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1. Introduction. If E/F is a finite-dimensional Galois extension with
Galois group G, then, by the Normal Basis Theorem, there exist elements
w ∈ E such that {g(w) | g ∈ G} is an F -basis of E, a so-called normal basis,
whence w is called normal in E/F .

In the present paper, we study normal bases for cyclotomic fields. Let Q
be the field of rational numbers; for a positive integer n, we let Qn denote
the nth cyclotomic field, i.e., Qn = Q(ζn), where ζn is a primitive nth root
of unity. For the basics on cyclotomic fields, we refer to [Ri] or [Wa]; we just
remark that Qn = Qm with n > m holds if and only if n = 2m and m is odd.
As index set for the cyclotomic fields we therefore use the set N of positive
integers which are either odd or divisible by 4. Thus, if n, e ∈ N , then
Qn ⊆ Qe if and only if n divides e. We call Qe/Qn a cyclotomic extension.

Definition 1.1. Let e, n ∈ N be such that n divides e. Then w ∈ Qe
is called universally normal in Qe/Qn if w is normal in Qe/Qd for every
cyclotomic intermediate field Qd of Qe/Qn (i.e., for every divisor d ∈ N of
e which is divisible by n). If w ∈ Qe is simultaneously normal in Qe/K for
every intermediate field K of Qe over Qn, then w is called completely normal
in Qe/Qn.

The study of simultaneously normal elements is a nontrivial task which
was first considered by Faith [Fa], but it was first proved by Blessenohl and
Johnsen [BlJo1] that completely normal elements exist for arbitrary finite
Galois extensions E/F . For more details we refer to the recent monograph
[Ha], which is an extensive treatment of (completely) normal elements for
finite fields, the central topics being their characterization, enumeration as

2000 Mathematics Subject Classification: 11R18, 12F05, 11B99.
Key words and phrases: cyclotomic field, abelian closure, normal basis/element, uni-

versally normal basis/element, completely normal basis/element, trace-compatible se-
quence.

[329]



330 D. Hachenberger

well as explicit and algorithmic constructions of these objects. Many ideas
of [Ha] are also essential for the present work.

In Section 3 we characterize and provide explicit constructions of com-
pletely normal elements for Qrm/Q, where r is any odd prime number and
where m ≥ 1 is any integer. In Section 5 we characterize and provide ex-
plicit constructions of universally normal elements for Q2m/Q, where m ≥ 2
is any integer. Both constructions draw from Sections 4 and 2. In Section 4
we study regular cyclotomic extensions, which are defined to be extensions
of the form Qe/Qn, where e and n have the same prime divisors. In Section 2
we provide important results on simultaneous generators for submodules of
cyclic Galois extensions which apply to most of the situations considered
in Sections 3–5. In Section 6, based on a product construction, we provide
universally normal elements for Qn/Q where n ∈ N is arbitrary.

When working in a fixed algebraic closure of Q, a famous theorem of
Kronecker and Weber (see e.g. [Wa]) states that

Q̂ :=
⋃

n∈N
Qn

is the abelian closure over Q, i.e., Q̂ is the smallest algebraic extension A over
Q such that any finite abelian extension of Q is contained in A. In Section 6
we provide a constructive version of the Normal Basis Theorem for Q̂/Q
by explicitly determining trace-compatible sequences entirely consisting of
universally normal elements.

Definition 1.2. For n ∈ N let wn ∈ Q̂ be such that Qn = Q(wn). The
sequence (wn)n∈N is called trace-compatible if the (Qe,Qd)-trace of we is
equal to wd whenever d divides e (1).

By results of Lenstra [Le], trace-compatible sequences of normal elements
can be seen as analogues of normal basis generators of infinite-dimensional
Galois extensions. The notion of trace-compatibility seems to be introduced
by Scheerhorn [Sche], where additive representations of the algebraic closure
of a finite field are studied.

Explicit descriptions of cyclotomic fields are important for various ap-
plications where computations with roots of unity are involved, e.g., for
representation theory or the discrete Fourier transform (see [Bo], [Br] and
the literature cited there). In [Bo] and [Br] there are determined special in-
tegral bases for cyclotomic fields, which in general are not normal bases. We
also mention that Johnsen [Jo] has explicitly determined normal elements
for all cyclotomic fields Qn over Q, but these are not universally normal in
general.

(1) Recall that for a Galois extension E/F with Galois group G the (E,F )-trace of
w ∈ E is

∑
g∈G g(w).
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2. Simultaneous generators for cyclic Galois extensions. In the
present section we assume that E/F is a finite Galois extension with cyclic
Galois group, but F is an arbitrary field, with characteristic p, say. We shall
prove two theorems which are very useful for the cyclotomic extensions to
be considered in Sections 3–5.

We start with some general remarks on cyclic Galois extensions; for
details we refer to [Ha, Section 8]. For an intermediate field K of E/F
let GK be the Galois group of E/K. After fixing a generator αF of GF
(as module over the ring of integers), we take αK := α

[K:F ]
F as a generator

for GK (where [K : F ] is the degree of K/F ). The entire KGK-module
structure of (E,+) is described in terms of the polynomial ring K[x] and
αK as follows: for f ∈ K[x] and v ∈ E, we let f ◦K v := f(αK)(v). The
(K,αK)-order of v ∈ E is the monic polynomial g ∈ K[x] of least degree
such that g ◦K v = 0; it is denoted by OrdK,αK (v). The monic K-divisors of
x[E:K]−1 correspond bijectively to the KGK-submodules of E: the divisor g
corresponds to the kernel of g(αK), which is denoted by UK,g throughout; we
say that g is the annihilator of UK,g with respect to K and αK , and call UK,g
a (K,αK)-module. Moreover, UK,g is cyclic, i.e., free on one generator as a
(K,αK)-module. Any v ∈ E such that KGKv = UK,g is called a (K,αK)-
generator of UK,g; the latter is the case if and only if OrdK,αK (v) = g.

We have to consider the situation where a subgroup U of (E,+) is
equipped with more than one module structure. We summarize some ba-
sic facts and refer to [Ha, Section 11] for details. Let C be a nonempty set
of intermediate fields of E/F . A subgroup U of (E,+) is called a C-module
if U is a (K,αK)-module for all K ∈ C. If v ∈ U is such that KGKv = U
for all K ∈ C, then v is called a C-generator for U . It is proved in [Ha,
Section 12] that such elements do always exist. Here, we are concerned with
a construction of C-generators in a situation which is applicable to certain
cyclotomic field extensions. Now, if U is an {M,L}-module, then there are
monic L- and M -divisors fL of x[E:L]−1 and fM of x[E:M ]−1, respectively,
such that U = UL,fL = UM,fM . If additionally M is a subfield of L, then fM
and fL are related as follows: fL(x[L:M ]) = fM , and therefore, in particular,
fL ∈M [x].

Throughout, for an integer n ≥ 1 which is not divisible by p, and for
an algebraic extension K of F , let Kn denote the nth cyclotomic field over
K, i.e., Kn is obtained by adjoining a primitive nth root of unity to K (we
assume that everything takes place in a fixed algebraic closure of F ). Also,
let Φn denote the nth cyclotomic polynomial (over F ).

Theorem 2.1. As above let M,L be intermediate fields of the cyclic
Galois extension E/F with M ⊆ L. Let fL be a monic M -divisor of x[E:L]−1
and let fM = fL(x[L:M ]). Consider the {M,L}-module U = UL,fL = UM,fM .
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Assume that L∩Mn = M for every divisor n of [E : L] which is not divisible
by p and for which Φn and fL are not relatively prime. Then every (M,αM )-
generator of U is likewise an (L,αL)-generator of U .

P r o o f. We consider the decomposition fL =
∏
n f

%(n)
n , where n runs

over all divisors of [E : L] which are not divisible by p and where fn :=
gcd(Φn, fL) 6= 1 (%(n) ≥ 1 for all n). Since fL ∈ M [x], each fn is also a
polynomial with coefficients in M , and, with gn := fn(x[L:M ]) we have Un :=
U
M,g

%(n)
n

= U
L,f

%(n)
n

and
⊕

n Un is a decomposition of U as an {M,L}-module
(see [Ha, Section 12]). Every (M,αM )-generator v of U can be uniquely
written as v =

∑
n vn, where for each n, vn is an (M,αM )-generator of Un

(see [Ha, Theorem 8.6]). Moreover, the (L,αL)-order of each vn divides f%(n)
n .

Now, let u = vn be some component of v and let γ = OrdL,αL(u). Since
L ∩Mn = M by assumption, we have [Ln : L] = [Mn : M ], which means
that Φn splits over L as over M . Thus, γ ∈ M [x], and hence γ = f

%(n)
n for

otherwise γ(x[L:M ]) would be a proper divisor of g%(n)
n annihilating u. Since

this holds for all n, we conclude that v has (L,αL)-order equal to fL (see
again [Ha, Theorem 8.6]), and everything is proved.

Theorem 2.2. Let C be a set of intermediate fields of the cyclic Galois
extension E/F containing (with respect to set-theoretic inclusion) a unique
maximal element L and a unique minimal element M . Let n be a divisor of
[E : L] which is not divisible by p and assume that gL is an irreducible monic
L-divisor of Φn. For each K ∈ C let gK be the unique irreducible monic K-
divisor of Φn such that gL divides gK (in L[x]) and let fK := gK(x[L:K]).
Then UN,fN ⊆ UK,fK whenever K ⊆ N and UM,fM is a C-module.

Now , assume moreover that L is contained in Mn. Then, for any nonzero
v of UL,fL , the following two assertions hold :

(1) For all K ∈ C, OrdK,αK (v) = fK .
(2) w :=

∑[L:M ]−1
j=0 αjM (v) is a C-generator of UM,fM .

P r o o f. It is clear that UN,fN ⊆ UK,fK whenever K ⊆ N , as gN divides
gK in this case. It is also clear that UM,fM is a C-module, as fM = gM (x[L:M ])
by definition and as [K : M ] divides [L : M ] for everyK ∈ C. Now, letK ∈ C.
As M ⊆ K and L ⊆ Mn by assumption, we have L ⊆ Kn, and therefore
[L ∩ Kn : K] = [L : K]. Hence, gK splits over L into [L : K] irreducible
monic polynomials, namely

gK =
[L:K]−1∏

j=0

αjK(gL)

(the Galois automorphisms are naturally extended to polynomial rings).
Next, let v be as in the assertion. Then OrdL,αL(v) = gL as gL is irreducible
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over L. An application of (1) of Theorem 14.5 in [Ha] to the fields L and K
shows that OrdK,αK (v) = gK(x[L:K]), and this proves assertion (1). Finally,
let w be as in (2). For K ∈ C we have w =

∑[K:M ]−1
i=0 αiM (u), where u =∑[L:K]−1

j=0 αjK(v). Now, an application of (2) of Theorem 14.5 in [Ha] to the
fields L and K shows that OrdK,αK (u) = fK = gK(x[L:K]), and therefore,
the (K,αK)-order of αiM (u) is equal to αiM (fK). By assumption we further
have K ⊆ L ⊆ Mn, whence [K ∩Mn : M ] = [K : M ], and therefore, gM
splits over K as

gM =
[K:M ]−1∏

i=0

αiM (gK).

An application of Theorem 8.6 in [Ha] thus yields OrdK,αK (w)=gM (x[L:K]),
which means that w is a (K,αK)-generator of UM,fM , since as a (K,αK)-
module the latter is equal to UK,gM (x[L:K]). This completes the proof of the
theorem.

3. Complete normal bases for cyclotomic r-extensions, r odd. If
r is a prime and m ≥ 1, then we call Qrm/Q a cyclotomic r-extension. In
the present section, we consider the case where r is odd. We give an efficient
characterization of completely normal elements for such extensions and also
provide explicit constructions of those elements.

For simplicity, let throughout E := Qrm , where m ≥ 1. Since E/Q is a
cyclic extension of degree rm−1(r−1), we may use the approach of Section 2.

Assume first that m = 1. If L is an intermediate field of E/Q, then
L∩Qr−1 ⊆ E∩Qr−1 = Q. We therefore may apply Theorem 2.1 with M = Q
and fL = x[E:L] − 1 to deduce that each normal element of E/Q is normal
in E/L. As L was chosen arbitrarily, any normal element of E/Q is already
completely normal. We remark that the latter also follows from a more
general result on abelian extensions from Blessenohl and Johnsen [BlJo2].
As it is well known (see the historical remark in [Jo]) that any primitive rth
root of unity is normal in E/Q, we note the following.

Theorem 3.1. Let µ be a primitive rth root of unity , where r is an odd
prime. Then µ is completely normal in Qr/Q.

We now consider the case m ≥ 2. Let C be the set of proper cyclotomic
subfields of E, i.e., C = {Q,Qr, . . . ,Qrm−1}. Furthermore, let Ĉ be the set
of all subfields of Qrm−1 , and let Trm be the kernel of the (E,Qrm−1)-trace
mapping. Then Qrm−1 ⊕ Trm is a decomposition of E as a Ĉ-module. More-
over, with respect to a fixed generator α of the Galois group of E/Q, Qrm−1

is annihilated by xr
m−2(r−1)−1 and Trm is annihilated by Φr(xr

m−2(r−1)) =
Φrm−1(xr−1). (Observe that the product of the latter two polynomials is
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equal to

xr
m−1(r−1) − 1 = x[E:Q] − 1,

the annihilator polynomial of α over Q.)

Theorem 3.2. Let w = u+v be the decomposition of w ∈ E correspond-
ing to Qrm−1 ⊕ Trm . Then w is completely normal in E/Q if and only if u
and v are Ĉ-generators for Qrm−1 and Trm , respectively , where Ĉ as above
is the set of subfields of Qrm−1 .

P r o o f. It suffices to show that any sum u+v of Ĉ-generators u of Qrm−1

and v of Trm is a completely normal element of E/Q. Let therefore L be
a subfield of E which is not contained in Ĉ. Then [L : Q] = rm−1t, where
t 6= 1 is a divisor of r − 1. We consider further the unique subfield M of L
with [M : Q] = rm−2t. Then M ∈ Ĉ, and therefore w = u + v is normal
in E/M (we have used [Ha, Theorem 8.6] for the latter argument). Now,
[E : L] = t divides r − 1, whence L ∩Mt ⊆ E ∩Mt = M . Hence, Theo-
rem 2.1 is applicable to fL = x[E:L] − 1 and yields the normality of w in
E/L. As the latter holds for all L, we conclude that w is completely normal
in E/Q.

Observing that, by the definition of Ĉ, u ∈ Qrm−1 is completely normal
over Q if and only if u is a Ĉ-generator of Qrm−1 , using Theorem 3.1 and
induction, it remains to determine a Ĉ-generator for Trm , where m ≥ 2.
With α as above we provide the following construction.

Theorem 3.3. Let m ≥ 2 and λ := bm/2c be the integer part of m/2.
Then λ ≥ 1 and L := Qrλ is an intermediate field of E = Qrm over Qr.
Let g be an irreducible L-divisor of Φrm−λ , and assume that y ∈ UL,g is any

nonzero element. Then, with Ĉ as in Theorem 3.2, v :=
∑rλ−1(r−1)−1
j=0 αj(y)

is a Ĉ-generator of Trm .

P r o o f. Let K be the set of all intermediate fields of L/Q. We have
[E : L] = rm−λ, and L ⊆ Qrm−λ by definition of λ. We are therefore able
to apply Theorem 2.2 (with M replaced by Q). Since g is irreducible, any
nonzero y ∈ UL,g is an (L,α[L:Q])-generator of UL,g. Furthermore, as Φrm−λ
is irreducible over Q, Theorem 2.2 yields that v is a K-generator of UQ,f ,
where

f = Φrm−λ(xr
λ−1(r−1)) = Φrm−1(xr−1).

Thus, UQ,f = Trm , and it remains to show that v generates Trm with respect
to all fields N ∈ Ĉ \ K. Let N be such a field. Then [N : Q] is of the form
rlt, where m − 2 ≥ l ≥ λ − 1 and where t ≥ 1, but rlt 6= rλ−1. Thus,
K := N ∩Qrλ has degree rλ−1t over Q. We seek to apply Theorem 2.1 with
L replaced by N and M replaced by K: [E : N ] = rm−1−l(r− 1)/t and Trm
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as an (N,α[N :Q])-module is annihilated by Φrm−1−l(x(r−1)/t), which is equal
to
∏
d|(r−1)/t Φdrm−1−l ; for all d we have N ∩Kdrm−1−l = N ∩Krm−1−l = K,

because Krm−1−l = KQrm−1−l = Qrλ as m− 1− l ≥ 1. Thus, Theorem 2.1
yields that each (K,α[K:Q])-generator of Trm is an (N,α[N :Q])-generator of
Trm . Since N was chosen arbitrarily, we conclude that every K-generator of
Trm is a Ĉ-generator of Trm , and everything is proved.

In Section 4 (see the proof of Theorem 4.1), we will see that any irre-
ducible L-divisor of Φrm−λ is a binomial, i.e., of the form xb−ζ (with explicit
values for b and ζ), whence a nonzero y as in the assertion of Theorem 3.3 is
just an eigenvector of αb over L. We shall also see that any rmth root of unity
can be chosen as y. Using Theorems 3.1 and 3.2 and induction, we therefore
altogether have the following result whose proof is covered by Section 4.

Theorem 3.4. Assume that m ≥ 2 and that r is an odd prime. Let η be
any primitive rmth root of unity and assume that α is any generator of the
Galois group of Qrm/Q. Then, with Ĉ and Trm as before,

rbm/2c−1(r−1)−1∑

j=0

αj(η)

is a Ĉ-generator of Trm . Moreover ,

ηr
m−1

+
m∑

k=2

rbk/2c−1(r−1)−1∑

j=0

αjr
m−k

(ηr
m−k

)

is completely normal in Qrm/Q.

4. Normal bases for regular cyclotomic extensions. For an integer
n let ν(n) denote the square-free part of n. If e, n ∈ N with e being a multiple
of n, we call Qe/Qn a regular cyclotomic extension if ν(e) = ν(n). In the
present section, among other things, we shall explicitly provide normal bases
for these kind of extensions. The results apply to the extension Qrm/Qrλ
which occurred in Theorem 3.3 (m ≥ 2), as λ ≥ 1.

First, it is not difficult to show that a regular cyclotomic extension is
cyclic of degree e/n, whence, again, the approach of Section 2 is applicable.
Throughout, let σ be any generator of the Galois group of Qe/Qn.

Theorem 4.1. Consider a regular cyclotomic extension Qe/Qn. For any
divisor k of e/n let ζk be a primitive (nk)th root of unity , and let Ik be the
set of j ∈ {1, . . . , gcd(k, n)} which are relatively prime to gcd(k, n). Then
the following two assertions hold :

(1) The (Qn, σ)-order of
∑
j∈Ik ζ

j
k is equal to Φk.

(2) w :=
∑
k|e/n

∑
j∈Ik ζ

j
k is normal in Qe/Qn.
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P r o o f. We fix a divisor k of e/n and let a := gcd(k, n). The kth cyclo-
tomic polynomial Φk splits over Qn as

Φk =
∏

j∈Ik
(xk/a − λj),

where λ ∈ Qn is a primitive ath root of unity. For j ∈ Ik let gj := xk/a−λj .
Let η be any primitive (nk)th root of unity. The restriction of σ to Qnk
(likewise denoted by σ) satisfies σ(η) = η1+sn, where s ∈ {1, . . . , k} is some
integer which is relatively prime to k. Now,

(1 + sn)k/a − 1 =
nk

a
· S,

where S and k are relatively prime, whence

gj(σ)(η) = η(η
nk
a ·S − λj).

As η
nk
a ·S is a primitive ath root of unity and as gj is irreducible over Qn,

a suitable choice of j ∈ Ik shows that the (Qn, σ)-order of η is equal to gj .
(Observe that, as remarked in Section 3, the latter justifies the choice of η
(in Theorem 3.4) as y (from Theorem 3.3) with k replaced by rm−λ yields
that η is a Ĉ-generator of Trm .)

Furthermore, for i ∈ Ik the (Qn, σ)-orders of the elements ηi run through
all irreducible Qn-divisors gj of Φk, whence vk as in the statement has
(Qn, σ)-order Φk (by [Ha, Theorem 8.6]). This proves (1), and (2) holds
as (again by [Ha, Theorem 8.6]) the (Qn, σ)-order of w is equal to the prod-
uct of the (Qn, σ)-orders of the vk which is equal to

∏
k|e/n Φk = xe/n − 1,

whence w is normal in Qe/Qn.

Observe that the conclusion of Theorem 4.1 also holds when, for every
k, ηk is any eigenvector of σk/gcd(k,n) (over Qn).

Remark 4.2. Since we have determined generators of modules which
are annihilated by cyclotomic polynomials, our approach naturally leads to
sequences of normal elements for towers of regular cyclotomic extensions
over a field Qn: let k, l ≥ 1, n ∈ N and assume that ν(kl) divides ν(n). If
u is normal in Qnk/Qn, and if σ is a generator of the Galois group of Qnkl
over Qn, then for every divisor d of kl which is not a divisor of k, we let vd
be an element (in Qnkl) having (Qn, σ)-order Φd. Then u+

∑
d vd is normal

in Qnkl/Qn.
Observe also that the (Qnkl,Qnk)-trace-mapping τ is equal to (σkl −

1)/(σk−1), whence τ(vd) = 0 for every d dividing kl but not k. Consequently,
w := l−1(u+

∑
d vd) is normal in Qnkl/Qn and τ(w) = u, and this indicates

how to obtain trace-compatible sequences of normal elements for towers of
regular cyclotomic extensions.
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Even more generally, we may consider the set Rn of all e such that
Qe is regular cyclotomic over Qn. Since Rn is closed under taking greatest
common divisors, Qn∞ :=

⋃
e∈Rn Qe is an algebraic extension over Qn,

which we call the regular cyclotomic closure of Qn, and which for n > 1 is
infinite by the definition of N . Now, define un := 1 and let un2 be normal
in Qn2 over Qn with Trn2,n(un2) = un, where Trn2,n denotes the (Qn2 ,Qn)-
trace mapping. Inductively, for every t ≥ 2, let unt+1 be normal in Qnt+1

over Qn such that Trnt+1,nt(unt+1) = unt . Finally, for any e ∈ Rn, take a t
such that e divides nt, and define ue := Trnt,e(unt). The transitivity of the
trace mappings and the well known fact that the trace of a normal element
again is normal imply that the sequence (um)m∈Rn is trace-compatible for
Rn and entirely consists of normal elements over Qn, and thus provides a
normal basis for Qn∞ over Qn.

5. Universal normal bases for cyclotomic 2-extensions. In the
present section we explicitly determine universal normal bases for cyclotomic
2-extensions. For simplicity, let E := Q2m , where m ≥ 2. We denote by
Ẽ :=

⋃
m≥2Q2m the 2-primary closure of Q in Q̂, i.e., Ẽ is obtained by

adjoining the set R := {η ∈ Q̂ | η2i = 1 for some i} to Q. Let s be any odd
integer. For η ∈ R define

σ(η) := η1+4s and ι(η) = η−1.

The restrictions of σ and ι to E (likewise denoted by σ and ι) generate the
Galois group of E/Q, throughout denoted by G (in that context the group
orders of σ and ι are 2m−2 and 2, respectively). Using this description, it is
easy to show that for m ∈ {2, 3}, each normal element of E/Q is completely
normal in E/Q. Moreover, with Linear Algebra, normal elements are easily
obtained in these cases, and one can show that the following holds.

Theorem 5.1. Let λ be a primitive 8th root of unity. Then −1 + λ2 is
completely normal in Q4/Q, and −1+λ+λ2 is completely normal in Q8/Q.

From now on, we may restrict our attention to the case m ≥ 4. Let
C− = {Q4, . . . ,Q2m−1}. Similarly to Section 3, if T2m denotes the kernel
of the (E,Q2m−1)-trace mapping, then Q2m−1 ⊕ T2m is a decomposition of
E into C−-modules, respecting additionally the action of QG. Moreover,
just by definition, w = u + v is universally normal in E/Q if and only if
its components u and v with respect to the decomposition Q2m−1 ⊕ T2m of
E are C−-generators as well as QG-generators of Q2m−1 and T2m , respec-
tively. Observing that the C−-generators of Q2m−1 which are additionally
QG-generators are exactly the universally normal elements of Q2m−1/Q, by
Theorem 5.1 and induction it remains to determine C−-generators for T2m

which are additionally QG-generators of T2m .
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Since we want to make use of the results from Section 4, we first consider
the extension E/Q4, which is regular cyclotomic (and cyclic of degree 2m−2

with Galois group generated by σ, restricted to E). If κ := b(m−4)/2c, then
K = Q22+κ is a member of C−. We have [E : K] = 2m−2−κ and Φ2m−2−κ

splits over Q4 as follows (where i denotes a primitive 4th root of unity):

(5.1) (x2n−4−κ − i) · (x2n−4−κ
+ i).

Let f be the first of these factors and Vf = UK,f the (K,σK)-submodule of
T2m corresponding to f , where σK = σ2κ . As shown in the first part of the
proof of Theorem 4.1, the (K,σK)-order of a primitive 2mth root of unity η
is an irreducible K-divisor of Φ2m−2−κ , without loss of generality a divisor
of f . Now, by the choice of κ, we may apply Theorem 2.2 with L replaced
by K and M replaced by Q4 to deduce that

v :=
2κ−1∑

j=0

σj(η)

is a K-generator of Vf , where K is the set of intermediate fields of K/Q4.
What has been said for v and f likewise holds for ι(v) and the codivisor

g = x2m−κ−4
+ i of f in Φ2m−κ−2 over Q4, i.e., ι(v) is a K-generator of

Vg = UK,g. Summarizing, by (5.1) and the fact that T2m as a (K,σK)-
module is annihilated by Φ2m−2−κ , this yields that

u := v + ι(v) is a K-generator of T2m .

Next, for each intermediate field L of E/K, we may apply Theorem 2.1 with
fL = Φ[E:L] and M replaced by K to conclude that

u is even a C−-generator of T2m .

Unfortunately, u is not a generator of T2m as a module over QG, because u
is fixed under ι, whence Q(u) only is the largest real subfield of E (which
has degree 2m−2 over Q and is different from Q2m−1). We therefore seek
to modify u to obtain a QG-generator of T2m . Let y := (1 + i)u. Since
1 + i ∈ Q4 is nonzero, y is a C−-generator of T2m . In particular, the (Q4, σ)-
order of y is equal to Φ2m−2 . Now, the (Q, σ)-order of y, which we define
to be the minimal polynomial of y with respect to σ over Q, likewise is
equal to Φ2m−2 , whence the (Q, σ)-submodule A of T2m (i.e., the σ-invariant
Q-subspace of T2m) generated by y has Q-dimension 2m−3 = deg(Φ2m−2).
Let B be the (Q, σ)-module generated by ι(y) = (1−i)ι(u) = (1−i)u. Again,
this space has Q-dimension 2m−3 and with respect to σ is annihilated by
Φ2m−2 . Now, it is not difficult to show that A ∩ B = {0}, and therefore
A ⊕ B = T2m . Moreover, since B = ι(A), we see that T2m in fact is the
QG-module generated by y. Summarizing, this yields that

y is a C−-generator and a QG-generator of T2m .

Using Theorem 5.1 and induction, we have proved the following theorem.
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Theorem 5.2. Let m ≥ 4 be an integer and let σ be a generator of the
Galois group of Q2m over Q4. Let i be a primitive 4th root of unity and η a
primitive 2mth root of unity. Then, with C−, G and T2m as above,

(1 + i)
2b(m−4)/2c−1∑

j=0

σj(η + η−1)

is a C−-generator and a QG-generator of T2m . Moreover ,

−1 + η2m−2
+ η2m−3

+ (1 + i)
( m∑

k=4

2b(k−4)/2c−1∑

j=0

σj(η2m−k + η−2m−k)
)

is universally normal in Q2m/Q.

6. The product construction and trace-compatibility. In this final
section, we show how to obtain universally normal elements for arbitrary
cyclotomic fields as well as trace-compatible sequences of universally normal
elements for the abelian closure Q̂ over Q. The first task is solved by the
following theorem in combination with Theorems 3.4 and 5.2.

Theorem 6.1. Let n ∈ N and
∏
j r

aj
j be the prime factorization of n.

Assume that for each j, wj is universally normal in Q
r
aj
j
/Q. Then w :=∏

j wj is universally normal in Qn/Q.

P r o o f. The argument is similar to the proof of the Reduction Theorem
in [Ha, Section 4] (see also [BlJo1, Hilfssatz 4.4]). Let m,n ∈ N be relatively
prime and let l ∈ N be a divisor of mn. If u is universally normal in Qm/Q,
then u is normal in Qm over Qm ∩ Ql = Qgcd(m,l). Since Qm and Ql are
linearly disjoint over Qgcd(m,l), u also provides a normal element for QmQl =
Qlcm(l,m) over Ql. Analogously, if v is universally normal in Qn/Q, then v
provides a normal element for QnQl = Qlcm(l,n) over Ql. Finally, since QmQl
and QnQl are linearly disjoint over Ql, uv is normal in Qmn/Ql. As the latter
holds for all L, everything is proved.

The determination of trace-compatible sequences of universally normal
elements for Q̂ over Q is similar to the corresponding task for completely
normal elements in an algebraic closure of a finite field (see [Ha, Section 25]).
It relies on the idea of Scheerhorn [Sche] that a product construction as in
Theorem 6.1 can be used to achieve trace-compatibility.

Construction 6.2. Start with a nonzero w1 ∈ Q. If m = r is an odd
prime, let η be a primitive rth root of unity (see Theorem 3.1) and wr :=
−w1η. If m = 4, let w4 := (−w1/2)(−1 + i), where i is a primitive 4th root
of unity. If m = 8, let w8 := (−w1/2)(−1 + i + λ), where λ is a primitive
8th root of unity (see Theorem 5.1).
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Assume that n ∈ N and that for k < n, the element wk already con-
structed is universally normal in Qk/Q and that the constructed sequence
(wk)k∈N , k≤n−1 is trace-compatible. If n = rm, where r is a prime, m ≥ 2 if
r is odd and m ≥ 4 if r = 2, use Theorems 3.4 and 5.2 to obtain a v ∈ Trm
which generates that space with respect to all cyclotomic subfields of Qrm−1 .
Define wrm := (1/r)wrm−1 +v. If n is not a prime power , consider the prime
factorization

∏k
j=1 r

aj
j of n and define wn :=

∏k
j=1 wraj

j
(see Theorem 6.1).

In any case, wn is universally normal in Qn/Q. Moreover , (wk)k∈N , k≤n is
trace-compatible.

P r o o f. To justify the assertions in Construction 6.2, it remains to prove
the trace-compatibility of the sequences. This is easily checked for the ini-
tialization. For the other case one has to show that Trn,n/r(wn) = wn/r for
all prime divisors r of n (the latter denotes the (Qn,Qn/r)-trace mapping).
Let therefore r be some prime divisor of n, say r = r1. Since v :=

∏k
j=2 wraj

j

is an element of Qn/r, one has

(6.1) Trn,n/r(wn) = v · Trn,n/r(wra1
1

).

As the restriction of the Galois group of Qn/Qn/r to Qra1
1

is equal to the
Galois group of Qra1

1
/Q

r
a1−1
1

, one has further

Trn,n/r(wra1
1

) = Tr
r
a1
1 ,r

a1−1
1

(wra1
1

) = w
r
a1−1
1

.

Since we have used Theorem 6.1 throughout Construction 6.2, the term in
(6.1) in fact is equal to wm/r, and we are done.
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