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1. Introduction. Let Fq be the finite field of order q = pk with a prime
p and an integer k ≥ 1. Further let {β1, . . . , βk} be an ordered basis of Fq
over Fp. Define ξn, n = 0, 1, . . . , q − 1, by

(1) ξn = n1β1 + . . .+ nkβk

if
n = n1 + n2p+ . . .+ nkp

k−1, 0 ≤ ni < p, i = 1, . . . , k,
and note that ξ0, ξ1, . . . , ξq−1 run exactly through all elements of Fq. We
obtain the sequence ξ0, ξ1, . . . by extending with period q (ξn+q = ξn). More-
over, let

γ =
{
γ−1 if γ ∈ F∗q ,
0 if γ = 0.

For given α ∈ F∗q , β ∈ Fq, we generate a sequence γ0, γ1, . . . of elements of
Fq by

(2) γn = αξn + β for n = 0, 1, . . .

We study exponential sums over Fq which in the simplest case are of the
form

N−1∑
n=0

χ(γn) for 1 ≤ N ≤ q,

where χ is a nontrivial additive character of Fq. Upper bounds for these
exponential sums are then applied to the analysis of two new inversive meth-
ods for pseudorandom number and vector generation. These new methods
are defined as follows. If

(3) γn = c(1)
n β1 + c(2)

n β2 + . . .+ c(k)
n βk with all c(i)n ∈ Fp,
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then we derive digital explicit inversive pseudorandom numbers in the inter-
val [0, 1) by putting

yn =
k∑

j=1

c(j)n p−j

and explicit inversive pseudorandom vectors by

un =
1
p

(c(1)
n , c(2)

n , . . . , c(k)
n ) ∈ [0, 1)k

for n = 0, 1, . . . It is trivial that the sequences y0, y1, . . . and u0,u1, . . . are
purely periodic with period q. In the special case k = 1 we get the explicit
inversive congruential pseudorandom numbers introduced in [2].

After some auxiliary results in Section 2 we prove some new bounds for
incomplete exponential sums over finite fields in Section 3 which allow us
to give nontrivial results on the distribution of sequences of digital explicit
inversive pseudorandom numbers and explicit inversive pseudorandom vec-
tors. The application to digital explicit inversive pseudorandom numbers is
presented in Section 4 and to explicit inversive pseudorandom vectors in
Section 5. In particular, we generalize the result of [2, Theorem 1] on the
statistical properties over the full period of pseudorandom numbers gener-
ated by the explicit inversive congruential method and present new results
for statistical properties over parts of the period. Moreover, we extend the
range for nontrivial results using the method of [9]–[11].

2. Auxiliary results. The following bound for exponential sums can
be found in [5, Theorem 2].

Lemma 1. Let χ be a nontrivial additive character of Fq and let f/g
be a rational function over Fq. Let v be the number of distinct roots of the
polynomial g in the algebraic closure Fq of Fq. Suppose that f/g is not of
the form Ap −A, where A is a rational function over Fq. Then

∣∣∣∣
∑

ξ∈Fq, g(ξ)6=0

χ

(
f(ξ)
g(ξ)

)∣∣∣∣ ≤ (max(deg(f), deg(g)) + v∗ − 2)q1/2 + δ,

where v∗ = v and δ = 1 if deg(f) ≤ deg(g), and v∗ = v + 1 and δ = 0
otherwise.

Lemma 2. Let f/g be a rational function over Fq such that g is not
divisible by the pth power of a nonconstant polynomial over Fq, f 6= 0, and
deg(f)−deg(g) 6≡ 0 mod p or deg(f) < deg(g). Then f/g is not of the form
Ap −A, where A is a rational function over Fq.
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P r o o f. Suppose we had

f

g
=
(
b

c

)p
− b

c
,

where b, c ∈ Fq[x] and gcd(b, c) = 1. Then

cpf = (bp−1 − cp−1)bg.

From gcd(b, c) = 1 it follows that cp divides g. This divisibility relation can
hold only if c is a nonzero constant. Thus,

f = (ω1b
p + ω2b)g

for suitable ω1, ω2 ∈ Fq with ω1ω2 6= 0. This implies that deg(f)− deg(g) is
a multiple of p and deg(f) ≥ deg(g), which is a contradiction.

Lemma 3. Let χ be a nontrivial additive character of Fq, N be an integer
with 1 ≤ N ≤ q, and ξn be defined as in (1) for n = 0, . . . , N − 1. Then

∑

µ∈F∗q

∣∣∣
N−1∑
n=0

χ(µξn)
∣∣∣ ≤ ql

(
4
π2 log p+ 1.38

)
+N(pk−l − 1),

where l = d(logN)/log pe.
P r o o f. We proceed as in [12, Section 3]. For j = 0, . . . , l − 1 define

Mj = {µ ∈ F∗q | χ(µβ1) = . . . = χ(µβj) = 1, χ(µβj+1) 6= 1}
and

Ml = {µ ∈ F∗q | χ(µβ1) = . . . = χ(µβl) = 1}.
Then we can write

∑

µ∈F∗q

∣∣∣
N−1∑
n=0

χ(µξn)
∣∣∣ =

l∑

j=0

∑

µ∈Mj

∣∣∣
N−1∑
n=0

χ(µξn)
∣∣∣

=
l−1∑

j=0

∑

µ∈Mj

∣∣∣
N−1∑
n=0

χ(µξn)
∣∣∣+N(pk−l − 1).

Now we fix µ ∈Mj , 0 ≤ j ≤ l − 1, and consider the sum
N−1∑
n=0

χ(µξn).

For 0 ≤ n ≤ N − 1 we have

ξn = n1β1 + . . .+ nlβl, 0 ≤ ni < p, 1 ≤ i ≤ l,
where n = n1 + n2p+ . . .+ nlp

l−1. This yields

χ(µξn) = χ(µβj+1)nj+1 . . . χ(µβl)nl
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with χ(µβj+1) 6= 1. We write

N − 1 = r1 + r2p+ . . .+ rlp
l−1, 0 ≤ ri < p, 1 ≤ i ≤ l.

If j ≤ l − 2 and (nj+2, . . . , nl) 6= (rj+2, . . . , rl), then by fixing

n1, . . . , nj , nj+2, . . . , nl

and summing χ(µξn) over nj+1 = 0, 1, . . . , p− 1 we get 0. Therefore, in the
range of summation n = 0, 1, . . . , N − 1 we are left with the terms χ(µξn)
for which (nj+2, . . . , nl) = (rj+2, . . . , rl). Thus,

(4)
∣∣∣
N−1∑
n=0

χ(µξn)
∣∣∣ =

∣∣∣
∑

n1,...,nj+1

χ(µβj+1)nj+1

∣∣∣,

where the last sum is over all n1, . . . , nj+1 with

n1 + n2p+ . . .+ nj+1p
j ≤ r1 + r2p+ . . .+ rj+1p

j .

The identity (4) holds trivially for j = l− 1 as well. If rj+1 6= 0, then by (4)
we obtain
∣∣∣
N−1∑
n=0

χ(µξn)
∣∣∣ ≤ pj

∣∣∣
rj+1−1∑
nj+1=0

χ(µβj+1)nj+1

∣∣∣+ pj = pj
∣∣∣∣
χ(rj+1µβj+1)− 1
χ(µβj+1)− 1

∣∣∣∣+ pj ,

and this holds trivially for rj+1 = 0 as well. For fixed 0 ≤ j ≤ l − 1 this
yields

∑

µ∈Mj

∣∣∣
N−1∑
n=0

χ(µξn)
∣∣∣ ≤ pjpk−j−1

p−1∑
u=1

∣∣∣∣
sin(πrj+1u/p)

sin(πu/p)

∣∣∣∣+ pjpk−j−1(p− 1)

≤ pk−1
(

4
π2 p log p+ 0.38p+ 0.7

)
+ pk−1(p− 1),

where we used [12, Lemma 5] in the first step and [1, Theorem 1] in the
second step. Simple calculations yield the lemma.

Let C(p) denote the set of integers h with −p/2 < h ≤ p/2 and let Ck(p)
be the set of k-dimensional points (h1, . . . , hk) with hj ∈ C(p) for 1 ≤ j ≤ k.
For (h1, . . . , hk) ∈ Ck(p) we put Qp(h1, . . . , hk) = 1 if (h1, . . . , hk) = 0 and

Qp(h1, . . . , hk) = p−d csc
π

p
|hd| if (h1, . . . , hk) 6= 0,

where d = d(h1, . . . , hk) is the largest j with hj 6= 0. Let C∗s×k(p) be the set
of all nonzero s× k matrices with entries in C(p). For H = (hij) ∈ C∗s×k(p)
we define

Wp(H) =
s∏

i=1

Qp(hi1, . . . , hik).



Incomplete exponential sums over finite fields 391

The following lemma is obtained by using [6, Lemma 3.13] for p = 2 and
an inequality in the proof of [8, Theorem 2] for p > 2.

Lemma 4. For any s ≥ 1 and k ≥ 1 we have

∑

H∈C∗
s×k(2)

W2(H) <
(
k

2
+ 1
)s
,

∑

H∈C∗
s×k(p)

Wp(H) <
(

2
π
k log p+

2
5
k + 1

)s
if p > 2.

The following lemma is needed in the proof of Theorem 3 in Section 3.
For nonnegative integers n and i we define n⊕ i by

(5) n⊕ i = j ⇔ ξn + ξi = ξj ; 0 ≤ j < q.

Lemma 5. For given integers L and m with 0 ≤ L,m < q, the number of
integers n with 0 ≤ n ≤ L for which n⊕m > L is at most m. Furthermore,
the number of integers n with 0 ≤ n ≤ L which are not of the form r ⊕m
for some 0 ≤ r ≤ L is at most m.

P r o o f. Note that for 0 ≤ n < q we can obtain n ⊕ m by adding the
digit vectors (in base p) of n and m as elements of the vector space Fkp and
then identifying the resulting digit vector with the corresponding integer in
the interval [0, q). Thus, for 0 ≤ n ≤ L we have

n⊕m ≤ n+m ≤ L+m.

Since n′⊕m 6= n′′⊕m for 0 ≤ n′ < n′′ < q, the numbers L+1, L+2, . . . , L+m
can appear as values of n ⊕m for at most m values of n with 0 ≤ n ≤ L.
The second part is shown in a similar way.

3. Bounds for exponential sums. Let γ0, γ1, . . . be the sequence of
elements of Fq generated by (2) and (1). For a nontrivial additive character
χ of Fq, for µ0, µ1, . . . , µs−1 ∈ Fq, and for an integer N with 1 ≤ N ≤ q we
consider the exponential sums

SN =
N−1∑
n=0

χ
( s−1∑

i=0

µiγn⊕i
)
,

where ⊕ is defined by (5).

Theorem 1. If µ0, µ1, . . . , µs−1 are not all 0, then

|Sq| ≤ (2s− 2)q1/2 + s+ 1.
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P r o o f. We can assume that s < q since otherwise the result is trivial.
Then we have

|Sq| =
∣∣∣
∑

ξ∈Fq
χ
( s−1∑

i=0

µiα(ξ + ξi) + β
)∣∣∣ ≤ s+

∣∣∣∣
∑

ξ∈Fq, g(ξ) 6=0

χ

(
f(ξ)
g(ξ)

)∣∣∣∣,

where

f(x) =
s−1∑

i=0

µi

s−1∏

j=0,j 6=i
(α(x+ ξj) + β)

and

g(x) =
s−1∏

j=0

(α(x+ ξj) + β).

Since at least one µi is nonzero, the uniqueness of the partial fraction decom-
position for rational functions implies that f 6= 0. Since deg(f) < deg(g),
Lemmas 1 and 2 yield the result.

The proof of Theorem 1 does not use the special ordering (1) of the
elements of Fq. An arbitrary but fixed ordering would be sufficient. But for
N < q, the case treated in the next theorem, we need (1).

Theorem 2. If µ0, µ1, . . . , µs−1 are not all 0, then

|SN | < s(2q1/2 + 1)
(

4
π2 log pl + 1.38l + 1

)
for 1 ≤ N < q,

where l = d(logN)/log pe.
P r o o f. We can again assume that s < q. With σn =

∑s−1
i=0 µiγn⊕i we

have

SN =
q−1∑
n=0

χ(σn)
N−1∑
t=0

1
q

∑

µ∈Fq
χ(µ(ξn − ξt))

=
1
q

∑

µ∈Fq

(N−1∑
t=0

χ(−µξt)
)( q−1∑

n=0

χ(σn + µξn)
)

=
N

q

q−1∑
n=0

χ(σn) +
1
q

∑

µ∈F∗q

(N−1∑
t=0

χ(−µξt)
)( q−1∑

n=0

χ(σn + µξn)
)
,

and so

|SN | ≤ N

q
|Sq|+ 1

q

∑

µ∈F∗q

∣∣∣
N−1∑
t=0

χ(µξt)
∣∣∣ ·
∣∣∣
q−1∑
n=0

χ(σn + µξn)
∣∣∣.
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For µ ∈ F∗q we have

∣∣∣
q−1∑
n=0

χ(σn + µξn)
∣∣∣ =

∣∣∣
∑

ξ∈Fq
χ
( s−1∑

i=0

µiα(ξ + ξi) + β + µξ
)∣∣∣

≤ s+
∣∣∣∣

∑

ξ∈Fq, g(ξ)6=0

χ

(
f(ξ)
g(ξ)

)∣∣∣∣,

where

f(x) = µx

s−1∏

j=0

(α(x+ ξj) + β) +
s−1∑

i=0

µi

s−1∏

j=0, j 6=i
(α(x+ ξj) + β)

and

g(x) =
s−1∏

j=0

(α(x+ ξj) + β).

Lemmas 1–3 yield

∑

µ∈F∗q

∣∣∣
N−1∑
t=0

χ(µξt)
∣∣∣ ·
∣∣∣
q−1∑
n=0

χ(σn + µξn)
∣∣∣

≤ s(2q1/2 + 1)
∑

µ∈F∗q

∣∣∣
N−1∑
t=0

χ(µξt)
∣∣∣

≤ s(2q1/2 + 1)
(
ql

(
4
π2 log p+ 1.38

)
+N(pk−l − 1)

)
,

where l = d(logN)/log pe. Hence we obtain, by Theorem 1,

|SN | ≤ N

q
((2s− 2)q1/2 + s+ 1)

+ s(2q1/2 + 1)
(

4
π2 log pl + 1.38l +N(p−l − p−k)

)
.

Simple calculations yield the theorem.

Theorem 2 is nontrivial only if N is at least of the order of magnitude
sq1/2 log q. Now we prove a bound which is nontrivial for N at least of the
order of magnitude sq1/2 using a new method introduced in [9] and extended
in [10] and [11].

Theorem 3. If µ0, µ1, . . . , µs−1 are not all 0, then

|SN | <
√

5s1/2N1/2q1/4 + q1/2 + 1 for 1 ≤ N < q.

P r o o f. We can assume that 2s + 1 ≤ 2q1/2 since otherwise the result
is trivial. With σn =

∑s−1
i=0 µiγn⊕i and any integer m with 0 ≤ m < q we
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have, by Lemma 5,
∣∣∣SN −

N−1∑
n=0

χ(σn⊕m)
∣∣∣ ≤ 2m.

For an integer M with 1 ≤ M ≤ q we use the above inequality for m =
0, 1, . . . ,M − 1 and we get

(6) M |SN | < W +M2,

where

W =
∣∣∣
N−1∑
n=0

M−1∑
m=0

χ(σn⊕m)
∣∣∣ ≤

N−1∑
n=0

∣∣∣
M−1∑
m=0

χ(σn⊕m)
∣∣∣.

By the Cauchy–Schwarz inequality we obtain

W 2 ≤ N
N−1∑
n=0

∣∣∣
M−1∑
m=0

χ(σn⊕m)
∣∣∣
2
≤N

∑

ξ∈Fq

∣∣∣
M−1∑
m=0

χ
( s−1∑

i=0

µiα(ξ + ξi + ξm)+β
)∣∣∣

2

= N

M−1∑
m1,m2=0

∑

ξ∈Fq
χ
( s−1∑

i=0

µi(α(ξ + ξi + ξm1) + β − α(ξ + ξi + ξm2)+β)
)
.

If m1 = m2, then the sum over ξ is equal to q. For m1 6= m2 let

f(x) = α(ξm2 − ξm1)
s−1∑

i=0

µi

s−1∏

j=0, j 6=i
(α(x+ ξj + ξm1)+β)(α(x+ ξj + ξm2)+β)

and

g(x) =
s−1∏

j=0

(α(x+ ξj + ξm1) + β)(α(x+ ξj + ξm2) + β).

Then
∣∣∣
∑

ξ∈Fq
χ
( s−1∑

i=0

µi(α(ξ + ξi + ξm1) + β − α(ξ + ξi + ξm2) + β)
)∣∣∣

≤ 2s+
∣∣∣∣

∑

ξ∈Fq, g∗(ξ)6=0

χ

(
f∗(ξ)
g∗(ξ)

)∣∣∣∣,

where f∗ = f/(f, g) and g∗ = g/(f, g). For the application of Lemmas 1 and
2 we need that g∗ is squarefree (p = 2!) and f∗ 6= 0.

In g(x) we can have repetition of factors only if there exist 0 ≤ i, j ≤ s−1
with i 6= j such that

(7) ξi + ξm1 = ξj + ξm2 .

Then α(x+ξi+ξm1)+β is a common factor of f and g. Hence g∗ is squarefree.
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Suppose we have f∗ = 0. Let i be an index with µi 6= 0. Then

0 = f∗(−α−1β − ξi − ξm1) = f(−α−1β − ξi − ξm1)

= α(ξm2 − ξm1)µi
s−1∏

j=0, j 6=i
α(ξj − ξi)α(ξj − ξi + ξm2 − ξm1)

yields the existence of 0 ≤ j ≤ s− 1, i 6= j, satisfying (7). There are at most
s− 1 possible indices m2 6= m1 satisfying (7) for given m1 and i. For these
m2 we estimate trivially.

By Lemmas 1 and 2 we obtain

W 2 ≤ N(Msq +M2((4s− 2)q1/2 + 2s+ 1)) ≤ N(Msq + 4M2sq1/2).

Choosing M = dq1/2e we get

W 2/M2 ≤ 5sNq1/2,

and thus

|SN | <
√

5s1/2N1/2q1/4 + q1/2 + 1

by (6).

4. Digital explicit inversive pseudorandom numbers. We use the
bounds for exponential sums obtained in the previous section to derive re-
sults on the distribution of sequences of digital explicit inversive pseudoran-
dom numbers over the full period and in parts of the period.

Given a sequence y0, y1, . . . of digital explicit inversive pseudorandom
numbers and a dimension s ≥ 1, we consider the points

yn = (yn, yn⊕1, . . . , yn⊕(s−1)) ∈ [0, 1)s for n = 0, 1, . . .

Then for any integer N with 1 ≤ N ≤ q we define the star discrepancy

D
∗(s)
N = sup

J
|FN (J)− V (J)|,

where the supremum is extended over all subintervals J of [0, 1)s containing
the origin, FN (J) is N−1 times the number of points among y0,y1, . . . ,yN−1

falling into J , and V (J) denotes the s-dimensional volume of J . In the
following we establish an upper bound for D∗(s)N .

Theorem 4. For any sequence of digital explicit inversive pseudoran-
dom numbers, for any dimension s ≥ 1, and for any 1 ≤ N < q the star
discrepancy D∗(s)N satisfies

D
∗(s)
N = O(min(N−1q1/2 log q,N−1/2q1/4)(log q)s).
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P r o o f. For H = (hij) ∈ C∗s×k(p) we define the exponential sum

SN (H) =
N−1∑
n=0

e

(
1
p

s−1∑

i=0

k∑

j=1

hijc
(j)
n⊕i

)
,

where e(u) = exp(2π
√−1u) for all real u and the c(j)n⊕i ∈ Fp are as in (3).

Then by a general discrepancy bound in [3, Theorem 1(ii) and Lemma 3(iii)]
(see also [6, Theorem 3.12] for a slightly weaker version) we obtain

(8) D
∗(s)
N ≤ 1−

(
1− 1

q

)s
+

1
N

∑

H∈C∗
s×k(p)

Wp(H)|SN (H)|.

Let {δ1, . . . , δk} be the dual basis of the given ordered basis {β1, . . . , βk} of
Fq over Fp. Then by a well-known principle (see [4, p. 55]) we have

c(j)n = Tr(δjγn) for 1 ≤ j ≤ k and n ≥ 0,

where Tr denotes the trace function from Fq to Fp. Therefore

SN (H) =
N−1∑
n=0

e

(
1
p

s−1∑

i=0

k∑

j=1

hij Tr(δjγn⊕i)
)

=
N−1∑
n=0

e

(
1
p

Tr
( s−1∑

i=0

k∑

j=1

hijδjγn⊕i
))

=
N−1∑
n=0

χ
( s−1∑

i=0

µiγn⊕i
)
,

where χ is the canonical additive character of Fq and µi =
∑k
j=1 hijδj ∈ Fq

for 0 ≤ i ≤ s− 1. Since H is not the zero matrix and {δ1, . . . , δk} is a basis
of Fq over Fp, it follows that µ0, . . . , µs−1 are not all 0. Hence we may apply
the results of Section 3.

We have by (8), Theorem 2, Theorem 3, and Lemma 4,

D
∗(s)
N <

s

q
+

1
N

(
k

2
+ 1
)s

×min
(
s(2q1/2 + 1)

(
4
π2 log pl + 1.38l + 1

)
,
√

5s1/2N1/2q1/4 + q1/2 + 1
)

if p = 2, and

D
∗(s)
N <

s

q
+

1
N

(
2
π

log q +
2
5
k + 1

)s

×min
(
s(2q1/2 + 1)

(
4
π2 log pl + 1.38l + 1

)
,
√

5s1/2N1/2q1/4 + q1/2 + 1
)

if p > 2.
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Theorem 5. For any sequence of digital explicit inversive pseudorandom
numbers and for any dimension s ≥ 1 the star discrepancy D∗(s)q satisfies

D∗(s)q = O(q−1/2(log q)s).

P r o o f. The theorem follows by (8), Theorem 1, and Lemma 4 with the
same arguments as in the proof of the previous theorem.

5. Explicit inversive pseudorandom vectors. Statistical indepen-
dence properties of pseudorandom vectors are customarily assessed by the
discrete discrepancy (see [6, Section 10.2]). Given a sequence u0,u1, . . . of
explicit inversive pseudorandom vectors and an integer s ≥ 1, we consider
the ks-dimensional points

vn = (un,un⊕1, . . . ,un⊕(s−1)) ∈ [0, 1)ks for n = 0, 1, . . .

Then for any integer N with 1 ≤ N ≤ q we define the discrete discrepancy

E
(s)
N,p = max

J
|FN (J)− V (J)|,

where the maximum is over all subintervals J of [0, 1)ks of the form

J =
ks∏

i=1

[
ai
p
,
bi
p

)

with integers ai, bi for 1 ≤ i ≤ ks, where FN (J) is N−1 times the number of
points v0,v1, . . . ,vN−1 falling into J and V (J) denotes the ks-dimensional
volume of J .

Theorem 6. For any sequence of k-dimensional inversive pseudorandom
vectors, for any s ≥ 1, and for any 1 ≤ N < q = pk the discrete discrepancy
E

(s)
N,p satisfies

E
(s)
N,p = O(min(N−1q1/2 log q,N−1/2q1/4)(log p)ks).

P r o o f. Let C∗ks(p) be the set of nonzero vectors in Cks(p). For h ∈
C∗ks(p) we define the exponential sum

SN (h) =
N−1∑
n=0

e(h · vn),

where the dot denotes the standard inner product. By [7, Corollary 3] we
get

E
(s)
N,p ≤

1
N

max
h∈C∗

ks
(p)
|SN (h)|

(
4
π2 log p+ 1.41 +

0.61
p

)ks
.
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For a fixed h ∈ C∗ks(p) we write

h = (h0,h1, . . . ,hs−1)

with hi ∈ Ck(p) for 0 ≤ i ≤ s− 1, where not all hi are 0. Then we have

SN (h) =
N−1∑
n=0

e
( s−1∑

i=0

hi · un⊕i
)

=
N−1∑
n=0

e

(
1
p

s−1∑

i=0

k∑

j=1

hijc
(j)
n⊕i

)
,

where hi = (hi1, . . . , hik) for 0 ≤ i ≤ s − 1 and all hij ∈ C(p). As in the
proof of Theorem 4 we get

SN (h) =
N−1∑
n=0

χ
( s−1∑

i=0

µiγn⊕i
)

and thus the result.

Theorem 7. For any sequence of k-dimensional inversive pseudorandom
vectors and for any s ≥ 1 the discrete discrepancy E(s)

q,p with q = pk satisfies

E(s)
q,p = O(q−1/2(log p)ks).

P r o o f. The theorem follows with the same arguments as in the proof of
the previous theorem by Theorem 1.
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