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The rational points close to a curve II
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1. Introduction. Halberstam and Roth’s work on gaps between k-free
numbers [2] rests on studying the pairs of integers m, q with

(1.1) N < mkq ≤ N +H

(and m prime; but the primality is hardly used), for given N and H, with
m, q bounded below by powers of N . A geometrical interpretation of (1.1)
is that (m, q) is an integer point close to the curve y = N/xk. The general
problem of bounding the number of integer points close to a curve y = f(x)
was discussed in (for example) Huxley [3], Filaseta and Trifonov [1], and
Huxley and Sargos [6]. The key idea is to write down an integer determi-
nant corresponding to r solutions of (1.1), which is small by the approxima-
tion property. The determinant is zero on major arcs, regions where f(x)
is approximated by a polynomial of small degree with rational coefficients.
Rational points with a common denominator were studied in [4], using the
duality of points and lines in the projective plane.

The inequality

(1.2) 0 < mkq − nkr ≤ H
is related to the distribution of gaps between k-free numbers studied in [5].
The rational point (m/n, r/q) is close to the curve y = x1/k. Having four
variables should make matters easier, but the determinants have large order.
A symmetry-breaking variation is to ask for points (m, r/q) close to a curve
y = f(x), with the parameter n absorbed into the function f(x).

Theorem 1. Let F (x) be a real function three times continuously differ-
entiable on an interval I ⊂ [1/2, 2], with

(1.3) |F (i)(x)| ≤ Ci+1λ

for i = 1, 2, 3,
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(1.4) |F (i)(x)| ≥ λ/Ci+1

for i = 1, 2, and

(1.5) |3F ′′(x)2 − 2F ′(x)F (3)(x)| ≥ λ2/C6.

Let M and Q be large positive integers. Given δ with 0 ≤ δ < 1/2, let S be
the set of rational points of the form (m/n, r/q) with m, n, r and q integers
with (m,n) = 1, (r, q) = 1, 1 ≤ m ≤M , 1 ≤ n ≤M , m/n in I, 1 ≤ q ≤ Q,
and

(1.6)
∣∣∣∣F
(
m

n

)
− r

q

∣∣∣∣ ≤
δ

Q2 ≤ δλ.

Then R, the size of S, satisfies

(1.7) R = O((C6δ1/4M2 + C2(λM2Q2(δM2 + C2))1/3)(CλMQ2)ε)

for any ε > 0. The implied constant depends on ε, but not on C, δ, λ, M
or Q.

Theorem 2. Let f(x) be a real function three times continuously differ-
entiable on an interval I of length M with integer endpoints. Suppose that
on I we have

(1.8) |f (i)(x)| ≤ Ci+1λ/M i

for i = 1, 2, 3,

(1.9) |f (i)(x)| ≥ λ/(Ci+1M i)

for i = 1, 2, and

(1.10) |3f ′′(x)2 − 2f ′(x)f (3)(x)| ≥ λ2/(C6M4).

Given δ with 0 ≤ δ < 1/2, let S be the set of rational points of the form
(m, r/q) with m an integer in I, r and q integers with (r, q) = 1, 1 ≤ q ≤ Q,
and

(1.11)
∣∣∣∣f(m)− r

q

∣∣∣∣ ≤
δ

Q2 ≤ δλ.

Then R, the size of S, satisfies

(1.12) R = O((C6δ1/4M + C2(λMQ2(δM + C))1/3)(CλMQ2)ε)

for any ε > 0. The implied constant depends on ε, but not on C, δ, λ, M
or Q.

The expected number of rational points is O(δM2) in Theorem 1, O(δM)
in Theorem 2. Lemmas 1.1 and 1.2 below give a very simple argument which
gets the expected upper bounds O(δM2) and O(δM) for a smaller range of Q
under a weaker hypothesis on the derivatives of the function. Our theorems
extend the range for Q, but they give weaker upper bounds, and they require
stronger conditions. For the theorems we consider major and minor arcs.
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The major arcs correspond to linear fractional approximations to F (x). The
condition (1.6) becomes stronger as we increase Q, corresponding to higher
terms in the Taylor expansion of F (x). To extend our results to larger Q
we need Padé approximants of higher degree. However Lemma 3.5 depends
on the Padé approximant having only one pole. The equation (1.2) appears
in Swinnerton-Dyer’s method for integer points close to curves ([7], (16),
[3], (5.8)]) with Q near M2 in size, corresponding to derivatives of the fifth
order or more.

Using Theorem 1 we can establish the asymptotic formula of [5],
∑

i

(si+1 − si)γ ' β(γ)N,

where the sum is over pairs of consecutive square-free numbers si, si+1 with
si+1 ≤ N , in a longer range γ < 59/16 = 3.6875; the range in [5] was
γ < 11/3.

We now give the easy bounds that correspond to Theorems 1 and 2.

Lemma 1.1 (small Q). Suppose that

C2λQ2 ≥ 1,

and that (1.3) and (1.4) hold for i = 1. Then the number R of points, defined
as in Theorem 1, satisfies

R ≤ 8C4δM2 + 4C2λQ2.

P r o o f. The rationals r/q lie in an interval of length at most

2δ/Q2 + 2 max |F ′(x)| ≤ 2C2λ+ 2δ/Q2 ≤ 3C2λ,

so the number of possible rational numbers r/q is

(1.13) ≤ 1 + 3C2λQ2 ≤ 4C2λQ2.

If the same rational r/q occurs for k consecutive fractions of the Farey
sequence F(M), then

2δ
Q2 ≥

k − 1
M2 min |F ′(x)| ≥ (k − 1)λ

C2M2 ,

so that

(1.14) k ≤ 2C2δM2

λQ2 + 1.

We multiply (1.13) by (1.14) to obtain the result of Lemma 1.1.

Lemma 1.2 (small Q). Suppose that

C2λQ2 ≥ 1
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and that (1.8) and (1.9) hold for i = 1. Then the number R of points, defined
as in Theorem 2, satisfies

R ≤ 6C4δM + 3C2λQ2.

P r o o f. As Lemma 1.1.

We give the proof of Theorem 1 in full. The proof of Theorem 2 is
analogous, and simpler in one or two places.

2. Major and minor arcs. We use the cross-ratio

(x1, x2;x3, x4) =
x1 − x3

x3 − x2
· x4 − x2

x1 − x4
.

Lemma 2.1 (cross-ratio invariance). Suppose that F (x) is a real function
three times continuously differentiable on an interval I, on which, for some
positive constants C and λ,

|F (i)(x)| ≤ Ci+1λ

for i = 1, 2, 3, and

|F ′(x)| ≥ λ/C2.

Let x1, . . . , x4 be distinct points in I with |xi − xj | ≤ K, where

(2.1) K ≤ 1/(4C5).

Let yi = F (xi). Then

(2.2)
1

1 + E
≤ (y1, y2; y3, y4)

(x1, x2;x3, x4)
≤ 1 + E,

where

E = 128C10K2.

P r o o f. The statement of the lemma is invariant under translation, so
we may take x1 = 0. Let α = F ′(0), β = 1

2F
′′(0). By Taylor’s theorem

F ′(x)− α− 2βx = 1
2x

2F (3)(ξ)

for some ξ between 0 and x. Hence for |x| ≤ K,

(2.3) |F ′(x)− α− 2βx| ≤ 1
2C

4λK2.

Let

θij =
yj − αxj − βx2

j − (yi − αxi − βx2
i )

xj − xi .

By Cauchy’s mean value theorem

θij = F ′(ξ)− α− 2βξ
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for some ξ between xi and xj . By (2.3)
yj − yi
xj − xi = α+ β(xi + xj) + θij ,

with
|θij | ≤ 1

2C
4λK2.

Also by (2.3), for |x| ≤ K,

|α+ 2βx| ≤ C2λ+ 1
2C

4λK2 ≤ 2C2λ.

We can now compute∣∣∣∣
y1 − y3

x1 − x3
· y4 − y2

x4 − x2
− α2 − αβ(x1 + x2 + x3 + x4)

∣∣∣∣
= |β2(x1 + x3)(x2 + x4) + θ24(α+ β(x1 + x3))

+ θ13(α+ β(x2 + x4)) + θ13θ24|
≤ (C3λK)2 + 2 · 1

2C
4λK2 · 2C2λ+

(
1
2C

4λκ2)2

≤ 3C6λ2K2 + 1
4C

8λ2K4 ≤ 4C6λ2K2,

where we have used (2.1).
We also have

|α2 + αβ(x1 + x2 + x3 + x4)| ≥ |α|2(1− 2C5K) ≥ 1
2 |α|2 ≥ λ2/(2C4),

so
y1 − y3

x1 − x3
· y4 − y2

x4 − x2
= (α2 + αβ(x1 + x2 + x3 + x4))κ,

and similarly
y3 − y2

x3 − x2
· y1 − y4

x1 − x4
= (α2 + αβ(x1 + x2 + x3 + x4))µ,

with

|κ− 1|, |µ− 1| ≤ 2C4

λ2 · 4C6λ2K2 ≤ 8C10K2 ≤ 1
2
,

by (2.1) again. Since
(

1 + t

1− t
)2

= 1 +
4t

(1− t)2 ≤ 1 + 16t

for 0 ≤ t ≤ 1/2, we have
κ

µ
,
µ

κ
≤ 1 + 128C10K2,

which proves (2.2).

Lemma 2.2 (major/minor dichotomy). Suppose that

(2.4) δM2 ≤ C2λQ2,
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and the conditions of Lemma 2.1 hold. Let (xi, ri/qi) be distinct points of S,
with xi = m1/ni. Suppose that

(2.5) K ≤ 1/(160C7λM2Q2)1/3.

Then either

(2.6)
(
r1

q1
,
r2

q2
;
r3

q3
,
r4

q4

)
= (x1, x2;x3, x4)

or

(2.7) min
i 6=j
|xj − xi| ≤ 200δC6K4λM4Q2.

P r o o f. We have
|mjni −minj | ≤ KM2.

The cross-ratio G = (x1, x2;x3, x4) is a rational number with numerator
and denominator numerically at most K2M4. Similarly∣∣∣∣

rj
qj
− ri
qi

∣∣∣∣ ≤ C2λK +
2δ
Q2 ≤ 2C2λK,

since (2.4) gives
K ≥ 1/M2 ≥ δ/(C2λQ2).

The cross-ratio H = (r1/q1, r2/q2; r3/q3, r4/q4) is a rational number whose
numerator and denominator are numerically at most 4C4λ2K2Q4. If G 6= H,
then

(2.8)
∣∣∣∣
G

H
− 1
∣∣∣∣ ≥

1
4C4λ2K4M4Q4 .

More accurately, we have

rj
qj
− ri
qi

= yj − yi + ηij
δ

Q2

with |ηij | ≤ 2. Since ∣∣∣∣
yj − yi
xj − xi

∣∣∣∣ = |F ′(ξ)| ≥ λ

C2

for some ξ, we have

rj
qj
− ri
qi

= (yj − yi)
(

1 +
θijδC

2

λQ2|xj − xi|
)

with |θij | ≤ 2. By (2.5),

128C10K2 ≤ 1/(100C4λ2K4M4Q4).

If (2.7) is false, then

2δC2

λQ2|xj − xi| ≤
1

100C4K4M4Q4 .
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Since
(1 + t)3

(1− t)2 ≤ 1 + 25t

for 0 ≤ t ≤ 1/2, (2.8) cannot hold, and we deduce G = H, which is (2.6).

We define a major arc J to be a subinterval of I such that there are at
least four points of S with m/n in J , and all points of S with m/n in J have
r/q = G(m/n), for some linear fractional function

G(x) =
αx+ β

γx+ θ
.

Subintervals of I which are not major arcs are called minor arcs.

Lemma 2.3 (nested intervals). Let J be a subinterval of I of length K.
Suppose that the conditions of Lemma 2.2 hold. Then either J is a major
arc, or the points of S in J lie in at most three subintervals of lengths at
most EK4, where

E = 800δC6λM4Q2.

P r o o f. The negation of the condition (2.7) of Lemma 2.2 can be written
as

(2.9) |xj − xi| ≥ K1/4 = EK4/4.

If we cannot choose three points in J such that (2.9) holds for each pair,
then the points of S in J lie in at most two subintervals of length K1/2, and
the lemma holds. Suppose that we can choose three points P1, P2, P3 of S
in J so that (2.9) holds for each pair. If there is another point P4 of S in J ,
then by Lemma 2.2, either P4 lies on the linear fractional curve through P1,
P2, P3, or for some i = 1, 2, or 3,

(2.10) |x4 − xi| < K1/4.

Hence the points of S in J either lie on the linear fractional curve through P1,
P2, P3, or they have x in one of three intervals of lengthK1/2 with centres x1,
x2, or x3. Suppose that both possibilities occur: P4 is on the linear fractional
curve through P1, P2, P3, but P5 is not. Then x5 is close to x1, x2, or x3;
suppose that x5 is close to x1, so that |x5 − x1| < K1/4. Since P5 is not on
the linear fractional curve through P2, P3, P4, we have (2.10) with i = 2, 3,
or 5, so |x4 − xi| < K1/2 for i = 1, 2, or 3. Hence if J is not a major arc,
then all points of S in J lie in one of three intervals of length K1 = EK4,
centres x1, x2, or x3, which proves the lemma.

Lemma 2.4 (local structure of S). Let J be a subinterval of I of length K.
Suppose that the conditions of Lemma 2.2 hold , and

(2.11) K ≤ K0 =
(

min(80δM2, C)
12800δC7λM4Q2

)1/3

.
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Let

L = 3
(

log 4M
log 4

)log 3/log 4

.

Then the points of S in J lie in at most L subintervals of J . Each subinterval
either contains one point only of S, or it is a major arc.

P r o o f. Since K ≤ K0, in Lemma 2.3 we have by (2.11)

(2.12) K1/K = EK3 ≤ 800δC6λM4Q2K3
0 ≤ 1/16.

We can now iterate Lemma 2.3: in each of the three subintervals of lengthK1,
either all the points of S lie on a linear fractional curve, or they lie within
three subintervals of length K2 = EK4

1 , and so on. At the rth step

Kr = EK4
r−1 = E1+4+...+4r−1

K4r =
(EK3)4r/3

E1/3
.

We continue until Kr < 1/M2. If E < 1/(16M2), this occurs for r = 1. If
E ≥ 1/(16M2), then by (2.12) we must have Kr < 1/M2 for

4r >
logM
log 4

+ 1.

We take

r =
[

1
log 4

log
(

log 4M
log 4

)
+ 1
]
.

The number of subintervals is at most 3r ≤ L. Since an interval of length
Kr < 1/M2 contains at most one point of S, we have the lemma.

3. Determinants related to Padé approximants. First we need
some mean value results involving determinants. Symbols such as C and δ
do not necessarily carry the same meaning as in Theorem 1. I would like
to thank my colleagues V. I. Bourenkov and A. M. Cohen for formulat-
ing Lemma 3.1, and for other valuable suggestions. Suppose that a1, . . . , ar
are distinct real numbers in ascending order. Let V (a1, . . . , ar) denote the
Vandermonde determinant

V (a1, . . . , ar) =

∣∣∣∣∣∣

ar−1
1 ar−2

1 . . . a1 1
. . . . . . . . . . . . . . . . . . .
ar−1
r ar−2

r . . . ar 1

∣∣∣∣∣∣
.

Lemma 3.1 (determinant mean value theorem). Let E(a1, . . . , ar) and
E′(b1, . . . , br−1) denote the determinants of function values
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E(a1, . . . , ar) =

∣∣∣∣∣∣

f1(a1) f2(a1) . . . fr−1(a1) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
f1(ar) f2(ar) . . . fr−1(ar) 1

∣∣∣∣∣∣
,

E′(b1, . . . , br−1) =

∣∣∣∣∣∣

f ′1(b1) f ′2(b1) . . . f ′r−1(b1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f ′1(br−1) f ′2(br−1) . . . f ′r−1(br−1)

∣∣∣∣∣∣
,

where fi(x) are continuously differentiable functions. Then

E(a1, . . . , ar)
V (a1, . . . , ar)

=
1

(r − 1)!
· E
′(α1, . . . , αr−1)

V (α1, . . . , αr−1)

for some α1, . . . , αr−1 with

a1 < α1 < α2 < . . . < αr−1 < ar.

Corollary. If f1(x) = g(x), fi(x) = xr−i for i = 2, . . . , r − 1, then

E(a1, . . . , ar)
V (a1, . . . , ar)

=
1

(r − 1)!
g(r−1)(ξ)

for some ξ in a1 < ξ < ar.

P r o o f. Consider a2, . . . , ar as fixed, a1 as variable. Since

E(a2, a2, . . . , ar) = V (a2, a2, . . . , ar) = 0,

Cauchy’s mean value theorem gives

E(a1, . . . , ar)
V (a1, . . . , ar)

=
∂/∂a1E(a1, . . . , ar)
∂/∂a1V (a1, . . . , ar)

∣∣∣∣
a1=α1

.

We repeat the process with α1, a3, . . . , ar fixed and a2 varying to get

E(a1, . . . , ar)
V (a1, . . . , ar)

=
∂2/∂a1∂a2E(a1, . . . , ar)
∂2/∂a1∂a2V (a1, . . . , ar)

∣∣∣∣
a1=α1, a2=α2

.

After r − 3 further steps of this type, we have replaced E(a1, . . . , ar) and
V (a1, . . . , ar) by determinants with all entries zero in the last column except
for the bottom entry, which is one. These determinants are equal to the
minor determinants of their first r−1 rows and columns. In the denominator
we have V (α1, . . . , αr−1) with the ith column multiplied by r− i for each i.
This proves the lemma.

For the Corollary we have

E′(α1, . . . , αr−1) =

∣∣∣∣∣∣

g′1(α1) αr−2
1 . . . α1 1

. . . . . . . . . . . . . . . . . . . . . . . . . .
g′1(αr−1) αr−2

r−1 . . . αr−1 1

∣∣∣∣∣∣
,

and we obtain the Corollary by iteration.
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In our second lemma we estimate a particular determinant of this type,
which is proportional to the difference of the cross-ratios (a, b; c, d) and
(f(a), f(b); f(c), f(d)).

Lemma 3.2 (cross-ratio and Schwarzian derivative). Suppose that f(x) is
a real function three times continuously differentiable on an interval I, and
that f ′′(x) is non-zero on I, with

max |f ′′(x)| ≤ Bmin |f ′′(x)|.
For a < b < c < d in I, let

E(a, b, c, d) =

∣∣∣∣∣∣∣

af(a) f(a) a 1
bf(b) f(b) b 1
cf(c) f(c) c 1
df(d) f(d) d 1

∣∣∣∣∣∣∣
.

Then

(3.1)
E(a, b, c, d)
V (a, b, c, d)

=
C

12
(3f ′′(ξ)2 − 2f ′(ξ)f (3)(ξ))

for some ξ in a < ξ < d and some C in 1/B2 ≤ C ≤ B2.

P r o o f. We use Lemma 3.1 twice, with

E′(α, β, γ) =

∣∣∣∣∣∣

f(α) + αf ′(α) α 1
f(β) + βf ′(β) β 1
f(γ) + γf ′(γ) γ 1

∣∣∣∣∣∣
,

E′′(u, v) =
∣∣∣∣
2f ′(u) + uf ′′(u) f ′′(u)
2f ′(v) + vf ′′(v) f ′′(v)

∣∣∣∣

= f ′′(u)f ′′(v)
(

2f ′(u)
f ′′(u)

+ u− 2f ′(v)
f ′′(v)

− v
)
,

whilst V (u, v) = u− v.
Again by Cauchy’s mean value theorem

1
u− v

(
2f ′(u)
f ′′(u)

+ u− 2f ′(v)
f ′′(v)

− v
)

= 3− 2f ′(ξ)f (3)(ξ)
f ′′(ξ)2

for some ξ in u < ξ < v. Thus

E(a, b, c, d)
V (a, b, c, d)

=
1

6 · 2 ·
f ′′(u)f ′′(v)
f ′′(ξ)2 (3f ′′(ξ)2 − 2f ′(ξ)f (3)(ξ)),

which gives the result of the lemma.

We note that the condition f ′′(x) 6= 0 in Lemma 3.2 is necessary, because
for f(x) = sinx, the determinant E(a, b, c, d) can be zero by periodicity, but

3f ′′(ξ)2 − 2f ′(ξ)f (3)(ξ) = 3 sin2 ξ + 2 cos2 ξ ≥ 2.
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On the other hand, Lemma 3.2 holds with C = 1 for f(x) = 1, x, x2, x3,
1/x, 1/x2; this can be checked directly.

Lemma 3.3 (interval of approximation). Let f(x) be a real function three
times continuously differentiable on an interval J of length K, with

(3.2) |f (i)(x)| ≤ Ci+1

for i = 1, 2, 3, and

(3.3) |f ′′(x)| ≥ 1/C2,

(3.4) |3f ′′(ξ)2 − 2f ′(ξ)f (3)(ξ)| ≥ 1/C6.

Suppose that f(x) has a Padé approximation

(3.5) g(x) =
αx+ β

γx+ δ

with

(3.6) |f(x)− g(x)| ≤ ∆ ≤ 1/(27C3)

on I. Then

(3.7) K ≤ 18C20/3∆1/3.

P r o o f. In Lemma 3.2 we take a and d to be the endpoints of J , and
d− c = c− b = b− a = K/3. Then

|E(a, b, c, d)| ≥ K6

729C18 .

We put f(a) = g(a) + ε, f(b) = g(b) + ζ, f(c) = g(c) + η, f(d) = g(d) + θ,
and we expand the determinant. The terms which do not involve ε, ζ, η,
or θ give the corresponding determinant with f(x) replaced by g(x), which
is easily seen to be zero by direct calculation.

There are four determinants of the type
∣∣∣∣∣∣∣

aε ε 0 0
bf(b) f(b) b 1
cf(c) f(c) c 1
df(d) f(d) d 1

∣∣∣∣∣∣∣
= −ε

∣∣∣∣∣∣

(b− a)f(b) b 1
(c− a)f(c) c 1
(d− a)f(d) d 1

∣∣∣∣∣∣

= ε(c− b)(d− b)(d− c) 1
2
d2

dx2 (x− a)f(x)
∣∣∣∣
x=ξ

= ε(c− b)(d− b)(d− c)(f ′(ξ) + 1
2 (ξ − a)f ′′(ξ)

)

for some ξ in b < ξ < d, by the Corollary to Lemma 3.1. Each determinant
has absolute value at most

2∆K3

9

(
C2 +

C3K

2

)
.
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There are six determinants of the type
∣∣∣∣∣∣∣

aε ε 0 0
bζ ζ 0 0
cf(c) f(c) c 1
df(d) f(d) d 1

∣∣∣∣∣∣∣
= εζ(b− a)(d− c).

Each such determinant has absolute value at most ∆2K2/9. We deduce that

(3.8)
K6

729C18 ≤
8C2∆K3

9
+

4C3∆K4

9
+

2∆2K2

3
.

If the first term on the right of (3.8) dominates, then

(3.9) K ≤ 18C20/3∆1/3.

If the second term on the right of (3.8) dominates, then

K ≤ 18
√

3C21/2
√
∆.

If the third term on the right of (3.8) dominates, then

K ≤ 9
√

6C9
√
∆.

By the upper bound for ∆ in (3.6), we see that (3.9) is the strongest of the
three conditions.

Lemma 3.4 (intersection number). Let f(x) be a real function three times
continuously differentiable that satisfies the conditions (3.2), (3.3) and (3.4)
of Lemma 3.3. Suppose that f(x) has a Padé approximation g(x) of the
form (3.5). Then there are at most four disjoint subintervals on which the
inequality (3.6) holds.

P r o o f. If f(x) = g(x) + e for four distinct values x = a, b, c, d, then
the determinant E(a, b, c, d) of Lemma 3.2 is zero, and (3.1) of Lemma 3.2
contradicts the assumption (3.4). Hence f(x)−g(x) takes each value at most
three times. The endpoints of intervals on which (3.6) holds are either ±∞
or finite values of x at which f(x) − g(x) = ±∆. There are at most eight
endpoints, so at most four intervals.

Lemma 3.5 (growth of approximation error). Under the hypotheses of
Lemma 3.3, let e be a point outside J , on the opposite side of J from the
pole of g(x) at x = −δ/γ, with

(3.10) |f(e)− g(e)| = ∆′ ≥ 2636∆.

Let K ′ be the distance of e from the furthest point of the interval J . Then

(3.11) K ′ ≥
(
∆′

∆

)1/3
K

42C8 .

P r o o f. We write h(x) = f(x) − g(x). The denominator γx + δ has
constant sign on J ; by changing the signs of α, β, γ, and δ, and the sign
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of x, we can suppose that γ > 0 and γx+ δ > 0 on J . Let J be the interval
[c, b], and let

a = max
(
c,

1
2

(
b− δ

γ

))
.

Let J ′ be the interval [a, b], a subinterval of J with length at least K/2.
We consider two divided differences. Let d = (2a+ b)/3, d′ = (a+ 2b)/3.

We have for some ξ in a < ξ < b

1
6
h(3)(ξ) = h[a, d, d′, b]

=
h(a)

(a− d)(a− d′)(a− b) +
h(d)

(d− a)(d− d′)(d− b)
+

h(d′)
(d′ − a)(d′ − d)(d′ − b) +

h(b)
(b− a)(b− d)(b− d′) .

Thus

|h(3)(ξ)| ≤ 6∆
(

2 · 6
K
· 3
K
· 2
K

+ 2 · 6
K
· 6
K
· 3
K

)
=

1728∆
K3 .

We have

h(3)(ξ) = f (3)(ξ)− 6(αδ − βγ)γ2

(γξ + δ)4 ,

so
∣∣∣∣
6(αδ − βγ)γ2

(γa+ δ)4

∣∣∣∣ ≤ 16
∣∣∣∣
6(αδ − βγ)γ2

(γξ + δ)4

∣∣∣∣ ≤ 16|f (3)(ξ)|+ 16|h(3)(ξ)|(3.12)

≤ 16C4 +
16 · 1728∆

K3 ≤ 29345C24∆

K3 ,

where we have used the bound (3.7) for K.
Secondly, for some η,

1
6
h(3)(η) = h[a, d, d′, e]

=
h(a)

(a− d)(a− d′)(a− e) +
h(d)

(d− a)(d− d′)(d− e)
+

h(d′)
(d′ − a)(d′ − d)(d′ − e) +

h(e)
(e− a)(b− e)(e− d′) .

Now

e− d′ ≥ K ′ − 2K/3 ≥ K ′/3, e− d ≥ K ′ −K/3 ≥ 2K ′/3.
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Since |h(e)| = ∆′, we have
∣∣∣∣
h(3)(η)

6

∣∣∣∣ ≥
∆′

K ′3
−∆

(
6
K
· 3
K
· 1
K ′

+
6
K
· 6
K
· 3

2K ′
+

3
K
· 6
K
· 3
K ′

)

=
∆′

K ′3
− 126∆
K2K ′

.

Again

h(3)(η) = f (3)(η)− 6(αδ − βγ)γ2

(γη + δ)4 ,

so ∣∣∣∣
6(αδ − βγ)γ2

(γa+ δ)4

∣∣∣∣ ≥
∣∣∣∣
6(αδ − βγ)γ2

(γη + δ)4

∣∣∣∣ ≥ |h(3)(η)| − |f (3)(η)|(3.13)

≥ 6∆′

K ′3
− 756∆
K2K ′

− C4

≥ 6∆′

K ′3
− 22337∆

K2K ′
− 2336C24∆

K2K ′

by (3.7). Comparing (3.12) and (3.13), we see that

24355 · 11C24∆

K3 ≥ 6∆′

K ′3
− 22337∆

K2K ′
.

Hence either

(3.14)
K ′

K
≥ 1

42C8

(
∆′

∆

)1/3

,

or

K ′

K
≥ 1

216

(
∆′

∆

)1/2

≥ 1
36

(
∆′

∆

)1/3

,

and (3.14) is the weaker conclusion.

4. Major arcs. A major arc is an interval J on which there are at least
four points of S, and all points of S on J have r/q = G(m/n) for some linear
fractional function G(x).

Lemma 4.1 (divisibility). The equation of a non-constant major arc J
can be written as

(4.1) G(x) =
ax+ b

cx+ d
,

where a, b, c, d are integers with highest common factor (a, b, c, d) = 1. If
(mi/ni, ri/qi) is a point of S on J , then the highest common factor

ei = (ami + bni, cmi + dni)
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is a factor of |ad − bc|, and if two points of S on J have ei = ej = e, then
e | (minj −mjni), so ∣∣∣∣

mi

ni
− mj

nj

∣∣∣∣ ≥
e

M2 .

P r o o f. If (mi/ni, ri/qi), i = 1, . . . , 4, are four distinct points of S on J ,
then

(4.2)

∣∣∣∣∣∣∣

m1q1 m1r1 n1q1 n1r1

m2q2 m2r2 n2q2 n2r2

m3q3 m3r3 n3q3 n4r4

m4q4 m4r4 n4q4 n4r4

∣∣∣∣∣∣∣
= 0.

Let A, −B, C, −D be the cofactors of the first row. Then A, B, C, D are
integers with

(4.3) Amiqi −Bmiri + Cniqi −Dniri = 0.

If A, B, C, D are all zero, then we consider cofactors of the first row in the
determinant

B =

∣∣∣∣∣∣

m2q2 n2q2 n2r2

m3q3 n3q3 n3r3

m4q4 n4q4 n4r4

∣∣∣∣∣∣
.

Since m3/n3 6= m4/n4, the cofactor of n2r2 is non-zero. There is a relation
of the form (4.3), but with B = 0, D 6= 0. Having found a relation with A,
B, C, D not all zero, we obtain the integers a, b, c, d by dividing A, B, C,
D by the highest common factor (A,B,C,D).

For (m/n, r/q) on the minor arc J , we define

(4.4) e = (am+ bn, cm+ dn),

so that

am+ bn = er, cm+ dn = eq,

e(aq − cr) = (ad− bc)n, e(dr − bq) = (ad− bc)m.
Since (m,n) = 1, we have e | (ad − bc). If mi/ni, mj/nj correspond to the
same e in (4.4), then

e | a(minj −mjni),

and similarly with a replaced by b, c, or by d. Since the highest common
factor (a, b, c, d) is unity, we deduce that e | (minj −mjni). Hence

∣∣∣∣
mi

ni
− mj

nj

∣∣∣∣ ≥
e

ninj
≥ e

M2 ,

which completes the proof of the lemma.
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Lemma 4.2 (orders of magnitude). Under the hypotheses of Lemma 1.1,
and in the notation (4.1), on a major arc,

(4.5) |ad− bc| ≤ T = 18(2C2λ+ 1)3M6Q6,

where C is the constant in Theorem 1. If ad − bc = 0, then e = 1. If
ad− bc 6= 0, then there are at most τ values for e, where

(4.6) τ = max
t≤T

d(t) = O((CλMQ2)ε)

for any ε > 0, with implied constant depending on ε.

P r o o f. As in Lemma 1.1, the rational numbers r/q lie in some interval
k ≤ r/q ≤ k +K, where k and K are integers with

K ≤ 2C2λ+ 1.

If we replace y by y − k in (4.1), then a and b change to integer values a′,
b′ with a′d − b′c = ad − bc. Since a′, b′, c, d are factors of cofactors in the
determinant (4.2), we have

|a′|, |c| ≤ 3K2M3Q3, |b′|, |d| ≤ 3KM3Q3,

which gives (4.5). In the constant case e = (q, r) = 1. In the non-constant
case e is a factor of a positive integer |ad− bc| ≤ T , and we use the standard
estimate for the divisor function.

In order to use Lemma 3.5, we define a proper major arc to be an inter-
val J on the x-line on which

|F (x)−G(x)| ≤ δ/Q2,

where G(x) has the linear fractional form (4.1), and all points of S on J
have r/q = G(m/n). By Lemma 3.4, a major arc decomposes into at most
four proper major arcs.

Lemma 4.3 (spacing of major arcs). Suppose that all points of S have

(4.7) M/2 ≤ m ≤M.

Let J be a proper major arc, of length K, containing R(J) points of S.
Suppose that f(x) = F (x)/λ satisfies the conditions of Lemma 3.3, with

(4.8) ∆ =
δ

λQ2 ≤
1

27C3 .

Then either

(4.9) R(J) ≤ τ,
or there is an interval J ′ of length K ′ containing J (the interval J ′ may
extend outside I) such that all points of S in J ′ lie in J , and

(4.10) R(J) = O(C6δ1/4K ′M2τ).
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P r o o f. There are at most τ different values of the common factor e. If
some value of e occurs twice, let A(e) be the set of points of S on J with
this value of e, let J(e), of length K(e), be the shortest subinterval of J
that contains A(e). Let m/n be the endpoint of J(e) furthest from the pole
x = −d/c. Then ∣∣∣∣

m

n
+
d

c

∣∣∣∣ ≥ K(e),

and

am+ bn = er, cm+ dn = eq.

Now let (m′/n′, r′/q′) be a point of S with r′/q′ 6= G(m′/n′), and with
m′/n′ on the opposite side of the minor arc J to the pole at x = −d/c. Let

K ′ = max
x∈J

∣∣∣∣
m′

n′
− x
∣∣∣∣.

Then by (4.7),

cm′ + dn′

cm+ dn
=
n′(m′/n′ + d/c)
n(m/n+ d/c)

≤ 2K ′

K(e)
,

so

cm′ + dn′ ≤ 2eK ′Q
K(e)

,

∣∣∣∣
r′

q′
− am′ + bn′

cm′ + dn′

∣∣∣∣ ≥
1

(cm′ + dn′)q′
≥ K(e)

2eK ′Q2 .

We deduce that if

(4.11) K ′ ≤ K(e)
4δe

,

then ∣∣∣∣F
(
m′

n′

)
− am′ + bn′

cm′ + dn′

∣∣∣∣ ≥
K(e)

2eK ′Q2 −
δ

Q2 ≥
K(e)

4eK ′Q2 .

We apply Lemma 3.5 with

∆′ ≥ K(e)
4eK ′λQ2 .

If

(4.12) ∆′ < 2636∆,

then

(4.13)
K ′

K(e)
≥ 1

2836δe
.

We note that (4.13) also holds when (4.11) is false.



218 M. N. Huxley

If (4.12) is false, then Lemma 3.5 is valid, and

K ′

K(e)
≥ 1

42C8

(
∆′

∆

)1/3

=
1

42C8

(
1

4δe
· K(e)
K ′

)1/3

,

so
K ′

K(e)
≥ 1

(253773C24δe)1/4
.

The number of points in A(e) is

≤ K(e)M2

e
+ 1 ≤ 2K(e)M2

e
(4.14)

≤ 2M2K ′max(2836δ, (293373C24δe)1/4).

Hence R(J), the number of points of S in J , is bounded by the sum over e
of the maximum of one and the expression in (4.14). There are at most τ
values for e by Lemma 4.2, so one of the estimates (4.9) or (4.10) holds.

Proof of Theorem 1. We can suppose that δ ≤ 1/C24, or the result is
trivial. By (1.6), the hypothesis (4.8) of Lemma 4.3 holds. We make the tem-
porary assumption that all points (m/n, r/q) of S satisfy (4.7) of Lemma 4.3.
By Lemma 2.4, the points of S lie in O(L/K0) intervals, each containing
either an isolated point or a major arc. Hence minor arcs and proper major
arcs with at most τ points of S contribute

O

(
LT

K0

)
= O

(
1
K0

(CλMQ2)ε
)

points to R. This is the second term in (1.7).
Other minor arcs can be embedded in intervals in which the density of

points of S is O(C6δ1/4τ) by the case (4.10) of Lemma 4.3. At most two such
intervals overlap at each point (eight intervals if we count proper major arcs
separately), and at most two such intervals extend outside I. By Lemma 3.3,
the intervals that extend outside I correspond to at most eight proper major
arcs of length

O

((
C20δ

λQ2

)1/3)
,

which contribute

(4.15) O

((
C20δ

λQ2

)1/3

M2
)

points to S. The total length of all the other intervals is O(1), and they
contribute

(4.16) O(C6δ1/4M2τ)
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points to S. Since δ ≤ 1/C24, the term (4.16) absorbs (4.15); it is the first
term in (1.7).

We complete the proof of Theorem 1 by summing ranges Mi ≤ m ≤
Mi−1, where Mi−1 ≤ 2Mi, and M0 = M . The largest range i = 1 dominates,
and the sum over i affects only the constant in (1.7).
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