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1. Introduction. Let K be a field of characteristic p ≥ 0 and let
f(X) be a polynomial of degree at least two with coefficients in K. We set
f1(X) = f(X) and define fr+1(X) = f(fr(X)) for all r ≥ 1. Following
R. W. K. Odoni [7], we say that f is stable over K if fr(X) is irreducible
over K for every r ≥ 1. In [6] the same author proved that the polynomial
f(X) = X2 −X + 1 is stable over Q. He wrote in [7] that the proof given
there is quite difficult and it would be of interest to have an elementary proof.
In the sequel we shall use elementary methods for proving the stability of
quadratic polynomials over number fields; especially the rational field, and
over finite fields of characteristic p ≥ 3.

2. Preliminary results. We recall here the classical result:

Lemma 1 (Capelli’s lemma). Let K be a field and let u(X), v(X) ∈ K[X]
be polynomials. Let α be any root of u(X) in an algebraic closure of K. Then
u(v(X)) is irreducible over K if and only if u(X) is irreducible over K and
v(X)− α is irreducible over K(α).

P r o o f. See [9] and [2, énoncé 2.9] for two different proofs.

Let now K be a field of characteristic p 6= 2 and let f(X) = X2−lX+m ∈
K[X]. We assume that f(X) is irreducible over K. In this section we give
conditions under which for a given positive integer n, fn(X) is irreducible
but fn+1(X) is reducible over K. In the algebraic closure of K choose any
sequence β0, β1, . . . , βn with β0 = 0 and βj = f(βj+1) for j = 0, . . . , n − 1.
It is evident that βr is a root of fr(X) for r = 1, . . . , n and that, if the
square root is well chosen, βr+1 = l/2 +

√
d/4 + βr for r = 0, . . . , n, where

d = l2 − 4m is the discriminant of f(X).

2000 Mathematics Subject Classification: 11C08, 11T06, 12E05.

[87]



88 M. Ayad and D. L. McQuillan

We define the finite increasing sequence of fields Kr, for r = 0, . . . , n+1,
by Kr = K(βr). We set d0 = d/4, dr = d0 + βr for all r ≥ 0, δ = −d − 2l
and δ0 = δ/4.

Claim. For every r ≥ 0, we have dr+1 = −δ0 +
√

dr.

P r o o f. We have

dr+1 = d0 + βr+1 = d0 +
l

2
+

√
dr =

2d0 + l

2
+

√
dr

=
d/2 + l

2
+

√
dr =

d + 2l

4
+

√
dr = −δ0 +

√
dr.

The following lemma will be used to prove the first theorem of this paper.

Lemma 2. Let K be a field of characteristic p 6= 2 and let d be an element
of K, not a square. Let g, h ∈ K, h 6= 0, then the following propositions are
equivalent :

(i) g + h
√

d is a square in the field K(
√

d).
(ii) There exist elements a and % in K such that g2 − dh2 = %2 and

a2 = (g + %)/2.
(iii) There exists a ∈ K such that −dh2 = 4a2(a2 − g).

P r o o f. (i)⇒(ii). Suppose that g+h
√

d is a square in K(
√

d ), g+h
√

d =
(a + b

√
d )2. Then a2 + db2 = g and 2ab = h. Since h 6= 0, we deduce

that a 6= 0. Replacing b by h/(2a), we obtain a quadratic equation in a2:
a4 − ga2 + h2d/4 = 0. We conclude that its discriminant is a square in K
say: g2 − dh2 = %2 and a2 = (g + %)/2 for some % ∈ K.

(ii)⇒(iii). Starting from the relations contained in (ii), we obtain % =
2a2 − g and

−dh2 = %2 − g2 = (2a2 − g)2 − g2 = 4a2(a2 − g).

(iii)⇒(i). Since h 6= 0 we deduce that a 6= 0 and that(
a +

h

2a

√
d

)2

=
4a4 + dh2

4a2
+ h

√
d = g + h

√
d.

Note. For future reference we note the expression

g + h
√

d =
(

a +
h

2a

√
d

)2

.

We now define polynomials gr(X) in K[X] as follows: g0(X) = −X,
g1(X) = X2 + δ0 and gr+1(X) = g1(gr(X)) thus gr+1(X) = g2

r(X) + δ0,
r ≥ 1. Next we define elements gr in K by gr = gr(δ0) thus g0 = −δ0,
g1 = δ2

0 + δ0 and gr+1 = g2
r + δ0, r ≥ 1.

We can now state the following:
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Theorem 1. Let n ≥ 1 and let fn(X) be irreducible in K[X]. If fn+1(X)
is reducible over K, then for every r, 0 ≤ r ≤ n − 1, there exist elements
ar and %r ∈ Kn−r−1 such that g2

r − %2
r = dn−r−1 and a2

r = (gr + %r)/2.
Furthermore, for every r such that 1 ≤ r ≤ n− 1, we have

%r−1 = ±
(

ar −
√

dn−r−1

2ar

)
.

Conversely if there exist elements ar and %r with these properties then
fn+1(X) is reducible in K[X].

P r o o f. Suppose that fn(X) is irreducible and fn+1(X) is reducible
over K; then by Lemma 1 f(X) − βn is reducible over Kn = K(βn). The
discriminant of f(X)− βn is

4(d0 + βn) = 4dn = 4(−δ0 +
√

dn−1) = 4(g0 +
√

dn−1).

Hence g0 +
√

dn−1 is a square in Kn = Kn−1(
√

dn−1). Recall that
g0 = −δ0 ∈ K ⊂ Kn−1. By Lemma 2 there exist elements a0 and %0 ∈ Kn−1

such that g2
0 − %2

0 = dn−1 and a2
0 = (g0 + %0)/2. Let r be an integer,

0 ≤ r ≤ n − 2, and suppose that there exist ar, %r ∈ Kn−r−1 such that
g2

r − %2
r = dn−r−1 and a2

r = (gr + %r)/2. Then g2
r − dn−r−1 = %2

r is a square
in Kn−r−1 = Kn−r−2(

√
dn−r−2). Now

g2
r − dn−r−1 = g2

r + δ0 −
√

dn−r−2 = gr+1 −
√

dn−r−2.

By Lemma 2 again we conclude that there exist elements ar+1, %r+1 ∈
Kn−r−2 such that g2

r+1 − dn−r−2 = %2
r+1 and a2

r+1 = (gr+1 + %r+1)/2.
Conversely, suppose that there exist a0, %0 ∈ K such that g2

0 − %2
0 = dn−1

and a2
0 = (g0 + %0)/2. By Lemma 2 we deduce that g0 +

√
dn−1 is a square

in Kn = K(βn). Since βn+1 is a root of f(X)− βn and the discriminant of
this polynomial is 4(g0 +

√
dn−1), we conclude that f(X)− βn is reducible

over Kn and by Capelli’s lemma fn+1(X) is reducible over K.

Remark 1. Suppose that fn(X) is irreducible and fn+1(X) is reducible
over K. Then with the notations of the preceding theorem and with the aid
of the claim, we have

%2
r = g2

r − dn−r−1 = g2
r + δ0 −

√
dn−r−2

= gr+1 −
√

dn−r−2 =
(

ar+1 −
√

dn−r−2

2ar+1

)2

.

Thus

%r = ±
(

ar+1 −
√

dn−r−2

2ar+1

)
.
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We also have:

βn+1 =
l

2
+

√
dn =

l

2
+

√
−δ0 +

√
dn−1 =

l

2
+

√
g0 +

√
dn−1

=
l

2
+

√(
a0 +

√
dn−1

2a0

)2

=
l

2
±

(
a0 +

√
dn−1

2a0

)
.

Example 1. Let K = Q and f(X) = X2 + 10X + 17. This polynomial
appears in [7] as an example for which f2(X) is reducible. Here we have
l = −10; d = 32, d0 = 8, δ = −d − 2l = −12, δ0 = −3, g0 = −δ0 = 3,
g2
0 − d0 = 1 so %0 = ±1; a2

0 = (g0 + %0)/2 = (3± 1)/2 = 2 or 1, so a0 = ±1.
Thus β2 = l/2 ± a0 ±

√
d0/(2a0) = −5 ± 1 ±

√
2, that is, β2 = 4 ±

√
2 or

β2 = −6±
√

2 and so

f2(X) = (X2 + 8X + 14)(X2 + 12X + 34).

3. Stability over Q. In this section we suppose that K = Q and
f(X) = X2 − lX + m is an irreducible polynomial in Z[X]. Now d ≡ δ ≡ 0
(mod 4) when l is even and d ≡ δ ≡ 1 (mod 4) when l is odd. In the even
case, we have d0 = d/4 ∈ Z and δ0 = δ/4 ∈ Z, thus gr ∈ Z for every r ≥ 0.
In the odd case we have g0 = −δ/4 and g1 = (δ2 + 4δ)/42 and in general
gr = hr/42r

where hr ∈ Z and hr ≡ δ2r ≡ 1 (mod 4).

Theorem 2. If d ≡ 1 (mod 4), then f(X) is stable over Q.

P r o o f. Let n ≥ 1 and suppose fn(X) is irreducible but fn+1(X) is
reducible in Q[X]. By Theorem 1, there exists an element %n−1 ∈ Q such
that g2

n−1 − %2
n−1 = d/4. Since g2

n−1 = h2
n−1/42n

it follows that %n−1 =
un−1/42n−1

where un−1 is an odd integer. Setting br = 42r

we have(
hn−1 + un−1

bn−1

)(
hn−1 − un−1

bn−1

)
=

d

4
.

Set
hn−1 + un−1

bn−1
=

a

b
and

hn−1 − un−1

bn−1
=

r

s

where a and r are odd integers and both b and s are powers of 2. Thus
ar/(bs) = d/4 and hence ar = d, bs = 4. Now adding the equations above
yields

hn−1 =
1
2

(
a

b
+

r

s

)
bn−1 =

(as + br)bn−1

8
;

when n ≥ 2, the right side is even and we have a contradiction. If n = 1
then bn−1 = 4 and so hn−1 = (as + br)/2. Again this is impossible since
bs = 4 and a and r are both odd. In all cases we are led to a contradiction,
hence f is stable over Q.
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The example given above shows that Theorem 2 no longer holds when d
is even; however we have:

Theorem 3. If d = 0 (mod 4) but d 6= 0 (mod 16) then f(X) is stable
over Q.

P r o o f. Suppose fn(X) is irreducible and fn+1(X) is reducible in Q[X]
for some n ≥ 1. By Theorem 1 again, there exists an element %n−1 ∈ Q such
that g2

n−1 − %2
n−1 = d0 = d/4. Now gn−1 ∈ Z, d0 ∈ Z and so %n−1 ∈ Z.

If d0 ≡ 2 (mod 4), we have an immediate contradiction. If d0 is odd then
gn−1+%n−1 and gn−1−%n−1 are both odd and hence neither (gn−1+%n−1)/2
nor (gn−1 − %n−1)/2 can be a square in Q, contradicting Theorem 1. Thus
Theorem 3 is proved.

We now consider polynomials f(X) with discriminant d ≡ 0 (mod 16).

Theorem 4. If d ≡ 0 (mod 16) and |δ| ≥ |d|, then f(X) is stable over Q.

P r o o f. Suppose fn(X) is irreducible and fn+1(X) is reducible over Q
for some n ≥ 1. By Theorem 1, there is an element %n−1 ∈ Z such that
g2

n−1 − %2
n−1 = d0 = d/4. We can assume %n−1 > 0. Then

|d0| = ||gn−1|2 − %2
n−1| = ||gn−1|+ %n−1| · ||gn−1| − %n−1|

= (|gn−1|+ %n−1)||gn−1| − %n−1|.
Thus |d0| > |gn−1|. We get a contradiction as follows. Suppose first that
δ > 0; then |gr| ≥ δ0 for all r and since δ0 ≥ |d0| by assumption we have a
contradiction. Suppose now that δ < 0. Since |d| ≥ 16 our assumption gives
|δ0| ≥ 4 and hence |g0| = |δ0|, |g1| = δ2

0 +d0 > |δ0| and in general |gr| ≥ |δ0|.
Again we have a contradiction and the theorem is proved.

It remains to consider the situation when d ≡ 0 (mod 16) and |δ| < |d|.
This last condition is equivalent to the condition that d and l have opposite
sign (recall δ = −d − 2l) and 0 < |l| < |d|. We note that since d and δ
determine l and m we have:

Corollary. When d ≡ 0 (mod 16), there are only finitely many poly-
nomials f(X) = X2 − lX + m with integer coefficients of discriminant d
such that fn(X) is reducible over Q for some n ≥ 2.

Remark 2. We note that when d ≡ 0 (mod 16), there are always
polynomials f(X) = X2 − lX + m in Z[X] of discriminant d such that
fn(X) is reducible for some n. Indeed there are always polynomials such
that f2(X) is reducible and we can determine all of these explicitly.

Suppose that f(X) = X2 − lX + m is irreducible and has discriminant
d ≡ 0 (mod 16). If f2(X) is reducible, then by Theorem 1, there exist
a0, %0 ∈ Q such that δ2

0 − %2
0 = δ0 and a2

0 = (−δ0 + ε%0)/2, ε = ±1. Note
that %0 and a0 ∈ Z since δ0, d0 ∈ Z, −d0 = 4a2

0(a
2
0 + δ0) and 4 | δ0. Since δ0
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and %0 have the same parity we can consider the integer b0 = (−δ0 − ε%0)/2
and we see that

a2
0b0 = d0/4 = d/16, δ0 = −(a2

0 + b0),

ε%0 = a2
0 − b0, l = 2(−δ0 − d0) = 2(a2

0 + b0 − 4a2
0b0)

and of course m = (l2 − d)/4.
Conversely, start with any factorization of d/16 of the form d/16 = a2

0b0

for some a0, b0 ∈ Z with a0 > 0. Define l = 2(a2
0+b0−4a2

0b0), m = (l2−d)/4
and let f(X) = X2 − lX + m. Then δ0 = −d0 − l/2 = −(a2

0 + b0) and

g2
0 − d0 = δ2

0 − d0 = (a2
0 + b0)2 − 4a2

0b0 = (a2
0 − b0)2 = %2

0

say where %0 = a2
0 − b0. Then (g0 + %0)/2 = (−δ0 + %0)/2 = a2

0 and so by
Theorem 1, f2(X) is reducible over Q. For instance if we take d = 32, then
d/16 = 2 and the only factorization of d/16 of the form a2

0b0, a0 > 0, gives
a0 = 1, b0 = 2, then l = −10, m = 17, f(X) = X2 + 10X + 17 and we
recover Odoni’s example.

Remark 3. The same argument shows that if d = 16e, where e is square-
free, e 6= 1, there is only one polynomial f(X) of discriminant d such that
f2(X) is reducible. Similarly when d/16 = r2s where r > 0, s is square-free,
s 6= 1. Thus the number of polynomials f(X) of discriminant d such that
f2(X) is reducible is just the number of divisors of r and they can all be
described explicitly.

Remark 4. When considering the case d ≡ 0 (mod 16) and |δ| < |d| we
note these facts:

(i) if δ = 0 then gr = 0 for all r ≥ 0,
(ii) if δ = −8 then gr = 2 for all r ≥ 0,
(iii) if δ = −4 then g0 = 1 and gr = 0 when r is odd, and gr = −1 when

r is even and positive.

However if δ 6= 0,−4,−8 then |gr| is increasing and hence given d there
exists an integer N (minimal) such that |gn−1| ≥ |d0| when n ≥ N. On
the other hand, we have seen in the proof of Theorem 4 that if fn(X) is
irreducible and fn+1(X) is reducible then |d0| > |gn−1|. Hence if fN (X) is
irreducible then f(X) is stable over Q.

Finally, we consider the situation when d ≡ 0 (mod 16) and δ = 0,−8.
Here as noted above, gr is constant for all r ≥ 0. We show that if f2(X)
is irreducible then f(X) is stable over Q. Indeed, suppose that for some
n ≥ 2, fn(X) is irreducible while fn+1(X) is reducible over Q. Then by
Theorem 1, there exist elements an−1, %n−1 ∈ Q such that g2

n−1−%2
n−1 = d0

and a2
n−1 = (gn−1 + %n−1)/2. Since gn−1 = g0 we conclude by the converse

part of Theorem 1 applied to the case n = 1 that f2(X) is reducible. This
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contradiction proves what we want. We note that Remark 2 allows us to de-
scribe all f(X) above for which f2(X) is reducible. The case d ≡ 0 (mod 16),
δ = −4 remains open.

4. Stability over finite fields. Let Fq be a finite field of characteristic
p ≥ 3 and let f(X) = X2 − lX + m be an irreducible polynomial over Fq.
In this section we investigate the stability of f(X) over Fq. If F is a finite
field and x ∈ F ∗, we denote by

(
x
F

)
the quadratic character of x, that is,(

x
F

)
= 1 if x is a square in F and

(
x
F

)
= −1 if not. Before stating the

main result of this section we recall a result of O. Ore about a quadratic
reciprocity law [4], [8].

Lemma 3 (Ore). Let u(X), v(X) ∈ Fq[X] be monic and irreducible poly-
nomials over the field Fq of characteristic p ≥ 3. Suppose that u(X) 6= v(X)
and let α (resp. β) be a root of u (resp. v) in an algebraic closure of Fq.
Then (

u(β)
Fq(β)

)(
v(α)
Fq(α)

)
= (−1)

q−1
2 ·deg u·deg v.

In fact, the statement of this result given in [4] and [8] is more general.

Theorem 5. Let Fq be a finite field of characteristic p 6= 2 and let
f(X) = X2 − lX + m be a polynomial with coefficients in Fq and with
discriminant d = l2 − 4m. Suppose that f(X) is irreducible over Fq. Then
f(X) is stable over Fq if and only if fn(−d/4) is not a square in Fq for
every n ≥ 1.

P r o o f. Suppose that fn(X) is irreducible and fn+1(X) is reducible
over Fq for some n ≥ 1. Let βn be a root of fn(X) in an algebraic closure
of Fq; then by Capelli’s lemma f(X) − βn is reducible over Fq(βn). This
implies that its discriminant is a square in Fq(βn)∗, so βn + d/4 is a square
in Fq(βn)∗. Set u(X) = X + d/4, v(X) = fn(X) and apply the preceding
lemma. We obtain(

βn + d/4
Fq(βn)

)(
fn(−d/4)

Fq

)
= (−1)deg fn·(q−1)/2 = (−1)2

n−1(q−1) = 1

since q is odd. We conclude that fn(−d/4) is a square in F∗
q .

Conversely, suppose that for some n ≥ 1, fn(−d/4) is square in Fq.
If fn(X) is reducible then the conclusion follows. Suppose that fn(X) is
irreducible and let βn be a root of fn(X) in an algebraic closure of Fq. Set
u(X) = X + d/4, v(X) = fn(X) and again apply the preceding lemma. We
have (

βn + d/4
Fq(βn)

)(
fn(−d/4)

Fq

)
= (−1)deg fn·(q−1)/2 = 1.
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We deduce that βn+d/4 is a square in Fq(βn) and also 4βn+d is a square.
This implies that the polynomial f(X) − βn is reducible over Fq(βn). By
Capelli’s lemma fn+1(X) is reducible over Fq.

Let q = pe be a prime power where p is odd and let f(X) = X2− lX +m
be an irreducible polynomial over Fq. Let d = l2 − 4m be its discriminant.
Since the field Fq is finite, the set V = {fn(−d/4) : n ≥ 1} is also finite.
Let k be the smallest integer for which there exists an index i < k such that
fk(−d/4) = fi(−d/4). Then it is clear that

V = {f1(−d/4), . . . , fk−1(−d/4)}.

It follows that if none of the elements f1(−d/4), . . . , fk−1(−d/4) is a
square in Fq, then f(X) is stable over Fq.

Example 2. We can apply the above considerations to the polynomial
considered by Odoni in [6], f(X) = X2 − X + 1 of discriminant d = −3.
Let p be a prime number. Then f(X) is irreducible over Fp if and only if
p ≡ 2 (mod 3). For instance take p = 5, then f1(3/4) = −2, f2(3/4) = 2,
f3(3/4) = −2 so fn(3/4) is never a square in F5, hence f(X) is stable over
F5. We conclude that f(X) is also stable over Q.

5. Stability over number fields. In this section we deal with the sta-
bility of quadratic polynomials over number fields and state a result similar
to Theorem 5.

Theorem 6. Let K be a number field , and A its ring of integers. Let
f(X) = X2− lX +m be a polynomial with coefficients in A, irreducible over
K and of discriminant d = l2−4m. Then f(X) is stable over K if and only
if fn(−d/4) is never a square for every n ≥ 1.

P r o o f. Suppose that fn(X) is irreducible while fn+1(X) is reducible
over K for some n ≥ 1. Let βn be a root of fn(X) in C. Then by Capelli’s
lemma f(X)−βn is reducible over K(βn). This implies that its discriminant
is a square in this field, so 4βn + d is also a square in the integral closure
B of A. Set 4βn + d = g2(βn) where g is a polynomial with coefficients in
K. It follows that fn(X) divides 4X + d − g2(X) in K[X]. Let ℘ be any
prime ideal of A lying above an odd rational prime and not containing the
common denominator of the coefficients of g. Let V (X) be an irreducible
unitary factor of fn(X) over the finite field A/℘ and let β be a root of V (X).
Then we have 4β + d = g2(β) so β + d/4 is a square in (A/℘)(β).

By Lemma 3 we have(
β + d/4

(A/℘)(β)

)(
V (−d/4)

A/℘

)
= (−1)deg V ·(ph−1)/2
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where h is the residual degree of ℘. Hence(
V (−d/4)

A/℘

)
= (−1)deg V ·(ph−1)/2.

We deduce that(
fn(−d/4)

A/℘

)
= (−1)deg fn·(ph−1)/2 = (−1)2

n−1(ph−1) = 1,

hence fn(−d/4) is a square in A/℘. Hensel’s lemma ([3, Chap. 4] or [5,
Chap. 3]) implies that fn(−d/4) is a square in the ℘-adic completion K℘ of
K. Before completing the proof, we recall Grunwald’s theorem [1, Chap. 9,
Th. 1] (see also Chap. 10, Th.1).

Theorem 7 (Grunwald–Wang). Let F be a global field , m = 2tm′ (m′

odd) an integer , and S a finite set of primes. Let α ∈ F and assume α ∈ Fm
y

for all y 6∈ S.

(a) If F is a function field or if F is a number field and the field F (ζ2t)/F
is cyclic where ζ2t is a primitive 2t-root odd of unity (this condition is sat-
isfied if t ≤ 2) then α ∈ Fm.

(b) Otherwise at least α ∈ Fm/2.

We apply this theorem to our situation, where F = K is a number field,
m = 2, t = 1, m′ = 1, α = fn(−d/4), and S is the finite set containing
the primes lying above 2 or containing the common denominator of the
coefficients of the polynomial g(X). We conclude that fn(−d/4) is a square
in K.

The converse part of Theorem 6 may be proved similarly.
We have shown in Section 4 that the polynomial f(X) = X2 −X + 1 is

stable over F5, hence stable over Q. We can get the stability over Q directly
by using Theorem 6. To this end we will prove two simple lemmas.

Lemma 4. Let f(X) = X2−X+1 and set U0 = 3/4 and Un = f(Un−1) =
fn(3/4) for every n ≥ 1. Then for every n ≥ 0, we have 3/4 ≤ Un < 1.

P r o o f. We note that f is an increasing function in [1/2,∞[. The proof
may be completed easily by induction.

Lemma 5. Let a be an odd integer , n ≥ 1 be an integer , b = 42n

, and
f(X) = X2 −X + 1. If 3/4 ≤ a/b < 1, then f(a/b) 6∈ Q2.

P r o o f. Suppose that f(a/b) is a square in Q. Then there exists a
positive integer c such that

a2 − ab + b2 = c2.

We deduce that

(2a− b)2 + 3b2 = 4c2 and (2a− b + 2c)(2a− b− 2c) = −3b2.
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Now 2a− b + 2c > 2a− b− 2c and so we have either

(i) 2a− b + 2c = 3 · 2s and 2a− b− 2c = −2t

or

(ii) 2a− b + 2c = 2s and 2a− b− 2c = −3 · 2t

where 2s+t = b2 = 22n+2
. Adding we get either

(iii) 4a− 2b = 3 · 2s − 2t

or

(iv) 4a− 2b = 2s − 3 · 2t.

Since 3/4 ≤ a/b we get 4a− 3b ≥ 0 and 4a− 2b > 0. We conclude that
in either case t is the smallest of s and t, and indeed t = 2 since a is odd.
Thus 2s = 22n+2−2, 2t = 4. Divide by 4b and get either

(v)
a

b
=

1
2
− 1

b
+

3 · 2s−2

b
>

2s−2

b
or

(vi)
a

b
=

1
2
− 3

b
+

2s−2

b
>

2s−2

b
.

Now 2s−2/b = 22n+2−4−2n+1
= 22n+1−4 ≥ 1, and we deduce that a/b > 1,

which contradicts our assumption.

It is now easy to get the stability over Q of the polynomial f(X) =
X2 −X + 1.

Proposition. Let f(X) = X2 −X + 1. Then f(X) is stable over Q.

P r o o f. This polynomial is irreducible over Q and its discriminant is
equal to −3. Set U0 = 3/4 and Un = f(Un−1) = fn(3/3) for n ≥ 1. Then by
Lemma 4, we have 3/4 ≤ Un < 1. We can write Un in the form Un = an/42n

for every n ≥ 0, where an ∈ Z is odd. Lemma 5 implies that for every n ≥ 1,
Un 6∈ Q2. We conclude by Theorem 6 that f(X) is stable over Q.
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