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1. Introduction. Let N and q be positive integers, and k a positive even
integer throughout. We denote by Sk(Γ0(N)) the space of all holomorphic
cusp forms of weight k with respect to Γ0(N). For a Dirichlet character
χ (mod q) and f(z) =

∑∞
n=1 âf,∞(n)e2πinz ∈ Sk(Γ0(N)) the twisted L-

function is defined by

L(f, χ, s) =
∞∑
n=1

χ(n)af,∞(n)
ns

,

where af,∞(n) = âf,∞(n)n−(k−1)/2 and s = σ+it is a complex variable. The
above infinite series is absolutely convergent for σ > 1. If χ is a primitive
character (mod q) with (N, q) = 1, the function L(f, χ, s) can be holomor-
phically continued to the whole s-plane and satisfies a functional equation.

It is important to study the vanishing order of L(f, χ, s) at s = 1/2
which is the center of the functional equation. Here we quote the following
non-vanishing result due to Duke [3].

Theorem 1 (Duke). Let p be a prime and χ a primitive character (mod
q) with (p, q) = 1. Let Fp denote an orthogonal basis in S2(Γ0(p)) which
consists of normalized newforms. Then there is a positive absolute constant
C and a constant Cq depending only on q such that for p > Cq there are at
least Cp(log p)−2 forms f ∈ Fp for which L(f, χ, 1/2) 6= 0.

The proof of the above result is based on a comparison of mean values and
an important estimate concerning the Petersson norm of f due to Hoffstein–
Lockhart [6] and Goldfeld–Hoffstein–Lieman [5].

The purpose of this paper is to derive a non-vanishing result on the
critical line s = 1/2+it corresponding to Theorem 1. To attain this purpose,
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first we shall give the following result which is a consequence of a comparison
of certain mean values.

Theorem 2. Let k be a positive even integer , N ≥ 2, τ = |t| + 2, and
χ a primitive character (mod q) with (N, q) = 1. Let F be an orthonormal
basis in Sk(Γ0(N)). In the case k = 2 choose N with

√
N

(log(N + 1))2 ≥ max{qτ(log(qτ))2, C2},

and for k > 2 choose N with
√
N

log(N + 1)
≥ max{qτ log(qτ), Ck},

where Ck is a positive constant depending only on k. Then, for a positive
absolute constant C, we have

∑

f∈F
L(f,χ,1/2+it)6=0

|af,∞(1)|2 ≥ (4π)k−1

(k − 2)!
· C

logN
.

This result is an analogue of Proposition 3 of Duke [3], but we put an
emphasis on the conditions for lower bounds of N . These conditions are
necessary because the dependence on q and τ appearing in estimating mean
values of L(f, χ, 1/2+ it) should be taken into consideration. If we apply the
method of Duke [3] to estimate mean values, we cannot obtain satisfactory
results with respect to q and τ in the error term (see the remark after the
proof of Proposition 15). Thus we shall use another approach, that is, the
method of Balasubramanian–Ramachandra which appears in their argument
for estimating mean squares of Dirichlet L-functions (see the proof of Lemma
2′ of [1]), and obtain certain mean value results for L(f, χ, 1/2 + it) whose
dependence on q and τ is satisfactorily estimated (see Propositions 7 and
10 in Sections 3 and 4).

It should be noted that, from Propositions 1.40 and 1.43 and Theorem
2.24 of Shimura [9], it follows that

dimSk(Γ0(N)) =
(k − 1)N

12

∏

p|N
(1 + 1/p) +O(N1/2d(N))

for N ≥ c, where c is a positive absolute constant, p is a prime, d(·) is the
divisor function, and the implied constant is absolute. Hence we see that
Sk(Γ0(N)) 6= {0} for N ≥ c.

It seems difficult to obtain an upper bound for af,∞(1) as N and f ∈
F vary. For k = 2, 4, 6, 8, 10, 14 and N a large prime, Sk(Γ0(N)) has an
orthonormal basis which consists of newforms. Hence, in these cases, we can
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apply an upper bound for af,∞(1) proved in [6] and [5] to Theorem 2, and
give the following variation of Theorem 1.

Theorem 3. Let p be a prime, χ a primitive character (mod q) with
(p, q) = 1, and τ = |t| + 2. For k = 2, 4, 6, 8, 10, 14 let Fk,p denote an
orthogonal basis in Sk(Γ0(p)) which consists of normalized newforms. In the
case k = 2 choose p with

√
p

(log(p+ 1))2 ≥ max{qτ(log(qτ))2, C ′2},

and for k = 4, 6, 8, 10, 14 choose p with
√
p

log(p+ 1)
≥ max{qτ log(qτ), C ′k},

where C ′k is a positive constant depending only on k. Then, for a positive
absolute constant C′, there are at least C′p(log p)−2 forms f ∈ Fk,p for which
L(f, χ, 1/2 + it) 6= 0.

In the last section we shall consider an asymptotic formula for the sum∑
f∈F |L(f, χ, 1/2+ it)|2 by generalizing the method of Duke [3] (see Propo-

sition 15 in Section 6).

The author would like to express his sincere gratitude to Professor Kohji
Matsumoto and Professor Yoshio Tanigawa for their advice and encourage-
ment. He would also like to express his sincere thanks to Professor Fernando
Chamizo and the referee for their helpful comments.

2. Preliminaries. In this section, following Iwaniec’s book [7], we in-
troduce notation and known results.

First, we refer to Kloosterman sums. Let Γ be a Fuchsian group of the
first kind which contains parabolic motions. Select a complete set of in-
equivalent cusps for Γ , and let a, b be elements in that set (not necessarily
distinct). We denote by σa, σb ∈ SL2(R) the scaling matrices with respect
to a, b. Put

C(a, b) = CΓ (a, b) =
{
c > 0

∣∣∣∣
( ∗ ∗
c ∗

)
∈ σ−1

a Γσb

}

and

B =
{
±
(

1 b
0 1

) ∣∣∣∣ b ∈ Z
}
.

For integers m, n and c ∈ C(a, b) the Kloosterman sum is defined by

Sab(m,n; c) =
∑

( a ∗c d )∈B\σ−1
a Γσb/B

e

(
ma+ nd

c

)
,
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where e(·) = e2πi·. In particular, set

S(m,n; c) =
∑

ad≡1 (mod c)

e

(
ma+ nd

c

)
.

We are interested in the case Γ = Γ0(N) with N ≥ 2 and a =∞, b = 0. In
this case one can show the following properties:

σ∞ =
(

1 0
0 1

)
, σ0 =

(
0 −1/

√
N√

N 0

)
,(1)

C(∞,∞) = C(0, 0) = {rN | r ∈ N},(2)

C(∞, 0) = C(0,∞) = {r
√
N | r ∈ N, (r,N) = 1},(3)

S∞∞(m,n; c) = S00(m,n; c) = S(m,n; c),(4)

S∞0(m,n; c) = S0∞(m,n; c) = S(mN,n; c/
√
N),(5)

where N is the residue class with NN ≡ 1 (mod c/
√
N) (see p. 58 of [7]).

Next, we mention the functional equation for L(f, χ, s). For f ∈
Sk(Γ0(N)) and γ ∈ SL2(R) we define the function f |[γ]k by

(f |[γ]k)(z) = (cz + d)−kf
(
az + b

cz + d

)
, γ =

(
a b
c d

)
.

If χ is a primitive character (mod q) with (N, q) = 1, the function L(f, χ, s)
can be holomorphically continued to the whole s-plane and satisfies the
functional equation (see Theorem 7.6 of [7])

(6)
(

2π√
Nq

)−s
Γ (s+ (k − 1)/2)L(f, χ, s)

= µ

(
2π√
Nq

)s−1

Γ ((k + 1)/2− s)L(f |[σ0]k, χ, 1− s),

where µ = ikχ(N)W (χ)2q−1, W (χ) is the Gauss sum, and σ0 is the same
as in (1) for N ≥ 2 and σ0 denotes the unit matrix for N = 1. Recall that
f |[σ0]k is also an element in Sk(Γ0(N)).

Finally, we quote the Petersson formula. In the finite linear space
Sk(Γ0(N)) the Petersson inner product is defined by

〈f, g〉 =
\

Γ0(N)\H
f(z)g(z)yk dµ(z),

where f, g ∈ Sk(Γ0(N)), H is the upper half-plane, z = x+ iy, and dµ(z) =
y−2dxdy. We denote by F an orthonormal basis in Sk(Γ0(N)).

Theorem 4 (Petersson formula). Let k be a positive even integer , F
an orthonormal basis in Sk(Γ0(N)), and let a, b be cusps for Γ0(N). For
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f ∈ Sk(Γ0(N)) and a scaling matrix σa we expand f |[σa]k as

(f |[σa]k)(z) =
∞∑
n=1

âf,a(n)e2πinz

and we define af,a(n) = âf,a(n)n−(k−1)/2. Then, for any positive integers
m, n, we have

(k − 2)!
(4π)k−1

∑

f∈F
af,a(m)af,b(n)

= δmnδab + 2πi−k
∑

c∈C(a,b)

c−1Sab(m,n; c)Jk−1

(
4π
√
mn

c

)
,

where Jk−1(·) is the Bessel function of order k − 1, and δmn and δab are
(respectively) defined by

δmn =
{

1 if m = n,
0 if m 6= n,

δab =
{

1 if a = b,
0 if a 6= b.

For the proof of the above theorem see p. 54 of [7].

3. An asymptotic formula for the first moment. In this section we
shall derive an asymptotic formula for the first moment which consists of
averaging the value af,∞(1)L(f, χ, 1/2 + it) over F .

First, we prove the following lemma by modifying the proof of Lemma 1
of Duke [3].

Lemma 5. Let k be a positive even integer and F an orthonormal basis
in Sk(Γ0(N)).

(i) For N ≥ 1 we have∣∣∣∣
(k − 2)!
(4π)k−1

∑

f∈F
af,∞(m)af,∞(n)− δmn

∣∣∣∣� (m,n)1/2(mn)(k−1)/2N1/2−kd(N)

and∣∣∣∣
(k − 2)!
(4π)k−1

∑

f∈F
af,0(m)af,0(n)− δmn

∣∣∣∣� (m,n)1/2(mn)(k−1)/2N1/2−kd(N),

where d(·) is the divisor function, and the implied constants depend only
on k.

(ii) For N ≥ 2 we have∣∣∣∣
(k − 2)!
(4π)k−1

∑

f∈F
af,∞(1)af,0(n)

∣∣∣∣� n(k−1)/2N−k/2,

where the implied constant depends only on k.
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P r o o f. The estimates in (i) are proved by the same argument as in the
proof of Lemma 1 of [3]. The quantities on the left-hand sides in (i) are equal
to

(7)
∣∣∣∣2πi−k

∑
c>0

c≡0 (modN)

c−1S(m,n; c)Jk−1

(
4π
√
mn

c

)∣∣∣∣

by Theorem 4, (2), and (4). By using Weil’s bound (see [10])

|S(m,n; c)| ≤ (m,n, c)1/2c1/2d(c)

and the estimate

(8) Jk−1(y)� yk−1

for y ≥ 0, where the implied constant depends on k, the quantity (7) is

� (m,n)1/2(mn)(k−1)/2
∑
c>0

c≡0 (modN)

c1/2−kd(c).

Putting c = rN and using d(c) ≤ d(r)d(N), we obtain the estimates in (i).

The quantity on the left-hand side in (ii) is equal to

(9)
∣∣∣∣2πi−k

∑

c∈C(∞,0)

c−1S(N,n; c/
√
N)Jk−1

(
4π
√
n

c

)∣∣∣∣

by Theorem 4, (5), and the fact that the cusps ∞, 0 are inequivalent for
N ≥ 2. By using Weil’s bound and (8), we see that (9) is

�
∑

c∈C(∞,0)

c−1(N,n, c/
√
N)1/2(c/

√
N)1/2d(c/

√
N)(
√
n/c)k−1,

and by noting (N, c/
√
N) = 1, this is

�
∑

c∈C(∞,0)

c−1(c/
√
N)1/2d(c/

√
N)(
√
n/c)k−1.

Putting c = r
√
N (see (3)), we obtain the estimate in (ii).

Lemma 6. Let f ∈ Sk(Γ0(N)) and χ a primitive character (mod q) with
(N, q) = 1. Let l be a positive integer , x, y ≥ 1, 1/2 < α < l, 0 < β < 1/2,
and 0 < γ < l. Then
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L(f, χ, 1/2 + it) =
∑

n≤x

χ(n)af,∞(n)
n1/2+it

+ µ

(
2π√
Nq

)2it
Γ (k/2− it)
Γ (k/2 + it)

∑

n≤y

χ(n)af,0(n)
n1/2−it

+ I1,f + I2,f − µ

2πi

(
2π√
Nq

)2it

(I3,f + I4,f )

with

I1,f =
∑
n>x

χ(n)af,∞(n)
n1/2+it

e−(n/x)l ,

I2,f =
1

2πi

\
(−γ)

xw
Γ (1 + w/l)

w

∑

n≤x

χ(n)af,∞(n)
n1/2+it+w

dw,

I3,f =
\

(β)

(
4π2x

Nq2

)w
Γ (k/2− it− w)
Γ (k/2 + it+ w)

· Γ (1 + w/l)
w

∑

n≤y

χ(n)af,0(n)
n1/2−it−w dw,

I4,f =
\

(−α)

(
4π2x

Nq2

)w
Γ (k/2− it− w)
Γ (k/2 + it+ w)

· Γ (1 + w/l)
w

∑
n>y

χ(n)af,0(n)
n1/2−it−w dw,

where
T
(c) denotes the integral along the vertical line w=c+iv, −∞<v<∞.

P r o o f. This lemma is a modification of Lemma 1′ of [1], hence it is
sufficient to give a brief sketch.

Since, for X > 0,

e−X
l

=
1

2πi

\
(1)

X−w
Γ (1 + w/l)

w
dw,

we have
∞∑
n=1

χ(n)af,∞(n)
n1/2+it

e−(n/x)l

=
1

2πi

\
(1)

L(f, χ, 1/2 + it+ w)xw
Γ (1 + w/l)

w
dw.

We move the contour of integration to the vertical line <w = −α, and
calculate the residue of the integrand at w = 0. Next, we use the functional
equation (6) to express L(f, χ, 1/2+it+w) by the form involving the infinite
series, and divide this infinite series into two parts n ≤ y and n > y. We
move the contour of integration involving the finite sum over n ≤ y to the
vertical line <w = β, and calculate the residue of the integrand at w = 0.
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Finally, noting the equation

e−X
l

= 1 +
1

2πi

\
(−γ)

X−w
Γ (1 + w/l)

w
dw,

we obtain the equation of the lemma.

Proposition 7. Let k be a positive even integer , N ≥ 2, τ = |t| + 2,
F an orthonormal basis in Sk(Γ0(N)), and χ a primitive character (mod q)
with (N, q) = 1. Then

∑

f∈F
af,∞(1)L(f, χ, 1/2 + it) =

(4π)k−1

(k − 2)!
+O

((
qτ√
N

)k/2)
,

where the implied constant depends only on k.

P r o o f. To estimate the first moment, multiply the quantities on the
right-hand side of the formula of Lemma 6 by af,∞(1) and sum these over
F . Then estimate each sum separately. For technical reasons, we restrict
l = k in the formula of Lemma 6. Recall that x, y ≥ 1, l is a positive integer,
and 1/2 < α < l, 0 < β < 1/2, 0 < γ < l. We will shortly choose these
values to optimize the error terms.

First, by Lemma 5(ii) and Stirling’s formula, we have

∑

f∈F
af,∞(1)I3,f �

(
x

Nq2

)β∑

n≤y
nβ−1/2

∣∣∣
∑

f∈F
af,∞(1)af,0(n)

∣∣∣(10)

×
\

(β)

∣∣∣∣
Γ (k/2− it− w)
Γ (k/2 + it+ w)

· Γ (1 + w/k)
w

∣∣∣∣ |dw|

�
(
xy

Nq2

)β(
y

N

)k/2

×
\

(β)

∣∣∣∣
Γ (k/2− it− w)
Γ (k/2 + it+ w)

· Γ (1 + w/k)
w

∣∣∣∣ |dw|

�
(

xy

Nq2τ2

)β(
y

N

)k/2
.

Second, by Lemma 5(ii), we have

∑

f∈F
af,∞(1)I4,f �

(
x

Nq2

)−α
N−k/2

∑
n>y

nk/2−α−1

×
\

(−α)

∣∣∣∣
Γ (k/2− it− w)
Γ (k/2 + it+ w)

· Γ (1 + w/k)
w

∣∣∣∣ |dw|.



Automorphic L-functions with large level 165

Now we fix α with k/2 < α < k to get
∑
n>y

nk/2−α−1 � yk/2−α.

Hence, by Stirling’s formula, we have

(11)
∑

f∈F
af,∞(1)I4,f �

(
xy

Nq2τ2

)−α(
y

N

)k/2
.

Third, by Lemma 5(i) and Stirling’s formula, we have
∑

f∈F
af,∞(1)I2,f � x−γ

∑

n≤x
nγ−1/2(δ1n + n(k−1)/2N1/2−kd(N))(12)

×
\

(−γ)

∣∣∣∣
Γ (1 + w/k)

w

∣∣∣∣ |dw|

� x−γ +N1/2−kd(N)xk/2.

Fourth, by Lemma 5(i), we have
∑

f∈F
af,∞(1)I1,f � N1/2−kd(N)

∑
n>x

nk/2−1e−(n/x)k(13)

� N1/2−kd(N)xk/2.

Fifth, by Lemma 5(ii), we have

(14)
∑

f∈F
af,∞(1)

∑

n≤y

χ(n)af,0(n)
n1/2−it � N−k/2yk/2.

Finally, by Lemma 5(i), we have

(15)
∑

f∈F
af,∞(1)

∑

n≤x

χ(n)af,∞(n)
n1/2+it

=
∑

n≤x

χ(n)
n1/2+it

{
(4π)k−1

(k − 2)!
δ1n +O(n(k−1)/2N1/2−kd(N))

}

=
(4π)k−1

(k − 2)!
+O(N1/2−kd(N)xk/2).

Specifying x = y =
√
N qτ and γ = k/2 in (10)–(15), we obtain the

assertion of this proposition.

Corollary 8. We use the same notation as in Proposition 7. Choose
N with √

N

log(N + 1)
≥ max{qτ, C1,k},
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where C1,k is a positive constant depending only on k. Then
∣∣∣
∑

f∈F
af,∞(1)L(f, χ, 1/2 + it)

∣∣∣ ≥ 1
2
· (4π)k−1

(k − 2)!
.

P r o o f. From Proposition 7 it follows that
∣∣∣
∑

f∈F
af,∞(1)L(f, χ, 1/2 + it)

∣∣∣ ≥ (4π)k−1

(k − 2)!
−O

((
qτ√
N

)k/2)
.

If we choose N satisfying √
N

log(N + 1)
≥ max{qτ, C1,k}

for an appropriate constant C1,k, then the error term on the right-hand side
is o(1). This completes the proof.

4. An upper bound for the second moment. In this section we
shall derive an upper bound for the second moment which consists of aver-
aging the value |L(f, χ, 1/2 + it)|2 over F . To estimate the second moment
we use the method of Balasubramanian–Ramachandra which is useful to
observe the dependence on q and τ (see the proof of Lemma 2′ of [1]), and
use the following important result due to Duke–Friedlander–Iwaniec [4] and
Iwaniec [7].

Theorem 9 (Duke–Friedlander–Iwaniec and Iwaniec). Let k be a positive
even integer , x ≥ 1, and F an orthonormal basis in Sk(Γ0(N)). Then, for
any complex numbers bn, we have

(16)
(k − 2)!
(4π)k−1

∑

f∈F

∣∣∣
∑

n≤x
bnaf,∞(n)

∣∣∣
2

= {1 +O(ϕ(x))}
∑

n≤x
|bn|2

with

ϕ(x) =





x log(x+ 1)
N

if k = 2,
x

N
if k > 2,

where the implied constant is absolute.

For the result in the case k = 2 see Theorem 1 of [4], and in the case
k > 2 see Theorem 5.7 of [7]. This result is proved by using Theorem 4. The
formula obtained by replacing ∞ by 0 on the left-hand side of (16) is also
valid, because of (2) and (4).

Proposition 10. Let k be a positive even integer , τ = |t| + 2, F an
orthonormal basis in Sk(Γ0(N)), and χ a primitive character (mod q) with
(N, q) = 1. Then
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L(f, χ, 1/2 + it) =
∑

n≤
√
Nqτ

χ(n)af,∞(n)
n1/2+it

+ µ

(
2π√
Nq

)2it
Γ (k/2− it)
Γ (k/2 + it)

∑

n≤
√
Nqτ

χ(n)af,0(n)
n1/2−it

+R(f,N, q, t)

with

∑

f∈F
|R(f,N, q, t)|2 �





1 +
qτ log(

√
Nqτ)√

N
if k = 2,

1 +
qτ√
N

if k > 2,

where the implied constant depends only on k.

P r o o f. We put l = 2 in the formula of Lemma 6, and set

Rf (x, y) = I1,f + I2,f − µ

2πi

(
2π√
Nq

)2it

(I3,f + I4,f ).

We shall estimate
∑
f∈F |Rf (x, y)|2. Since

(17)
∑

f∈F
|Rf (x, y)|2 ≤ 4

4∑

h=1

∑

f∈F
|Ih,f |2,

it is sufficient to estimate each sum on the right-hand side separately. Note
that the conditions on x, y, β are as in Lemma 6 but those on α, γ are now
1/2 < α < 2, 0 < γ < 2, respectively. Later in the proof we will restrict the
range of α to 1 < α < 2 and specify x = y =

√
Nqτ .

First, by Cauchy’s inequality, Theorem 9, and Stirling’s formula, we have
∑

f∈F
|I3,f |2 ≤

\
(β)

∣∣∣∣
Γ (k/2− it− w)
Γ (k/2 + it+ w)

· Γ (1 + w/2)
w

∣∣∣∣|dw|(18)

×
\

(β)

(
4π2x

Nq2

)2β∣∣∣∣
Γ (k/2− it− w)
Γ (k/2 + it+ w)

· Γ (1 + w/2)
w

∣∣∣∣

×
∑

f∈F

∣∣∣∣
∑

n≤y

χ(n)af,0(n)
n1/2−it−w

∣∣∣∣
2

|dw|

�
(

x

Nq2

)2β

(1 + ϕ(y))
∑

n≤y
n2β−1

×
( \

(β)

∣∣∣∣
Γ (k/2− it− w)
Γ (k/2 + it+ w)

· Γ (1 + w/2)
w

∣∣∣∣|dw|
)2
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�
(

xy

Nq2τ2

)2β

(1 + ϕ(y)).

Next, we estimate
∑
f∈F |I4,f |2. We follow the method similar to that

mentioned above, but we need to treat the quantity

(19)
∑

f∈F

∣∣∣∣
∑
n>y

χ(n)af,0(n)
n1/2−it−w

∣∣∣∣
2

,

where <w = −α. We fix α with 1 < α < 2 to handle (19). The quantity
(19) is, by Cauchy’s inequality,

≤
∑

f∈F

( ∞∑

j=1

∣∣∣∣
∑

jy<n≤(j+1)y

χ(n)af,0(n)
n1/2−it−w

∣∣∣∣
)2

�
∞∑

j=1

j1+ε
∑

f∈F

∣∣∣∣
∑

jy<n≤(j+1)y

χ(n)af,0(n)
n1/2−it−w

∣∣∣∣
2

for any ε > 0. Applying Theorem 9 to the inner sum, we have

�
∞∑

j=1

j1+ε{1 + ϕ((j + 1)y)}
∑

jy<n≤(j+1)y

n−2α−1

� (1 + ϕ(y))y−2α
∞∑

j=1

j1+ε′−2α � (1 + ϕ(y))y−2α.

Hence

(20)
∑

f∈F
|I4,f |2 �

(
xy

Nq2τ2

)−2α

(1 + ϕ(y)).

The quantity
∑
f∈F |I2,f |2 is estimated by an argument similar to that

in the case
∑
f∈F |I3,f |2. We have, by Cauchy’s inequality, Theorem 9, and

Stirling’s formula,
∑

f∈F
|I2,f |2 � x−2γ(1 + ϕ(x))

∑

n≤x
n2γ−1

( \
(−γ)

∣∣∣∣
Γ (1 + w/2)

w

∣∣∣∣|dw|
)2

(21)

� 1 + ϕ(x).

Finally, by an argument similar to that in the case
∑
f∈F |I4,f |2, we have

∑

f∈F
|I1,f |2 �

∞∑

j=1

j1+ε
∑

f∈F

∣∣∣∣
∑

jx<n≤(j+1)x

χ(n)af,∞(n)
n1/2+it

e−(n/x)2
∣∣∣∣
2

(22)

�
∞∑

j=1

j1+ε{1 + ϕ((j + 1)x)}
∑

jx<n≤(j+1)x

e−2(n/x)2

n
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� x4(1 + ϕ(x))
∞∑

j=1

j2+ε′′
∑

jx<n≤(j+1)x

1
n5

� 1 + ϕ(x).

Specifying x = y =
√
Nqτ in (17), (18), (20), (21), and (22), we obtain

∑

f∈F
|R(f,N, q, t)|2 =

∑

f∈F
|Rf (
√
Nqτ,

√
Nqτ)|2 � 1 + ϕ(

√
Nqτ).

This completes the proof.

Corollary 11. With the same notation as in Proposition 10 we have
∑

f∈F
|L(f, χ, 1/2 + it)|2 ≤ 4

(4π)k−1

(k − 2)!
log(
√
Nqτ)

+





O

(
(log(

√
Nqτ))1/2 +

qτ(log(
√
Nqτ))2

√
N

)
if k = 2,

O

(
(log(

√
Nqτ))1/2 +

qτ log(
√
Nqτ)√

N

)
if k > 2,

where the implied constants depend only on k.

Remark. The estimate in Corollary 11 gives an improvement on Theo-
rem 1 of Chamizo–Pomykała [2] for the case σ = 1 (in their notation).

P r o o f. By using Cauchy’s inequality, it follows that

(23)
∑

f∈F
|L(f, χ, 1/2 + it)|2

≤
∑

f∈F

∣∣∣∣
∑

n≤
√
Nqτ

χ(n)af,∞(n)
n1/2+it

∣∣∣∣
2

+
∑

f∈F

∣∣∣∣
∑

n≤
√
Nqτ

χ(n)af,0(n)
n1/2−it

∣∣∣∣
2

+ 2
(∑

f∈F

∣∣∣∣
∑

n≤
√
Nqτ

χ(n)af,∞(n)
n1/2+it

∣∣∣∣
2)1/2(∑

f∈F

∣∣∣∣
∑

n≤
√
Nqτ

χ(n)af,0(n)
n1/2−it

∣∣∣∣
2)1/2

+ 2
(∑

f∈F
|R(f,N, q, t)|2

)1/2
(∑

f∈F

∣∣∣∣
∑

n≤
√
Nqτ

χ(n)af,∞(n)
n1/2+it

∣∣∣∣
2)1/2

+ 2
(∑

f∈F
|R(f,N, q, t)|2

)1/2
(∑

f∈F

∣∣∣∣
∑

n≤
√
Nqτ

χ(n)af,0(n)
n1/2−it

∣∣∣∣
2)1/2

+
∑

f∈F
|R(f,N, q, t)|2.
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Here, by Theorem 9, we have

(24)
∑

f∈F

∣∣∣∣
∑

n≤
√
Nqτ

χ(n)af,∞(n)
n1/2+it

∣∣∣∣
2

=
{

(4π)k−1

(k − 2)!
+O(ϕ(

√
Nqτ))

} ∑

n≤
√
Nqτ

(n,q)=1

1
n

≤
{

(4π)k−1

(k − 2)!
+O(ϕ(

√
Nqτ))

}
(1 + log(

√
Nqτ)).

Note that the second term on the right-hand side of (23) has the same
estimate as in (24). Substituting (24) into (23), we have

∑

f∈F
|L(f, χ, 1/2 + it)|2 ≤ 4

(4π)k−1

(k − 2)!
log(
√
Nqτ)

+O((log(
√
Nqτ))1/2 + ϕ(

√
Nqτ) log(

√
Nqτ)).

This completes the proof.

The following corollary is immediately obtained from Corollary 11.

Corollary 12. We use the same notation as in Proposition 10. In the
case k = 2 choose N with√

N

(log(N + 1))2 ≥ max{qτ(log(qτ))2, C2,2},

and for k > 2 choose N with
√
N

log(N + 1)
≥ max{qτ log(qτ), C2,k},

where C2,k is a positive constant depending only on k. Then

∑

f∈F
|L(f, χ, 1/2 + it)|2 ≤ 5

(4π)k−1

(k − 2)!
log(
√
Nqτ).

5. Proof of theorems. First, we prove Theorem 2. By using Cauchy’s
inequality, it follows that

(25)
∣∣∣
∑

f∈F
af,∞(1)L(f, χ, 1/2 + it)

∣∣∣
2

≤
∑

f∈F
L(f,χ,1/2+it)6=0

|af,∞(1)|2
∑

f∈F
|L(f, χ, 1/2 + it)|2.
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ChoosingN as in the statement of Theorem 2, and substituting the estimates
of Corollaries 8 and 12 into (25), we obtain the assertion of Theorem 2.

Next, we prove Theorem 3. For k = 2, 4, 6, 8, 10, 14 and a prime p > c,
where c is a positive absolute constant, let Fk,p denote an orthogonal basis
in Sk(Γ0(p)) which consists of normalized newforms. We choose F as

F = {f/‖f‖ : f ∈ Fk,p, ‖f‖ = 〈f, f〉1/2}.
Then, from Theorem 2, we have

(26)
∑

f∈Fk,p
L(f,χ,1/2+it)6=0

|af/‖f‖,∞(1)|2 � (4π)k−1

(k − 2)!
· 1

log p
.

Combining (26) with the estimate due to Hoffstein–Lockhart [6] and Gold-
feld–Hoffstein–Lieman [5]

|af/‖f‖,∞(1)|2Vol(Γ0(p) \ H)� log(kp+ 1),

where the implied constant is absolute (see Theorem 0.1 of [6] and Main
Theorem of [5]), we obtain the assertion of Theorem 3.

6. An asymptotic formula for the second moment. Fix q and t. In
this section we shall derive an asymptotic formula for the second moment
which is uniform in N →∞ by generalizing the method of Duke [3]. It seems
that this method is not effective to observe the dependence on q and t.

Let f, g ∈ Sk(Γ0(N)), t a real number, and χ a primitive character (mod
q) with (N, q) = 1. From the functional equation (6) it follows that

(27)
(

4π2

Nq2

)−w
Γ (k/2 + w + it)Γ (k/2 + w − it)

× L(f, χ,w + 1/2 + it)L(g, χ, w + 1/2− it)

=
(

4π2

Nq2

)w
Γ (k/2− w + it)Γ (k/2− w − it)

× L(f |[σ0]k, χ,−w + 1/2− it)L(g|[σ0]k, χ,−w + 1/2 + it).

For f ∈ Sk(Γ0(N)) we define the function f |K by

(f |K)(z) = f(−z).
Writing

f(z) =
∞∑
n=1

âf,∞(n)e2πinz,

we have the expression

(28) (f |K)(z) =
∞∑
n=1

âf,∞(n)e2πinz.
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It is known that f |K ∈ Sk(Γ0(N)) and f |K|[σ0]k = f |[σ0]k|K (see p. 296 of
Li [8]). From these properties it follows that

L(f |K|[σ0]k, χ,−w + 1/2 + it) = L(f |[σ0]k|K,χ,−w + 1/2 + it).

Therefore, putting g = f |K in (27), we obtain the following lemma.

Lemma 13. Let k be a positive even integer , f ∈ Sk(Γ0(N)), t a real
number , and χ a primitive character (mod q) with (N, q) = 1. Then
(

4π2

Nq2

)−w
Γ (k/2 + w + it)Γ (k/2 + w − it)

× L(f, χ, w + 1/2 + it)L(f |K,χ,w + 1/2− it)

=
(

4π2

Nq2

)w
Γ (k/2− w + it)Γ (k/2− w − it)

× L(f |[σ0]k, χ,−w + 1/2− it)L(f |[σ0]k|K,χ,−w + 1/2 + it).

The following lemma is an analogue of Lemma 3 of Duke [3].

Lemma 14. Let 1/2 < c < 1. Using the same notation as in Lemma 13,
we have

|Γ (k/2 + it)|2|L(f, χ, 1/2 + it)|2

=
∞∑
m=1

∞∑
n=1

χ(m)χ(n)af,∞(m)af,∞(n)
(mn)1/2

(
n

m

)it
G(m,n, t)

+
∞∑
m=1

∞∑
n=1

χ(m)χ(n)af,0(m)af,0(n)
(mn)1/2

(
m

n

)it
G(m,n, t)

with

G(m,n, t) =
1

2πi

\
(c)

(
4π2mn

Nq2

)−w
Γ (k/2 + w + it)Γ (k/2 + w − it)

w
dw.

P r o o f. From (28) it follows that

(29)
1

2πi

\
(c)

(
4π2

Nq2

)−w
Γ (k/2 + w + it)Γ (k/2 + w − it)

w

× L(f, χ, w + 1/2 + it)L(f |K,χ,w + 1/2− it) dw

=
∞∑
m=1

∞∑
n=1

χ(m)χ(n)af,∞(m)af,∞(n)
(mn)1/2

(
n

m

)it
G(m,n, t).

By moving the contour of integration to the vertical line <w = −c, we find
that the left-hand side of (29) equals
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(30) Γ (k/2 + it)Γ (k/2− it)
× L(f, χ, 1/2 + it)L(f |K,χ, 1/2− it)

+
1

2πi

\
(−c)

(
4π2

Nq2

)−w
Γ (k/2 + w + it)Γ (k/2 + w − it)

w

× L(f, χ,w + 1/2 + it)L(f |K,χ,w + 1/2− it) dw.
The first term in (30) is equal to |Γ (k/2 + it)|2|L(f, χ, 1/2 + it)|2, because
of L(f |K,χ, 1/2− it) = L(f, χ, 1/2 + it). From Lemma 13 the second term
in (30) is

1
2πi

\
(−c)

(
4π2

Nq2

)w
Γ (k/2− w + it)Γ (k/2− w − it)

w

× L(f |[σ0]k, χ,−w + 1/2− it)L(f |[σ0]k|K,χ,−w + 1/2 + it) dw,

and, by changing variables w to −w, this equals

−
∞∑
m=1

∞∑
n=1

χ(m)χ(n)af,0(m)af,0(n)
(mn)1/2

(
m

n

)it
G(m,n, t).

This completes the proof.

Proposition 15. Let k be a positive even integer , F an orthonormal
basis in Sk(Γ0(N)), and χ a primitive character (mod q) with (N, q) = 1.
For any ε > 0 we have

∑

f∈F
|L(f, χ, 1/2 + it)|2 =

(4π)k−1

(k − 2)!
· φ(q)

q
logN + Ck,q,t

+O(N (1−k)/2+ε), N →∞,
where φ(·) is the Euler function, Ck,q,t is a computable constant , and the
implied constant depends on k, q, t, and ε.

P r o o f. Summing up the formula of Lemma 14 over F and using Lemma
5(i), we have

(31) |Γ (k/2 + it)|2
∑

f∈F
|L(f, χ, 1/2 + it)|2

= 2
(4π)k−1

(k − 2)!

∞∑
n=1

χ0(n)
n

G(n, n, t)

+O

(
N1/2−kd(N)

∞∑
m=1

∞∑
n=1

|G(m,n, t)|(m,n)1/2

(mn)−k/2+1

)
,
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where χ0 is the principal character mod q. To estimate the error term we
use

|G(m,n, t)| =
∣∣∣∣

1
2πi

\
(c′)

(
4π2mn

Nq2

)−w
Γ (k/2 + w + it)Γ (k/2 + w − it)

w
dw

∣∣∣∣

�
(
mn

Nq2

)−c′

for any c′ > 0. Then the error term in (31) is

(32) � N1/2−k+c′d(N)q2c′
∞∑
m=1

∞∑
n=1

(m,n)1/2

(mn)c′−k/2+1
.

Since the double sum in (32) is convergent for c′ > k/2, we specify c′ =
k/2 + ε to get

(33) � N (1−k)/2+εd(N)qk+ε.

Next, we have
∞∑
n=1

χ0(n)
n

G(n, n, t) =
1

2πi

\
(c)

(
4π2

Nq2

)−w
L(2w + 1, χ0)

× Γ (k/2 + w + it)Γ (k/2 + w − it)
w

dw,

where L(·, χ) is the Dirichlet L-function attached to χ, and moving the
contour of integration to the vertical line <w = −d with 1/2 < d < k/2
shows that this equals

Resw=0

{(
4π2

Nq2

)−w
L(2w + 1, χ0)

Γ (k/2 + w + it)Γ (k/2 + w − it)
w

}
(34)

+
1

2πi

\
(−d)

(
4π2

Nq2

)−w
L(2w + 1, χ0)

× Γ (k/2 + w + it)Γ (k/2 + w − it)
w

dw.

Using the expression L(s, χ0) =
∏
p|q(1 − 1/ps)ζ(s), where ζ(s) is the Rie-

mann zeta-function, and further using the functional equation for ζ(s), we
see that the second term in (34) is

� N−d
\

(−d)

∣∣∣∣
Γ (−w)

Γ (w + 1/2)
· Γ (k/2 + w + it)Γ (k/2 + w − it)

w

∣∣∣∣|dw|

� N−d,
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which is equal to N (1−k)/2−ε by putting d = (k − 1)/2 + ε. The first term
in (34) equals

1
2
· φ(q)

q
|Γ (k/2 + it)|2 logN + C ′k,q,t,

where C ′k,q,t is some computable constant. Hence
∞∑
n=1

χ0(n)
n

G(n, n, t) =
1
2
· φ(q)

q
|Γ (k/2 + it)|2 logN + C ′k,q,t(35)

+O(N (1−k)/2−ε).

Substituting (33) and (35) into (31), we now obtain the assertion of this
proposition.

Remark. In (33) we are concerned with the dependence on q as com-
pared to that in Corollary 12. To insure N (1−k)/2qk ≤ 1 in (33) we need
to choose N so that

√
N ≥ q1+1/(k−1). This is worse than the lower bound

condition in Corollary 12.
The implied constant in Proposition 15 depends exponentially on t.

Note. After this paper was accepted for publication, I found a recent
paper by A. Akbary, Non-vanishing of weight k modular L-functions with
large level , J. Ramanujan Math. Soc. 14 (1999), 37–54. In that paper a
generalization of Duke’s result to newforms of even weight k and prime level
N has been shown.

Added in proof (March 2000). Refinements of Duke’s result, which
assert that the proportion of non-vanishing forms are indeed positive, have
been shown by J. Vanderkam, The rank of quotients of J0(N), Duke Math.
J. 97 (1999), 545–577, and E. Kowalski and P. Michel, The analytic rank
of J0(q) and zeros of automorphic L-functions, Duke Math. J. 100 (1999),
503–542, independently of each other.
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