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The Fekete–Szegő theorem with splitting conditions: Part I

by

Robert Rumely (Athens, GA)

A classical theorem of Fekete and Szegő [4] says that if E is a com-
pact set in the complex plane, stable under complex conjugation and hav-
ing logarithmic capacity γ(E) ≥ 1, then every neighborhood of E contains
infinitely many conjugate sets of algebraic integers. Raphael Robinson [5]
refined this, showing that if E is contained in the real line, then every neigh-
borhood of E contains infinitely many conjugate sets of totally real algebraic
integers.

In [2], David Cantor developed a theory of capacity for adelic sets in P1.
One of his key results was a very strong theorem of Fekete–Szegő–Robinson
type, which produced algebraic numbers whose conjugates lay in a specified
neighborhood of an adelic set E = E∞×

∏
pEp, and belonged to P1(R), and

P1(Qp) for finitely many primes p (“splitting conditions”). Unfortunately
there was a gap in the part of the proof concerning the splitting conditions.

Some time ago the author extended Cantor’s theory, including the
Fekete–Szegő theorem without splitting conditions, to arbitrary algebraic
curves [6]. This paper represents a step towards establishing the theorem
with splitting conditions. We prove the theorem in the special case where
the ground field is Q, the sets are E∞ = [−2r, 2r] and Ep = Zp for primes
p in a finite set T , and capacities are measured relative to the point ∞.

It will be apparent to anyone familiar with this kind of result that we have
drawn ideas from earlier papers. The method of proof, called “patching”,
goes back to Fekete and Szegő [4]. The use of Chebyshev polynomials for
the archimedean patching functions comes from Robinson [5], and the use of
Stirling polynomials for the p-adic patching functions comes from Cantor [2].
However, we have introduced several new ideas: in particular, the method for
preserving “well-distributed” sequences of roots of p-adic polynomials, and
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the step of moving the roots of the “partially patched” p-adic polynomials
to keep them well-separated, are new.

1. Statement of the theorem

Notations. Q and R are the fields of rational and real numbers, Qp is
the field of p-adic numbers, Zp is the ring of p-adic integers. The canonically
normalized absolute value on Qp will be written |x|p, and its associated
valuation, ordp(x). For the archimedean prime p =∞, we will write Q∞ =
R, and |x|∞ for the usual absolute value |x| on R. For finite primes p, if
x = (x1, . . . , xm) ∈ Qmp , let ordp(x) = min(ordp(xi)). Given a set Ep ⊆ Qp,
and a function f : Ep → Qp, we write ‖f‖Ep for the sup norm of f on
Ep with respect to |x|p. We will often measure the distance between p-adic
numbers α, β in terms of ordp(α − β): if ordp(α − β) ≤ t, then we say
α and β are separated in ord value by at least t; and if ordp(α − β) ≥ t,
then α and β are separated in ord value by at most t (note the reversal of
comparatives). For a finite set T , #(T ) will denote the cardinality of T . The
natural logarithm of a real number t will be written ln(t), and the base p
logarithm as logp (t); when p =∞ we set logp(t) = ln(t).

Our goal is to prove

Theorem 1.1. Let T be a finite set of prime numbers, and let [−2r, 2r]
be a real interval such that

r
∏

p∈T
p−1/(p−1) > 1.

Then there exist infinitely many algebraic integers, all of whose conjugates
in C are contained in the interval [−2r, 2r], and all of whose conjugates
in the p-adic complex numbers Cp (for p ∈ T ) are contained in the set of
p-adic integers Zp. (In particular , these numbers are totally real and “totally
p-adic”, for p ∈ T .)

Although we have stated Theorem 1.1 without reference to capacities,
it is in fact capacity-theoretic. The quantity in the hypothesis is simply the
capacity γ(E, {∞}) for E = E∞ ×

∏
pEp, where E∞ = [−2r, 2r], Ep = Zp

for p ∈ T , and Ep = Õp for p 6∈ T , where Õp is the ring of integers of Cp.
The theorem is sharp in the sense that if γ(E, {∞}) < 1 then by Fekete’s
theorem (see [6], p. 414) the result is false. (We do not know whether or not
the result holds if γ(E, {∞}) = 1 and T 6= ∅.)

The proof follows the classical method of Fekete and Szegő, which in-
volves “patching” a carefully chosen polynomial with real coefficients—
sequentially adjusting the coefficients from highest to lowest order so that
they become integers—in such a way that control is maintained over the
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locations of the roots. In our case, we simultaneously patch a real polyno-
mial, and collection of polynomials with p-adic coefficients, to a common
polynomial with integer coefficients. We actually prove

Theorem 1.2. Under the hypotheses above, there exist monic polynomi-
als u(x) ∈ Z[x] with distinct roots, and arbitrarily high degree, whose roots
in C all belong to the real interval [−2r, 2r], and whose roots in Cp all belong
to Zp, for each p ∈ T .

2. Chebyshev polynomials and Stirling polynomials. Let r > 0
be a real number. The Chebyshev polynomials for the interval [−2r, 2r] are
defined by

(2.1) Tn,r(2r cos(θ)) = 2rn cos(nθ) for n = 0, 1, 2, . . .

Clearly ‖Tn,r‖E∞ = 2rn and Tn,r(x) oscillates n times between ±2rn on
[−2r, 2r]. Moreover, Tn,r(x) has n simple roots in [−2r, 2r], and [−2r, 2r] =
T−1
n,r([−2rn, 2rn]). It is easy to see that for n ≥ 1, Tn,r(x) is a monic poly-

nomial of degree n. Writing

Tn,r(x) = zn +
n∑

k=1

ak,r(n)xn−k,

it is shown (in Robinson [5]) that the coefficients ak,r(n) are given by

(2.2) ak,r(n) =





0 if k is odd,

(−1)mr2m n

m

(
n−m− 1
m− 1

)
if k = 2m is even,

where
(
n−m−1
m−1

)
is the binomial coefficient. In particular, for fixed k and r,

ak,r(n) is itself a polynomial in n without constant term; and if r = M/N is
a rational number, then the coefficients of ak,r(n) are rational numbers with
denominators dividing Nkk!. Thus, if r is rational, then for any fixed k0 and
any fixed integer Q0 6= 0, there is an integer N0 (depending on r, k0, and
Q0) such that if n is a multiple of N0 then all the ak,r(n), for 1 ≤ k ≤ k0,
are integers divisible by Q0.

The Stirling polynomial of degree n is defined by

(2.3) Sn(x) =
n−1∏

j=0

(x− j) = xn +
n∑

k=1

bk(n)xk.

In particular Sn(x) has n distinct roots in Zp, for each p. From the fact that

Sn(x) = n!
(
x

n

)

follows
‖Sn‖Zp = |n!|p.
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Again the coefficients bk(n) (for k ≥ 1) are polynomials in n without con-
stant term. Indeed, by a theorem of Schlömilch (see [3], p. 216)

(2.4) bk(n) =
∑

0≤j<h≤k
(−1)j+h

(
h

j

)
(h− j)k+h

h!

(
n+ h− 1
k + h

)(
n+ k

k − h
)
.

Here each summand has an algebraic factor of n(n − 1) . . . (n − k). Since
bk(n) has degree 2k and takes N to Z, the coefficients in its expansion in
powers of n have denominators that divide (2k)!.

It is well known that ordp(n!) = (n−∑ ai)/(p−1), where the ai are the
base p digits of n. From this we see that

(2.5)
n

p− 1
− dlogp(n)e ≤ ordp(n!) ≤ n− 1

p− 1
.

3. The basic ideas in patching. The purpose of this section is to
describe the patching process in general terms, and to prove some estimates
which guide how it is carried out. Formally, the patching process is as follows:
for each p ∈ T∪{∞}, we begin with a polynomial u(0)

p (x) ∈ Qp[z] of degree n,
where n is independent of p. The kth patching step, for k = 1, . . . , n, consists
of choosing numbers ∆(k)

p ∈ Qp and monic polynomials w(k)
p (x) ∈ Qp[x] of

degree n− k, and setting

(3.1) u(k)
p (x) = u(k−1)

p (x) +∆(k)
p w(k)

p (x) for each p ∈ T ∪ {∞}.
Write

u(k)
p (x) = xn +

n∑

j=1

c
(k)
p,jx

n−j .

A step (3.1) has the effect of replacing the coefficient c
(k−1)
p,k by c

(k)
p,k =

c
(k−1)
p,k + ∆

(k)
p , leaving higher order coefficients unchanged, and modifying

lower order coefficients in ways that are not important to us. We will choose
the multipliers ∆(k)

p ∈ Qp so that c(k)
p,k is a rational integer ck independent

of p. Since the kth step only changes coefficients of terms of degree n − k
and lower, in the end the u(n)

p (x) are all equal to the same monic polynomial
u(x) ∈ Z[x].

By hypothesis,

(3.2) r >
∏

p∈T
p1/(p−1).

After shrinking r, we can assume that r = M/N is rational.
Set E∞ = [−2r, 2r] and Ep = Zp for p ∈ T . The initial polynomials

will be u(0)
∞ (x) = Tn,r(x) at the archimedean place, and u(0)

p (x) = Sn(x) for
p ∈ T . These polynomials have all their roots in the sets Ep. The crucial
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issue is to maintain this property at each step of the patching process. For
this to be possible, n must be chosen large and appropriately divisible, and
the patching polynomials w(k)

p (x) must be chosen with near-minimal sup
norm on Ep.

In the case p =∞, we will take

w(k)
∞ (x) = Tn−k,r(x).

The idea is that since u(0)
∞ (x) = Tn,r(x) oscillates n times between ±2rn,

if the total magnitude of the patching terms is less than 2rn then the final
patched polynomial u(n)

∞ (x) will still have n roots in E∞. To achieve this,
let h < r be such that h

∏
p∈T p

−1/(p−1) > 1 (cf. (3.2)). We will require that
for an appropriate number L,

{
∆

(k)
∞ = 0 for k < L,
|∆(k)
∞ | ≤ hk for k ≥ L.

Then for each x ∈ E∞,

(3.3)
∣∣∣
n∑

k=1

∆(k)
∞ w(k)

∞ (x)
∣∣∣ ≤

n∑

k=L

hk · 2rn−k < 1
rL(1− h/r) · 2r

n.

If L is sufficiently large, the right side will be less than 2rn; and then the
patched polynomial will still have all its roots in [−2r, 2r]. Requiring ∆(k)

∞ =
0 for small k might appear to present problems in achieving integrality for
the high-order coefficients, but our trump card is the rationality of r and
the choice of n.

In the case of a finite prime p ∈ T , the patching polynomials w(k)
p (x)

will be taken to be factors of the u(k−1)
p (x), chosen so that the cofactors

f (k)(x) = u
(k−1)
p (x)/w(k)

p (x) have their roots p-adically distributed like the
roots of a Stirling polynomial. We isolate this concept as follows.

Definition 3.1. Let k be a positive integer. A regular sequence of
length k in Zp is a sequence α0, α1, . . . , αk−1 ∈ Zp such that for each j =
0, 1, . . . , k − 1,

ordp(αj − j) ≥ logp(k).

We simply speak of a “regular sequence” if k or Zp is understood. Note
that if α0, α1, . . . , αk−1 is a regular sequence of length k, then ordp(αj−j) ≥
dlogp(k)e for all j, and ordp(αi − αj) < logp(k) for distinct i, j.

The basis for patching on the p-adic side is given by

Lemma 3.1. Let f(x) =
∏k−1
j=0 (x − αj) ∈ Zp[x] be a polynomial whose

roots form a regular sequence of length k in Zp. Suppose b ≥ 0, and let
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∆ ∈ Zp satisfy

ordp(∆) ≥ k

p− 1
+ logp(k) + b.

Put f∗(x) = f(x) +∆. Then f∗(x) factors completely over Qp, and its roots
α∗j again form a regular sequence of length k in Zp. Indeed , the α∗j can
uniquely be put in correspondence with the αj in such a way that

ordp(α∗j − αj) ≥ dlogp(k) + be for all j = 0, . . . , k − 1.

P r o o f. Fix one of the roots αJ of f(x), and consider the Newton polygon
of f∗(x), expanded about the point αJ . (For the theory of Newton polygons,
see [1], pp. 37–43.) Write

f∗(x) =
k∑

i=0

di(x− αJ)i.

By assumption d0 = ∆, and

d1 = ±
∏

j 6=J
(αj − αJ).

Since the αj form a regular sequence, if j 6= J the ultrametric inequality
implies ordp(αj − αJ) = ordp(j − J). Therefore

ordp(d1) = ordp(J !) + ordp((k − 1− J)!)

= ordp((k − 1)!)− ordp

((
k − 1
J

))
≤ k − 1
p− 1

.

For i ≥ 2,

di = ±d1

∑

j1,...,ji−1
distinct, 6=J

[(αj1 − αJ) . . . (αji−1 − αJ)]−1

so that

ordp(di) ≥ ordp(d1)− (i− 1) logp(k).

By the hypothesis on ordp(∆), the Newton polygon of f∗(x) has a break at
the point (1, ordp(d1)), and if its initial segment has slope m, then −m ≥
logp(k)+b. Hence f∗(x) has a unique root α∗J ∈ Zp for which ordp(α∗J−αJ) ≥
dlogp(k) + be.

Since this holds for all J , the roots α∗j form a regular sequence of length
k in Zp.

We apply Lemma 3.1 as follows. After the (k − 1)st step, write

u(k−1)
p (x) =

n−1∏

j=0

(x− αp,j) = zn +
n∑

j=1

cp,jx
n−j .
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Suppose that αp,0, . . . , αp,k−1 form a regular sequence of length k. Then
taking the patching polynomial to be

w(k)
p (x) =

n−1∏

j=k

(x− αp,j)

and choosing ∆(k)
p ∈ Zp so that

ordp(∆(k)
p ) ≥ k

p− 1
+ logp(k) + b for some b ≥ 0,

we obtain
u(k)
p (x) = u(k−1)

p (x) +∆(k)
p w(k)

p (x)

=
[ k−1∏

j=0

(x− αp,j) +∆(k)
p

]
w(k)
p (x)

=
k−1∏

j=0

(x− α∗p,j)
n−1∏

j=k

(x− αp,j).

Of course, a similar result would have been obtained if any other regular
sequence of roots, of length k, had been used.

Note that by the correspondence between the αp,j and the α∗p,j in Lem-

ma 3.1, there is a natural labelling of the roots of each u
(k)
p (x) in terms of

0, 1, . . . , n− 1. Whenever we refer to an αp,j it will be using this labelling.
If b is sufficiently large, then the α∗p,j will not only form a regular sequence

of length k, but they will be part of a longer regular sequence; this permits
the patching process to continue. However, unless b ≥ logp(n), they need
not be part of a regular sequence of length n; and for small k the interaction
between the archimedean prime and the primes in T will force b < logp(n).
In consequence, some of the roots α∗p,j moved in early steps may stray very
near to other unpatched roots. These complications account for some of the
difficulties in the proof below.

4. The proof of Theorem 1.2. As noted, our goal is to merge the
local polynomials u(0)

p (x) into a single global polynomial u(x). It is here
that hypothesis (3.2) enters. Put

q =
∏

p∈T
p1/(p−1).

Since we have chosen the parameter h so that q < h < r, there is a number
k0 such that for k ≥ k0,∏

p∈T
pdk/(p−1)+logp(k)e < hk < rk.



106 R. Rumely

Thus, writing cp,k for the coefficient of zn−k in u
(k−1)
p (x), if k ≥ k0 there

exists a number ck ∈ Z satisfying

(4.1)
{ |ck − c∞,k| < hk,

ordp(ck − cp,k) ≥ k/(p− 1) + logp(k) for p ∈ T.

Therefore, if we put ∆(k)
p = ck− cp,k for each p, the kth step of the patching

process achieves an integral coefficient for xn−k. For small k, (4.1) may not
be satisfied: integrality for the high order coefficients must be arranged by
other means.

We now proceed to the details of the proof. Once and for all, fix an h
with q < h < r and put

C = 1 +
2 ·#(T )
ln(h/q)

, Q =
∏

p∈T
p.

We can assume T is not empty; when T = ∅, much of the argument below
degenerates. In any case by [5] the result is already known in that situation.

There are five stages in the patching process:

I. Patching the coefficients ck for 1 ≤ k ≤ L1(n) := C ln ln(n), achiev-
ing integrality through the choice of n.

II. Patching the coefficients ck for L1(n) < k ≤ L2(n) := C ln(n), at
which point hk dominates qk enough that further patching will move roots
only within cosets {x ∈ Zp : ordp(x− αp,j) > logp(n)}, for each p ∈ T .

III. Moving the roots perturbed in stages I and II, so that for each p ∈ T
they are separated from other roots by at least 4C logp(n) in ord value.

IV. Patching the coefficients ck for

L2(n) < k ≤ L3(n) :=
13C ·#(T )

ln(h/q)
ln(n),

at which point hk dominates qk so much that even the roots moved in stages
I–III can again be safely included in the patching process.

V. Patching the remaining coefficients ck for L3(n) < k ≤ n.

The patching process can be carried through only for certain values of n.
It is sufficient to have

(N1) rL1(n)(1− h/r) > 2;
(N2) ln ln(n) > (1 + 2 ·#(T ) ln(C) + ln(Q))/ln(h/q);
(N3) n > 3QL2(n);
(N4) n ≥ ee;
(N5) n > 3QL3(n);
(N6) L2(n) > 1 + maxp∈T (p2);
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(N7) n is divisible by

NdL1(n)ed2L1(n)e!
∏

p∈T
pdL1(n)/(p−1)+logp(L1(n))+logp(L2(n))e,

where N is the denominator of r = M/N .

The constraints (N1)–(N6) hold for all sufficiently large n. By Stirling’s
formula, the quantity in (N7) is easily seen to be o(n), and hence (N7) holds
for infinitely many n.

Stage I: Patching for 1 ≤ k < L1(n) = C ln ln(n). The highest-order
coefficients ak(n) of u(0)

∞ (x) = Tn,r(x) will be made integral through the
choice of n, and, for p ∈ T , the coefficients bk(n) of the u

(0)
p (x) will be

adjusted to meet them. If n satisfies (N7), then for all k ≤ L1(n), and all
p ∈ T , the ak(n) and bk(n) are rational integers satisfying

(4.2) ordp(∗) ≥ L1(n)/(p− 1) + logp(L1(n)) + logp(L2(n)).

This is because the ak(n) and bk(n) are polynomials in n with rational
coefficients and no constant term, and the denominators of the coefficients
in both ak(n) and bk(n) divide Nk(2k)!.

To specify the kth patching step, it is enough to give the target coefficient
ck ∈ Z and the p-adic patching polynomials w(k)

p (x), since ∆(k)
p = ck − cp,k

and w
(k)
∞ (x) = Tn−k,r(x). We will take ck = ak(n) (so ∆(k)

∞ = 0), and

w(k)
p (x) =

n−1∏

j=k

(x− αp,j).

On the p-adic side, using condition (4.2) and Lemma 3.1 one sees induc-
tively that for each k ≤ L1(n):

(a) the patching coefficients ∆(k)
p satisfy (4.2), for p ∈ T , and hence

(b) the bL1(n)c high-order coefficients of u(k)
p (x) also satisfy (4.2), for

p ∈ T ;
(c) the first bL2(n)c roots of u(k)

p (x) form a regular sequence of length
bL2(n)c in Zp.

Stage II: Patching for L1(n) = C ln ln(n) < k ≤ L2(n) = C ln(n). Here
both the archimedean and nonarchimedean u

(k)
p (x) will be modified. The

archimedean patching coefficients ∆(k)
∞ = ck−c∞,k can be chosen arbitrarily,

subject to the condition |∆(k)
∞ | < hk, because under hypothesis (N1) the

total archimedean patching error will be at most rn (cf. (3.3)).
For L1(n) < k ≤ L2(n), we claim that

(4.3) hk >
∏

p∈T
pdk/(p−1)+logp(k)+logp(L2(n))e.
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Indeed, (4.3) is implied by
(
h

q

)k
> Qk#(T )L2(n)#(T )

which follows from the hypotheses on k, the definition of C, and (N2), via

k ln(h/q) >
(

1 +
2 ·#(T )
ln(h/q)

)
ln ln(n) ln(h/q)

> ln(Q) + 2 ·#(T ) ln(C) + 2 ·#(T ) ln ln(n)

> ln(Q) + #(T ) ln(k) + #(T ) ln(L2(n)).

By (4.3), at the kth step we can find a target coefficient ck ∈ Z such that
{ |ck − c∞,k| < hk,

ordp(ck − cp,k) ≥ k/(p− 1) + logp(k) + logp(L2(n)) for each p ∈ T.
As in Stage I, the p-adic patching polynomials will be

w(k)
p (x) =

n−1∏

j=k

(x− αp,j).

In Stage I we carefully preserved the property that the first bL2(n)c roots
of u(k)

p (x) formed a regular sequence of length bL2(n)c. By Lemma 3.1 and
an inductive argument like that in Stage I, after each patching step, the
first bL2(n)c roots of u(k)

p (x) continue to form a regular sequence of length
bL2(n)c.

Stage III. This stage only changes the p-adic polynomials. For nota-
tional convenience, set

m = bL2(n)c
and write up(x) = u

(m)
p (x).

In Stages I and II we have adjusted the highest m coefficients of the up(x)
to common integer values. However, in the process, we have perturbed the
first m roots, and although these roots remain well-separated from each
other, they may have drifted very near to other roots (they form a regular
sequence of length m, but they may not be part of a regular sequence of
length n). To enable the patching process to continue, we pause to move
them away from any roots they may have strayed too near to, taking care
that the m high-order coefficients of up(x) remain unchanged. This is done
by means of a p-adic implicit function theorem, and involves moving a second
set of m roots in a way that compensates for the first.

Fix p ∈ T . The coefficients of up(x) are elementary symmetric functions
of the roots. Since the first m roots αp,0, . . . , αp,m−1 form a regular sequence
of length m (by the construction in Stages I and II), while the last n −m



Fekete–Szegő theorem 109

roots are the same as those of u(0)
p (x) (and hence are contained in a regular

sequence of length n), for each j < m there is at most one root αp,µ(j) 6= αp,j
such that

ordp(αp,j − αp,µ(j)) ≥ logp(n)

(necessarily, µ(j) ≥ m). On the other hand, since n > 3 · pdlogp(m)e by
hypothesis (N3), it is possible to choose a second regular sequence of length
m, consisting of roots αp,τ(j), 0 ≤ j < m, which avoids the “delicate” roots
αp,j and αp,µ(j), 0 ≤ j < m. By our choice of the αp,τ(j), for each i 6= τ(j),
0 ≤ i < n, we have

(4.4) ordp(αp,i − αp,τ(j)) < logp(n).

Given vectors x,y ∈ Zmp and z ∈ Zn−2m
p , let (x,y, z) ∈ Znp (resp. (y, z) ∈

Zn−mp ) denote the concatenated vector, and if x = (x1, . . . , xm), let x̂i be
x with its ith component omitted. Write sk(x,y, z) for the kth elementary
symmetric function on the components of the concatenated vector. Note
that for each i,

(4.5) sk(x,y, z) = xisk−1(x̂i,y, z) + sk(x̂i,y, z).

In consequence, as a formal derivative,

∂

∂xi
sk(x,y, z) = sk−1(x̂i,y, z).

Fixing (y, z) ∈ Zn−mp , consider the map

S : Zmp → Zmp
defined by

S(x) = S(x,y, z) =




s1(x,y, z)
s2(x,y, z)

...
sm(x,y, z)


 .

Recall that for a vector ∇, we write ordp(∇) = min(ordp(∇i)).
Lemma 4.1. Suppose m ≥ p2. Let x ∈ Zmp be a vector whose components

form a regular sequence of length m, and let ∇ ∈ Zmp be a vector for which

ordp(∇) ≥ 2m
p− 1

+ b for some b ≥ 0.

Then there is an x∗ ∈ Zmp satisfying ordp(x∗−x) ≥ m/(p− 1) + b such that

S(x∗,y, z) = S(x,y, z) +∇.
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P r o o f. We aim to apply Hensel’s lemma in several variables. Consider
the Jacobian matrix of S(x), which by (4.5) is

JS(x) =




1 . . . 1
s1(x̂1,y, z) s1(x̂m,y, z)

...
...

sm−1(x̂1,y, z) . . . sm−1(x̂m,y, z)


 .

The usual argument for computing Vandermonde determinants (equating
variables, then examining the diagonal term), shows that

det(JS(x)) =
∏

i<j

(xi − xj).

Similarly, if cofkl(x) denotes the (k, l)-cofactor of JS(x) (obtained from
JS(x) by deleting the kth row and lth column), then

cofkl(x) = (−1)k+l
∏

i<j
i,j 6=l

(xi − xj)Pkl(x,y, z)

where Pkl(x,y, z) is a polynomial with integer coefficients. Thus

[JS(x)−1]kl = (−1)k+1 Plk(x,y, z)∏
1≤i≤m, i 6=k(xi − xk)

.

Since the components of x form a regular sequence of length m, for each
k = 1, . . . ,m,

ordp
( ∏

1≤i≤m
i 6=k

(xi − xk)
)

= ordp
( ∏

1≤i≤m
i 6=k

(i− k)
)

= ordp((k − 1)!(m− k)!) ≤ m− 1
p− 1

.

Consequently, each entry of JS(x)−1 has ord value ≥ −(m− 1)/(p− 1).
The usual proof of Hensel’s lemma now shows that the sequence x(i)

defined by
{

x(0) = x,
x(i+1) = x(i) − JS(x(i))−1[S(x(i))− S(x)−∇]

converges to a vector x∗ = x(∞) with the desired properties. Here the com-
ponents of each x(i), and of x∗, form a regular sequence of length m, because
the hypothesis that m ≥ p2 implies that

m

p− 1
≥ logp(m).

Note that the condition m ≥ p2 holds for all p ∈ T , by (N6).
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To move the roots αp,j away from the αp,µ(j), we take

x = (αp,τ(j))0≤j≤m−1,

y = (αp,j)0≤j≤m−1

and let z be the vector formed from the remaining roots of up(x). Set b =
logp(n). Recalling that αp,µ(j) is the unique root distinct from αp,j such that
ordp(αp,j − αp,µ(j)) ≥ logp(n) (if such a root exists), put

α∗p,j =
{
αp,µ(j) + pd2m/(p−1)+be if αp,µ(j) exists,
αp,j otherwise

and let

y∗ = (α∗p,j)0≤j≤m−1.

Evidently, for each j < m for which an αp,µ(j) exists, we have

(4.6) ordp(α∗p,j − αp,µ(j)) ≤
2m
p− 1

+ b+ 1 < 4C logp(n)

(using the fact that m ≤ C ln(n) and ln(p)/(p− 1) < 1 for all primes p, and
that C logp(n) > 1 by hypothesis (N6)). Since a priori all other roots are
well-separated from αp,j and αp,µ(j), we find that for each j < m, and all
i 6= j,

(4.7) ordp(αp,i − α∗p,j) < 4C logp(n).

Set

∇ = S(x,y, z)− S(x,y∗, z).

Then ordp(∇) ≥ 2m/(p− 1)+b, so Lemma 4.1, applied to S(x,y∗, z), shows
there is an x∗ with ordp(x∗ − x) ≥ 2m/(p− 1) + b+ 1 such that

S(x∗,y∗, z) = S(x,y∗, z) +∇ = S(x,y, z).

If we put

α∗p,τ(j) = x∗j ,

then Lemma 4.1 assures us that

ordp(α∗p,τ(j) − αp,τ(j)) ≥
⌈

m

p− 1
+ b

⌉
≥ logp(n).

Thus, replacing αp,τ(j) by α∗p,τ(j) only moves the root within a coset of size
ordp(x) ≥ logp(n), and leaves its position in the regular sequence of length
n (and hence its separation from the other roots) unchanged.

In consequence, the polynomial

u∗p(x) =
∏

j<m

(x− α∗p,j)
∏

j<m

(x− α∗p,τ(j))
∏

(x− wj)
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has the same m high-order coefficients as up(x), but its roots are separated
from each other by at least 4C logp(n) in ord value. We replace u(m)

p (x) by
u∗p(x).

Stage IV: Patching for L2(n) < k ≤ L3(n) := 13C·#(T )
ln(h/q) ln(n). The

purpose of this step is to patch until the dominance of hk over qk is so great
that even the “delicate” roots α∗p,j and αp,µ(j) with j < bL2(n)c can be
safely moved. For k > L2(n) = C ln(n), we have

(4.8) hk >
∏

p∈T
pdk/(p−1)+logp(k)+logp(n)e.

Indeed, (4.8) is implied by
(
h

q

)k
> Qk#(T )n#(T )

which follows from n ≥ k > C ln(n) via

k ln(h/q) >
(

1 +
2 ·#(T )
ln(h/q)

)
ln(n) ln(h/q)

> ln(n) ln(h/q) + 2 ·#(T ) ln(n)

> ln(Q) + #(T ) ln(k) + #(T ) ln(n)

using ln(n) > ln ln(n) and hypothesis (N2).
Put l = bL3(n)c. We first choose a regular sequence of length l among

the roots of up(x) which avoids the delicate roots αp,j and αp,µ(j) with
j < bL2(n)c. Since n > 3 · pdlogp(l)e by hypothesis (N5), and at most two of
the delicate roots are separated by less than logp(n) in ord value from any
of the other roots, such regular sequences exist. Let one be

αp,λ(j), 0 ≤ j < l.

Let Tp be the complement of {λ(j) : 0 ≤ j < l} in {j : 0 ≤ j < n}. By
construction, the delicate roots are all contained in Tp.

For L2(n) < k ≤ L3(n), choose the target coefficients ck ∈ Z so that{ |ck − c∞,k| < hk,
ordp(ck − cp,k) > k/(p− 1) + logp(k) + logp(n) for p ∈ T,

and patch using the polynomials

w(k)
p (x) =

l−1∏

j=k

(x− αp,λ(j))
∏

j∈Tp
(x− αp,j).

By Lemma 3.1, the roots αp,λ(j), 0 ≤ j < k, are moved by at most logp(n)
in ord value, so their position in the regular sequences (and their separation
from other roots), remains unchanged.
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Stage V: Patching for L3(n) < k ≤ n. In this stage, patching is carried
through to the end. By Lemma 4.2 below, the “delicate roots” from Stages I,
II and III can be safely included in the patching process when

(4.9) hk >
∏

p∈T
pdk/(p−1)+3(4C logp(n))e.

A computation like the one that gave (4.8) (using (N3), (N4), and (N5))
shows that (4.9) holds if

k > L3(n) =
13C ·#(T )

ln(h/q)
ln(n).

Lemma 4.2. Suppose f(z) =
∏m−1
j=0 (x−αp,j) is a polynomial which splits

over Zp, and M ≥ dlogp(m)e is such that

(T1) the αp,j can be grouped into disjoint subsets T1, . . . , Tl so that each
Ti is a subset of a regular sequence of length ni ≤ m (necessarily ni ≥
#(Ti));

(T2) the αp,j can be labelled so that ordp(αp,j−j) ≥ logp(ni) if αp,j ∈ Ti;
(T3) ordp(αp,j − αp,k) ≤M for all j 6= k.

Put f∗(x) = f(x) +∆, where ∆ ∈ Zp satisfies

ordp(∆) ≥ m

p− 1
+ (l + 1)M.

Then f∗(x) splits completely over Zp, and its roots α∗p,j can be uniquely set
in one-to-one correspondence with the roots of f(x) in such a way that for
all j,

ordp(α∗p,j − αp,j) > M.

P r o o f. Fix a root αp,J of f(x), and consider the Newton polygon of
f∗(x) expanded about αp,J : write

f∗(z) =
m∑

i=0

di(x− αp,J )i.

By assumption, d0 = ∆ and

(4.10) d1 =
m−1∏

j=0
j 6=J

(αp,j − αp,J).

We wish to estimate d1. There is a unique integer J0 in the range 0 ≤
J0 < pdlogp(m)e for which

ordp(αp,J − J0) ≥ logp(m);
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in particular, ordp(αp,J−J0) ≥ logp(ni) for each i. Furthermore, by hypoth-
esis (T1), for each Ti there is at most one root αp,ji ∈ Ti such that

ordp(αp,ji − J0) ≥ logp(ni).

Let E = {ji : 1 ≤ i ≤ l} be the set of indices of these exceptional roots; note
that J ∈ E .

If αp,j is a root with j 6∈ E , we claim that

ordp(αp,j−αp,J) = min(ordp(αp,j−j), ordp(j−J0), ordp(αp,J −J0))(4.11)

= ordp(j − J0).

Indeed, if αp,j ∈ Ti, then ordp(αp,j−j) ≥ logp(ni) by hypothesis (T2), while
ordp(αp,j − J0) < logp(ni) since j is not exceptional; and hence

(4.12) ordp(j − J0) < ordp(αp,j − j).
In particular, (4.12) implies that j 6= J0. Consequently by the characteriza-
tion of J0 and the fact that j < pdlogp(m)e, we have ordp(αp,J−J0) ≥ logp(m)
but ordp(αp,J − j) < logp(m), and so

(4.13) ordp(j − J0) < ordp(αp,J − J0).

Now (4.12) and (4.13) yield (4.11). On the other hand for each root αp,j
with j ∈ E , j 6= J , then in any case by hypothesis (T3),

(4.14) ordp(αp,j − αp,J) ≤M.

Since J ∈ E , we have #(E\{J}) ≤ l − 1. Hence by (4.10), (4.11), and
(4.14),

ordp(d1) = ordp
(m−1∏

j=0
j 6∈E

(j − J0)
)

+ ordp
( ∏

j∈E
j 6=J

(αp,j − αp,J)
)

≤ ordp
( m−1∏

j=0
j 6=J0

(j − J0)
)

+ (l − 1)M.

There are now two cases. If J0 < m, then

ordp
( m−1∏

j=0
j 6=J0

(j − J0)
)

= ordp(J0!) + ordp((m− J0 − 1)!) ≤ m− 1
p− 1

.

However, if J0 ≥ m, then by the bound J0 −m < J0 < pdlogp(m)e we have
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dlogp(J0 −m)e ≤ dlogp(m)e, and so by (2.5) it follows that

ordp
( m−1∏

j=0
j 6=J0

(j − J0)
)

= ordp(J0!)− ordp((J0 −m)!)

≤ J0 − 1
p− 1

−
(
J0 −m
p− 1

− dlogp(J0 −m)e
)

=
m− 1
p− 1

+ dlogp(m)e.

By assumption M ≥ dlogp(m)e. Thus, in either case,

(4.15) ordp(d1) ≤ m− 1
p− 1

+ lM.

For the coefficients di with i ≥ 2, we have

di = ±d1

∑

k1,...,ki−1
distinct, 6=J

[(αp,k1 − αp,J) . . . (αp,ki−1 − αp,J)]−1

so that

ordp(di) ≥ ordp(d1)− (i− 1)M.

By our hypothesis on ordp(∆), the Newton polygon of f∗(x) has a break at
the point (1, ordp(d1)), and if its initial segment has slope m, then −m > M .
Hence, f∗(x) has a unique root α∗J for which ordp(α∗J − αJ) > M . By the
uniqueness, this root belongs to Qp, and hence to Zp.

At the kth step of the patching process, we apply Lemma 4.2 with m = k,
l = 2, M = 4C logp(n) and

f(x) =
k−1∏

j=0

(x− αp,j)

where the roots αp,j are those of the current polynomial u(k−1)
p (x), given

their natural labelling. Clearly M ≥ dlogp(m)e. We will take

T1 = {αp,j : 0 ≤ j < bL2(n)c},
T2 = {αp,j : bL2(n)c ≤ j < k},

with m1 = bL2(n)c and m2 = k; thus T1 consists of the roots moved in
Stages I and II, and T2 is an initial segment of the remaining roots. In
Stages III, IV, and V, roots are moved only by quantities with ord value ≥
logp(n), preserving their position in the regular sequence of length n. Hence
T2 is a subset of a regular sequence of length n, but we only use that it is a
subset of a regular sequence of length k. Hypothesis (T2) in Lemma 4.2 is
satisfied for T1, since T1 is regular of length m1 by the construction in Stages
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I and II; and it is satisfied for T2 since the original labelling of the roots was
such that ordp(αp,j − j) ≥ logp(n) for roots in T2, and this property was
preserved thoughout the patching process.

As noted above, for k > L3(n) = 13C·#(T )
ln(h/q) ln(n) we have

hk >
∏

p∈T
pdk/(p−1)+3(4C logp(n))e.

We can thus find target coefficients ck ∈ Z such that{ |ck − c∞,k| < hk,
ordp(ck − cp,k) > k/(p− 1) + 3 · 4C logp(n) for p ∈ T.

The patching polynomials will simply be

w(k)
p (x) =

n−1∏

j=k

(x− αp,j) for k < n,

w(n)
p (x) = 1.

It follows from Lemma 4.2 that at each step the roots are moved by quanti-
ties with ord value > 4C logp(n). Hence they remain separated in ord value
by at least 4C logp(n), and the hypotheses of Lemma 4.2 continue to hold;
the patching process carries through to the end.

References

[1] E. Art in, Algebraic Numbers and Algebraic Functions, Gordon and Breach, Science
Publishers, New York, 1967.

[2] D. Cantor, On an extension of the definition of transfinite diameter and some ap-
plications, J. Reine Angew. Math. 316 (1980), 160–207.

[3] L. Comptet, Advanced Combinatorics, Reidel, Boston, 1979.
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