rm} is now obvious by complete multiplicativity, and the other arithmetical functions $b_r(b)$, $c_t(c)$, $d_t(d)$, which are necessary for the decomposition of b_{rn} and to relax the constraints (m, t) = 1 and (n, t) = 1 respectively, are now defined by

(2a)
$$b_{rn} = \sum_{bn'=n, b|r^{\mathbf{d}-1}} b_r(b) b_{n'}, \quad b_r(b) \ll r^{\varepsilon},$$

(2b)
$$\sum_{dn'=n,\,d|t^{\mathbf{d}}} d_t(d) b_{n'} = \begin{cases} b_n & \text{if } (n,t) = 1, \\ 0 & \text{otherwise,} \end{cases} \quad d_t(d) \ll t^{\varepsilon}$$

(2c)
$$\sum_{cm'=m, c|t} c_t(c) a_{m'} = \begin{cases} a_m & \text{if } (m,t) = 1, \\ 0 & \text{otherwise,} \end{cases} \quad c_t(c) \ll t^{\varepsilon}.$$

The existence of $b_r(b)$ for $\mathbf{d} = 2$ is proved in [2], and the general case is similar; the existence of $c_t(c)$ and $d_t(d)$ is granted by the Euler product (in particular $c_t(c) = \mu(c)a_c$, with μ the Möbius function).

The result of these transformations is the following identity, which is analogous to (9) of [1]:

(3)
$$Y\mathcal{D}(x) = \sum_{q,r,t} \phi(qt)^{-1} \sum_{\substack{(b,qt)=1\\b|r^{\mathbf{d}-1}}} a_r b_r(b) \sum_{\substack{(cd,q)=1\\c|t,d|t^{\mathbf{d}}}} c_t(c) d_t(d)$$
$$\times \sum_{\chi \bmod q} \sum_{m,n}^* \chi(cm) \overline{\chi}(bdn) a_m b_n h\left(\frac{crm}{x}, \frac{bdrn}{x}, \frac{qrt}{\sqrt{x}}\right),$$

where $h(x, y, z) := \eta(x)\eta(y)(\eta(z) - \eta(|x - y|/z))$ has support in $[1/2, 1] \times [1/2, 1] \times (0, 1]$ and \sum^* is a sum over the primitive characters only.

Now we adapt to our case the argument in Section 4 of [1], but we avoid using the Kloosterman sums.

Let

$$\varrho_1 := cr/x, \quad \varrho_2 := bdr/x, \quad z := qrt/\sqrt{x}, \quad \mathfrak{h}(u,v) := h(\varrho_1 u, \varrho_2 v, z)$$

and

$$\Delta(\chi) := \sum_{m,n} \chi(m) \overline{\chi}(n) a_m b_n \mathfrak{h}(m,n).$$

Then $\mathfrak{h}(u, v)$ is a smooth function with compact support that is zero in $\{|u| < 1/(2\varrho_1)\} \times \{|v| < 1/(2\varrho_2)\}$, hence

$$\check{\mathfrak{h}}(s_1,s_2) := \int_0^\infty \int_0^\infty \mathfrak{h}(u,v) u^{-s_1} v^{-s_2} \, du \, dv$$

is entire in $\mathbb{C} \times \mathbb{C}$.

Moreover, the equality $\check{\mathfrak{h}}(s_1,s_2) = \varrho_1^{s_1-1} \varrho_2^{s_2-1} \check{h}(s_1,s_2,z)$ holds with

(4)
$$\check{h}(s_1, s_2, z) := \int_0^\infty \int_0^\infty h(u, v, z) u^{-s_1} v^{-s_2} \, du \, dv,$$

therefore

$$\varrho_1^{-s_1} \varrho_2^{-s_2} \check{h}(1-s_1, 1-s_2, z) = \int_0^\infty \int_0^\infty \mathfrak{h}(u, v) u^{s_1-1} v^{s_2-1} \, du \, dv$$

The inverse of this Mellin integral gives

$$\mathfrak{h}(u,v) = \frac{-1}{4\pi^2} \iint_{\sigma_1,\sigma_2>1} \check{h}(1-s_1,1-s_2,z)(\varrho_1 u)^{-s_1} (\varrho_2 v)^{-s_2} \, ds_1 \, ds_2,$$

therefore

$$\Delta(\chi) = \frac{-1}{4\pi^2} \iint_{\sigma_1, \sigma_2 > 1} \check{h}(1 - s_1, 1 - s_2, z) (f \otimes \chi)(s_1) (g \otimes \overline{\chi})(s_2) \varrho_1^{-s_1} \varrho_2^{-s_2} \, ds_1 \, ds_2$$

for the uniform convergence of $\sum a_n n^{-s}$ and $\sum b_n n^{-s}$ in $\sigma > 1 + \varepsilon$.

The functions $f \otimes \chi$ and $g \otimes \overline{\chi}$ are entire by the *-property and have a polynomial behaviour on the vertical strips by the hypothesis on the functional equations. In the next subsection we prove that \check{h} tends to zero on the vertical lines more quickly than any power, so the changes $s_1 \mapsto 1 - s_1$, $s_2 \mapsto 1 - s_2$ and the subsequent applications of the Fubini and Cauchy theorems give

$$\Delta(\chi) = \frac{-1}{4\pi^2} \iint_{\sigma_1, \sigma_2 > 1} \check{h}(s_1, s_2, z) (f \otimes \chi) (1 - s_1) (g \otimes \overline{\chi}) (1 - s_2) \varrho_1^{s_1 - 1} \varrho_2^{s_2 - 1} \, ds_1 \, ds_2.$$

Now we introduce the functional equations and the Dirichlet series again, thus getting

$$\Delta(\chi) = \frac{q^{-(1+\mathbf{d})/2}}{\varrho_1 \varrho_2} \sum_{m,n} \overline{\chi}(m) \chi(n) \overline{a}_m \overline{b}_n \mathcal{H}_{\chi}\left(\frac{m}{q\varrho_1}, \frac{n}{q^{\mathbf{d}}\varrho_2}, \frac{qrt}{\sqrt{x}}\right)$$

where

(5)
$$\mathcal{H}_{\chi}(u,v,z) := \frac{-1}{4\pi^2} \iint_{\sigma_1,\sigma_2>0} \check{h}(s_1,s_2,z) \varPhi_{\chi}^f(s_1) \varPhi_{\overline{\chi}}^g(s_2) u^{-s_1} v^{-s_2} \, ds_1 \, ds_2.$$

In the definition of \mathcal{H}_{χ} we can allow every positive value for σ_1 and σ_2 by the hypothesis about Φ_{χ}^f and Φ_{χ}^g and the behaviour of \check{h} on the vertical lines. Substituting this expression in (3) we obtain the final equality

(6)
$$Y\mathcal{D}(x) = x^2 \sum_{rt < \sqrt{x}} a_r \sum_{\substack{b \mid r^{\mathbf{d}-1} \\ (b,t)=1 \ d \mid t^{\mathbf{d}}}} \sum_{\substack{c \mid t \\ d \mid t^{\mathbf{d}}}} b_r(b)c_t(c)d_t(d)\frac{\mathcal{E}}{bcdr^2},$$

where

(7)
$$\mathcal{E} := \sum_{\substack{m,n,q\\(bcdmn,q)=1}} \frac{q^{-(1+\mathbf{d})/2}}{\varphi(qt)} \overline{a}_m \overline{b}_n \\ \times \sum_{\chi \bmod q} \chi(cn \overline{bdm}) \mathcal{H}_{\chi}\left(\frac{mx}{crq}, \frac{nx}{bdrq^{\mathbf{d}}}, \frac{qrt}{\sqrt{x}}\right),$$

which is analogous to (10) of [1].

2.2. Estimate of \mathcal{H}_{χ}

REMARK 6. In this and the following sections ε is an arbitrary (small) positive parameter not always with the same value.

We recall that $h(u, v, z) = \eta(u)\eta(v)(\eta(z) - \eta(|u - v|/z))$ has support in $[1/2, 1] \times [1/2, 1] \times (0, 1]$ and the definitions of $\check{h}(s_1, s_2, z)$ and $\mathcal{H}_{\chi}(u, v, z)$ in (4) and (5).

By partial integration we have, for all $A, B \ge 0$,

$$\check{h}(s_1, s_2, z) = \int_0^\infty \int_0^\infty \frac{\partial h(u, v, z)}{\partial^A u \partial^B v} \times \frac{u^{A-s_1}}{(s_1 - A) \dots (s_1 - 1)} \cdot \frac{v^{B-s_2}}{(s_2 - B) \dots (s_2 - 1)} \, du \, dv;$$

moreover, $z^{A+B} \frac{\partial h(u,v,z)}{\partial^A u \partial^B v}$ is uniformly bounded on its support, since it is a polynomial expression in z, $\eta^{(i)}(u)$, $\eta^{(j)}(v)$, $\eta^{(k)}(|u-v|/z)$, so the former relation gives the estimate

(8)
$$\check{h}(s_1, s_2, z) \ll z^{-A-B} (1+|s_1|)^{-A} (1+|s_2|)^{-B} \quad \forall A, B \ge 0$$

where the implied constant depends only on A, B, σ_1, σ_2 . Hence (8) is uniform on the vertical lines. Therefore

$$\mathcal{H}_{\chi} \ll u^{-\sigma_1} v^{-\sigma_2} z^{-A-B} \iint_{\sigma_1, \sigma_2 > 0} \frac{|\Phi_{\chi}^f(s_1)|}{(1+|s_1|)^A} \cdot \frac{|\Phi_{\overline{\chi}}^g(s_2)|}{(1+|s_2|)^B} dt_1 dt_2,$$

the estimate being independent of the character χ if σ_1 and σ_2 are sufficiently large. Moreover, we have supposed that $\Phi^f_{\chi}(s_1) \ll |t|^{\sigma_1}$ and $\Phi^f_{\chi}(s_2) \ll |t|^{B(\sigma_2)}$ for |t| > 1 and σ_i large, so

$$\mathcal{H}_{\chi} \ll u^{-\sigma_1} v^{-\sigma_2} z^{-A-B} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (1+|t_1|)^{\sigma_1-A} (1+|t_2|)^{B(\sigma_2)-B} dt_1 dt_2,$$

where by (8) we have supposed A and B sufficiently large to assure the convergence of the integral. Choosing $A = \sigma_1 + 1 + \varepsilon$ and $B = B(\sigma_2) + 1 + \varepsilon$, we have

$$\mathcal{H}_{\chi} \ll_{\sigma_1, \sigma_2} u^{-\sigma_1} v^{-\sigma_2} z^{-\sigma_1 - B(\sigma_2) - 2 - \varepsilon}$$

= $u^{-(\sigma_1 - B(\sigma_2) - 2 - \varepsilon)/2} v^{-\sigma_2} (uz^2)^{-(\sigma_1 + B(\sigma_2) + 2 + \varepsilon)/2}$

for all σ_1 , σ_2 large, therefore

$$\mathcal{H}_{\chi} \ll_{A,D} u^{-A} v^{-D} (uz^2)^{-\widetilde{B}}$$

for all A, D > 0 large, for some $\widetilde{B} = \widetilde{B}(A, D) > 0$. Hence

(9)
$$\mathcal{H}_{\chi}\left(\frac{mx}{crq}, \frac{nx}{bdrq^{\mathbf{d}}}, \frac{qrt}{\sqrt{x}}\right) \ll_{A,D} \left(\frac{crq}{mx}\right)^{A} \left(\frac{bdrq^{\mathbf{d}}}{nx}\right)^{D} \left(\frac{mx}{crq} \cdot \frac{q^{2}r^{2}t^{2}}{x}\right)^{-\widetilde{B}}.$$

In view of the support of h, $\mathcal{H}_{\chi}(u, v, z)$ is zero when z > 1, so we can greatly simplify the estimate (9) by assuming $0 < z \leq 1$, i.e., $q \leq Q := \sqrt{x}/(rt)$. In fact

$$\frac{crq}{mx} \le \frac{cr}{mx} \cdot \frac{x^{1/2}}{rt} \le \frac{x^{-1/2}}{m}$$

by (2c),

$$\frac{bdrq^{\mathbf{d}}}{nx} \leq \frac{b}{r^{\mathbf{d}-1}} \cdot \frac{d}{t^{\mathbf{d}}} \cdot \frac{x^{(\mathbf{d}-2)/2}}{n} \leq \frac{x^{(\mathbf{d}-2)/2}}{n}$$

by (2a) and (2b), and

$$\frac{mx}{crq} \cdot \frac{q^2 r^2 t^2}{x} \ge 1$$

by (2c). Thus (9) becomes

$$\mathcal{H}_{\chi}\left(\frac{mx}{crq}, \frac{nx}{bdrq^{\mathbf{d}}}, \frac{qrt}{\sqrt{x}}\right) \ll_{A,D} \frac{x^{-A/2 + (\mathbf{d}-2)D/2}}{m^{A}n^{D}} \quad \forall A, D > 0$$

Finally, with a suitable choice of D = D(A) we have

(10)
$$\mathcal{H}_{\chi}\left(\frac{mx}{crq}, \frac{nx}{bdrq^{\mathbf{d}}}, \frac{qrt}{\sqrt{x}}\right) \ll_{A} \frac{x^{-A}}{m^{A}n^{A}} \quad \forall A > 0,$$

uniformly in χ .

2.3. Estimate of \mathcal{E} . Estimate (10) is so strong that we can bound \mathcal{E} trivially, using the uniformity in χ and taking the absolute values in (7), thus getting

(11)
$$\mathcal{E} \ll_A \sum_{q \le Q} \frac{q^{(1-\mathbf{d})/2}}{\varphi(qt)} \sum_m \frac{|a_m|}{m^A} \sum_n \frac{|b_n|}{n^A} x^{-A} \ll_A \frac{x^{-A}}{t^{1-\varepsilon}} \quad \forall A > 1,$$

where the q-series is convergent since we have assumed $\mathbf{d} \geq 2$, and the same holds for the m and n-series when A > 1.

2.4. Proof of Lemma 1. The bound in (11), the trivial estimates $a_r, b_r(b) \ll r^{\varepsilon}, c_t(c), d_t(d) \ll t^{\varepsilon}$ and $b, c, d \ge 1$ give, when introduced in (6),

$$Y\mathcal{D}(x) \ll_A x^{2-A} \sum_{rt \le \sqrt{x}} \frac{r^{\varepsilon} t^{\varepsilon}}{r^2 t} \sum_{\substack{b \mid r^{\mathbf{d}-1} \\ c \mid t, \, d \mid t^{\mathbf{d}}}} 1 \ll_A x^{2-A} \sum_{rt \le \sqrt{x}} \frac{r^{\varepsilon} t^{\varepsilon}}{r^2 t}$$
$$\ll_A x^{2+\varepsilon-A} \quad \forall A > 1.$$

This completes the proof of Lemma 1, since $Y \simeq \sqrt{x}$.

3. Some explicit formulas

3.1. Proof of Lemma 2. Writing

$$\sum_{k} h_k x^k = \prod_{j=1}^{u} (1 - \beta_j x)^{-1},$$

we have

(12)
$$h_k = \sum_{\substack{a_1 + \dots + a_u = k \\ a_i \ge 0}} \beta_1^{a_1} \dots \beta_u^{a_u}.$$

Let s_1, \ldots, s_u be the elementary symmetric polynomials in the β_j . Then the identity $(1 - s_1 x + \ldots + (-1)^u s_u x^u) \sum_k h_k x^k = 1$ gives the recursive relations

(13)
$$\begin{cases} h_k - s_1 h_{k-1} + s_2 h_{k-2} + \ldots + (-1)^u s_u h_{k-u} = 0 & \text{if } k > 0, \\ h_0 = 1, \\ h_k = 0 & \text{if } k < 0. \end{cases}$$

The recursion can be solved in this way: denoting by v_n the column vector

60

 $(h_n, h_{n-1}, \ldots, h_{n-u+1})^t$, (13) is equivalent to $v_0 = (1, 0, \ldots, 0)^t$ and $v_n = \mathcal{A}v_{n-1}$, i.e., $v_n = \mathcal{A}^n v_0$ with

$$\mathcal{A} := \begin{pmatrix} s_1 & -s_2 & s_3 & \dots & (-1)^u s_u \\ & & I_{u-1} & & 0 \end{pmatrix},$$

where I_{u-1} is the identity matrix of order u-1.

It is known that β_1, \ldots, β_u are the eigenvalues of \mathcal{A} having $w_j := (\beta_j^{u-1}, \beta_j^{u-2}, \ldots, 1)^t$ as eigenvectors, so \mathcal{A} is diagonalizable if we suppose $\beta_i \neq \beta_j$ for all $i \neq j$; in this case we set $\mathcal{M} := (w_1, \ldots, w_u)$ so that $\mathcal{G} := \mathcal{M}^{-1}\mathcal{A}\mathcal{M}$ is diagonal, $\mathcal{G} = \text{diag}(\beta_1, \ldots, \beta_u)$. Hence $v_n = \mathcal{M}\mathcal{G}^n \mathcal{M}^{-1} v_0$ and if $V(c_1, \ldots, c_u)$ denotes the Vandermonde determinant $\prod_{1 \leq i < j \leq u} (c_i - c_j)$, it follows that

(14)
$$h_k = \sum_{j=1}^u \beta_j^{k+u-1} (-1)^{j+1} \frac{V(\beta_1, \stackrel{\vee}{\dots}, \beta_u)}{V(\beta_1, \dots, \beta_u)} = \sum_{j=1}^u \frac{\beta_j^{k+u-1}}{\prod_{i \neq j} (\beta_i - \beta_j)}.$$

In the general case suppose β_1, \ldots, β_l distinct and let $m_i = \#\{j : \beta_j = \beta_i\}$ for $i = 1, \ldots, l$. Then (12) can be written as

$$h_k = \sum_{\substack{a_1 + \dots + a_l = k \\ a_i \ge 0}} \beta_1^{a_1} \dots \beta_l^{a_l} \Big(\sum_{\substack{c_1 + \dots + c_{m_1} = a_1 \\ c_i \ge 0}} 1\Big) \dots \Big(\sum_{\substack{c_1 + \dots + c_{m_l} = a_l \\ c_i \ge 0}} 1\Big).$$

But $\sum_{c_1+\ldots+c_m=a, c_i\geq 0} 1 = \binom{a+m-1}{m-1} =: P_m(a)$ is a polynomial in a of degree m-1 and $a^k\beta^a = \left(\beta \frac{d}{d\beta}\right)^k\beta^a$, so that the former equality becomes

(15)
$$h_k = P_{m_1}\left(\beta_1 \frac{\partial}{\partial \beta_1}\right) \dots P_{m_l}\left(\beta_l \frac{\partial}{\partial \beta_l}\right) \sum_{\substack{a_1 + \dots + a_l = k \\ a_i \ge 0}} \beta_1^{a_1} \dots \beta_l^{a_l}.$$

We substitute (14) in (15) obtaining

(16)
$$h_k = P_{m_1}\left(\beta_1 \frac{\partial}{\partial \beta_1}\right) \dots P_{m_l}\left(\beta_l \frac{\partial}{\partial \beta_l}\right) \sum_{j=1}^l \frac{\beta_j^{k+l-1}}{\prod_{i \neq j} (\beta_i - \beta_j)}$$

which finally gives the relation

(17)
$$h_k = \sum_{j=1}^{l} p_j(k) \beta_j^k,$$

where each $p_j(k)$ is a polynomial of degree $\leq m_j - 1$ in the k variable.

We prove that $\partial_k p_j = m_j - 1$; it is sufficient to prove that the coefficient of $k^{m_1-1}\beta_1^k$ in (16) is not zero. But this coefficient is

G. Molteni

$$\beta_1^{l-1} P_{m_2} \left(\beta_2 \frac{\partial}{\partial \beta_2} \right) \dots P_{m_l} \left(\beta_l \frac{\partial}{\partial \beta_l} \right) \frac{1}{\prod_{i=2}^l (\beta_i - \beta_1)} \\ = \beta_1^{l-1} \prod_{i=2}^l P_{m_i} \left(\beta_i \frac{\partial}{\partial \beta_i} \right) \frac{1}{\beta_i - \beta_1} = \prod_{i=2}^l P_{m_i} \left(x_i \frac{\partial}{\partial x_i} \right) \frac{1}{x_i - 1} \\ = \prod_{i=2}^l \frac{-1}{(1 - x_i)^{m_i}},$$

where $x_i := \beta_i / \beta_1 \neq 1$ by hypothesis, and hence this expression is obviously non-zero.

Now we can prove Lemma 2. The terms with $|\beta_j| < 1$ in (17) are o(1), the others β_j are of absolute value 1 by the hypothesis of Lemma 2. Let M be the maximum multiplicity of the terms with absolute value 1; then we know that in (17) there are terms of order k^{M-1} . Collecting these terms we have

$$h_k = k^{M-1} \Big(\sum_{j=1}^l r_j e^{ik\theta_j} + O(1/k) \Big),$$

for some real θ_j with $\theta_i \neq \theta_j$ for $i \neq j$, and $r_j \neq 0$. Lemma 2 follows if we prove that $R_k := \sum_{j=1}^l r_j e^{ik\theta_j} \neq 0$ as $k \to \infty$. By contradiction let us assume that $R_k \to 0$. Then $R_k e^{-ik\theta_1} \to 0$ as well, and by the Cesàro mean value we have

$$o(1) = \frac{1}{N} \sum_{k=1}^{N} R_k e^{-ik\theta_1} = \sum_{j=1}^{l} r_j \frac{1}{N} \sum_{k=1}^{N} e^{ik(\theta_j - \theta_1)} = r_1 + O(1/N),$$

a contradiction.

3.2. A remarkable relation. We show here the deduction of an interesting formula, identity (18) below, for the *p*-component of the coefficients of $L_f(s, \operatorname{sym}^m)$, where f is a holomorphic newform for $\operatorname{SL}_2(\mathbb{Z})$. This formula is not necessary for the proof of our Theorem, but in some sense it completes the topics presented in the previous section. If we introduce the polynomials

$$D_u(N) := \begin{vmatrix} \beta_1^N & \beta_2^N & \dots & \beta_u^N \\ \beta_1^{u-2} & \beta_2^{u-2} & \dots & \beta_u^{u-2} \\ \beta_1^{u-3} & \beta_2^{u-3} & \dots & \beta_u^{u-3} \\ \vdots & \vdots & & \vdots \\ \beta_1 & \beta_2 & \dots & \beta_u \\ 1 & 1 & \dots & 1 \end{vmatrix}$$

identity (14) can be formulated as $h_k = D_u(k+u-1)/D_u(u-1)$.

Now we suppose that u = m+1 and $\{\beta_j\}_{j=1}^u \equiv \{z^{m-2j}\}_{j=0}^m$ with |z| = 1: this happens when we consider the *m*-symmetric power of an *L*-function associated with a normalized newform for $\mathrm{SL}_2(\mathbb{Z})$, with $(1-zp^{-s})(1-\overline{z}p^{-s})$ the decomposition of its local polynomials. In this case

$$D_{m+1}(N) = \begin{vmatrix} z^{mN} & z^{(m-2)N} & \dots & \overline{z}^{mN} \\ z^{m(m-1)} & z^{(m-2)(m-1)} & \dots & \overline{z}^{m(m-1)} \\ z^{m(m-2)} & z^{(m-2)(m-2)} & \dots & \overline{z}^{m(m-2)} \\ \vdots & \vdots & & \vdots \\ z^m & z^{m-2} & \dots & \overline{z}^m \\ 1 & 1 & \dots & 1 \end{vmatrix}$$

From long and not completely elementary calculations involving the Gauss polynomials, which we do not report here, it is possible to verify that

$$D_{m+1}(N) = \Big(\prod_{j=1}^{m-1} (z^j - \overline{z}^j)^{m-j}\Big) \Big(\prod_{j=0}^{m-1} (z^{N-j} - \overline{z}^{N-j})\Big).$$

Setting $z =: e^{i\theta}$, one gets

(18)
$$h_k = \prod_{j=1}^m \frac{\sin(k+j)\theta}{\sin j\theta}$$

For m = 1, (18) is the well known trigonometric expression for the *p*-part of the coefficients of $L_f(s)$.

Appendix. Writing $f(s) = L(s, \kappa)$ with κ a primitive character modulo q_0 , we want prove that $f \in C_1$, so we have to study the functional equation of $f \otimes \chi$ where χ is a primitive character modulo q. Let v be the character modulo q_1 $(q_1 | q_0 q)$ that induces $\kappa \chi$. Then the identity $f \otimes \chi = L(s, v) \prod_{p|q_0q} (1-v(p)p^{-s})$ holds. It follows that $f \otimes \chi$ satisfies the functional equation

$$f \otimes \chi(1-s) = i^{-\nu_{\upsilon}} \varepsilon_{\upsilon} q_1^{(2s-1)/2} \pi^{-(2s-1)/2} \frac{\Gamma((s+\nu_{\upsilon})/2)}{\Gamma((1-s+\nu_{\upsilon})/2)} \prod_{p|q_0q} \frac{1-\upsilon(p)p^{s-1}}{1-\overline{\upsilon}(p)p^{-s}} \bar{f} \otimes \overline{\chi}(s)$$

where ν_{v} is the parity of v and $\varepsilon_{v} = \tau(v)/\sqrt{q_{1}}$ (phase of the Gauss sum). We write the functional equation selecting the following components:

$$f \otimes \chi(1-s) = q^{(2s-1)/2} \alpha_{\upsilon} \Psi_{\nu_{\upsilon}}(s) \Psi(\kappa, \chi, s) \overline{f} \otimes \overline{\chi}(s)$$

where

$$\alpha_{\upsilon} := i^{-\nu_{\upsilon}} \varepsilon_{\upsilon},$$

$$\Psi_{\nu_{\upsilon}}(s) := \left(\frac{q_0}{\pi}\right)^{(2s-1)/2} \frac{\Gamma((s+\nu_{\upsilon})/2)}{\Gamma((1-s+\nu_{\upsilon})/2)},$$

G. Molteni

$$\widetilde{\Psi}(\kappa,\chi,s) := \left(\frac{q_1}{q_0 q}\right)^{(2s-1)/2} \prod_{p|q_0 q} \frac{1 - \upsilon(p)p^{s-1}}{1 - \overline{\upsilon}(p)p^{-s}}.$$

Here $|\alpha_v| = 1$, $\Psi_{\nu_v}(s)$ is a holomorphic function in $\sigma > 0$ that depends only on the parity of v, with a $|t|^{\sigma}$ behaviour on the vertical lines by the Stirling formula, and $\widetilde{\Psi}(\kappa, \chi, s)$ is a holomorphic function in $\sigma > 0$, bounded on the vertical strips but depending on the character χ . Verifying that $f \in C_1$ means then proving that $\widetilde{\Psi}(\kappa, \chi, s)$ is bounded uniformly in t and χ for large and fixed σ ; we prove this for $\sigma > 0$. In fact

(19)
$$|\widetilde{\Psi}(\kappa,\chi,s)| \leq \left(\frac{q_1}{q_0q}\right)^{(2\sigma-1)/2} \prod_{\substack{p \mid q_0q \\ p \nmid q_1}} \frac{1+p^{\sigma-1}}{1-p^{-\sigma}} \\ \leq \left(\frac{1}{M}\right)^{(2\sigma-1)/2} \prod_{p \mid M} \frac{1+p^{\sigma-1}}{1-p^{-\sigma}}$$

since $(1 + p^{\sigma-1})/(1 - p^{-\sigma}) > 1$ and $M := q_0 q/q_1$ is an integer. If we assume $\sigma \ge 1$, (19) implies that

(20)
$$|\widetilde{\Psi}(\kappa,\chi,s)| \le \left(\frac{1}{M}\right)^{(2\sigma-1)/2} \prod_{p|M} p^{\sigma-1} \prod_{p|M} \frac{1+p^{1-\sigma}}{1-p^{-\sigma}} \le \frac{c(\varepsilon)}{M^{1/2-\varepsilon}},$$

where we have used $(1 + p^{1-\sigma})/(1 - p^{-\sigma}) \leq 4$ for all p. Estimate (20) is particularly interesting because it is uniform in the character κ also.

The bound (20) holds in $\sigma > 1$, and it is sufficient to prove that $L(s, \kappa) \in C_1$, but we further observe that an estimate uniform in χ but not in κ is still possible for $0 < \sigma$; in fact, we will prove that $M \mid \text{MCD}(q_0^2, q^2)$, thus from (19) we have

$$|\widetilde{\Psi}(\kappa,\chi,s)| \le \max(1,q_0^{1-2\sigma}) \prod_{p|q_0} \frac{1+p^{\sigma-1}}{1-p^{-\sigma}},$$

which is independent of χ .

For a proof of $M | \operatorname{MCD}(q_0^2, q^2)$, let $q_0 = \prod_p p^{a_p}$, $q = \prod_p p^{b_p}$, $q_1 = \prod_p p^{c_p}$ be the *p*-parts of the moduli and $\kappa = \prod_p \kappa_{p^{a_p}}$, $\chi = \prod_p \chi_{p^{b_p}}$ and $v = \prod_p v_{p^{c_p}}$ be the *p*-parts of the characters. Then $\kappa_{p^{a_p}}$, $\chi_{p^{b_p}}$ and $v_{p^{c_p}}$ are primitive and $v_{p^{c_p}}$ induces $\kappa_{p^{a_p}}\chi_{p^{b_p}}$. We prove that if $a_p \neq b_p$, then $c_p = \max(a_p, b_p)$. In fact let $a_p < b_p$ and by contradiction $c_p < b_p$. Then $\overline{\kappa}_{p^{a_p}}$ is a character modulo p^{a_p} so $\overline{\kappa}_{p^{a_p}}v_{p^{c_p}}$ is a character modulo $\max(p^{a_p}, p^{c_p}) < p^{b_p}$, hence it induces a character mod p^{b_p} that cannot be primitive. This is a contradiction since $\chi_{n^{b_p}}$ is the induced character. It follows that

$$M = \prod_{p} \frac{p^{a_{p}} p^{b_{p}}}{p^{c_{p}}} = \prod_{p|q_{0}} \frac{p^{a_{p}} p^{b_{p}}}{p^{c_{p}}} \prod_{p \nmid q_{0}} \frac{p^{b_{p}}}{p^{c_{p}}} = \prod_{p|q_{0}} p^{a_{p} + b_{p} - c_{p}},$$

but $a_p \neq b_p$ implies $a_p + b_p - c_p = \min(a_p, b_p)$ and $a_p = b_p$ implies $a_p + b_p - c_p \leq 2a_p$, hence $M \mid q_0^2$. In a similar way we prove that $M \mid q^2$.

Acknowledgments. This paper is part of my Ph.D. thesis. I wish to thank Prof. A. Perelli, my thesis advisor, for many interesting discussions and suggestions about this subject.

References

- W. Duke and H. Iwaniec, Convolution L-series, Compositio Math. 91 (1994), 145-158.
- [2] —, —, Estimates for coefficients of L-functions II, in: Proc. Amalfi Conf. Analytic Number Theory (1989), E. Bombieri et al. (eds.), Università di Salerno, 1992, 71–82.
- [3] J. Kaczorowski and A. Perelli, On the structure of the Selberg class, $I: 0 \le d \le 1$, Acta Math. 182 (1999), 207–241.
- [4] T. Miyake, Modular Forms, Springer, 1989.
- [5] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Collected Papers, Vol. II, Springer, 1991, 47–63; also in: Proc. Amalfi Conf. Analytic Number Theory (1989), E. Bombieri et al. (eds.), Università di Salerno, 1992, 367– 385.
- [6] F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1980), 297-355.
- [7] —, Third symmetric power L-functions for GL(2), Compositio Math. 70 (1989), 245–275.
- [8] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79–98.

Dipartimento di Matematica Università di Milano Via Saldini 50 I-20133 Milano, Italy E-mail: molteni@mat.unimi.it

Received on 3.2.1999

(3551)