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1. Introduction. In this paper we study the problem of solvability of
the inequality
(1.1) |ξ − α| < c(ξ, n)H(α)−A

in algebraic numbers α of degree ≤ n, where A > 0, ξ is a real number
which is not an algebraic number of degree ≤ n, H(α) is the height of α. In
1842 Dirichlet proved that for any real number ξ there exist infinitely many
rational numbers p/q such that |ξ−p/q| < q−2. In 1961 E. Wirsing [9] proved
that (1.1) has infinitely many solutions if A = n/2+γn, where limn→∞ γn =
2. Moreover, he conjectured that the inequality (1.1) has infinitely many
solutions if A = n+ 1− ε, where ε > 0. Further it has been conjectured [5]
that the exponent n+1−ε can be replaced even by n+1. This problem has
not been solved except in some special cases. In 1965 V. G. Sprindžuk [6]
proved that the Conjecture of Wirsing holds for almost all real numbers. In
1967 H. Davenport and W. Schmidt [3] obtained new results in the theory of
linear forms. These enabled them to prove the Conjecture for n = 2. In 1993
[1] the following improvement of the Theorem of Wirsing was obtained:
A = n/2 + γ′n, where limn→∞ γ′n = 3. In 1992–1997 a new method was
introduced, improving the Theorem of Wirsing for n ≤ 10 ([7, 8]).

In this paper we prove the following

Theorem. For any real number ξ which is not an algebraic number of
degree ≤ n, there exist infinitely many algebraic numbers α of degree ≤ n
such that
(1.2) |ξ − α| � H(α)−A.
Here and below 3 ≤ n ≤ 7, � is the Vinogradov symbol , and A = A(n) is
the positive root of the quadratic equation

(1.3) (3n− 5)X2 − (2n2 + n− 9)X − n− 3 = 0.
The implicit constant in � depends on ξ and n only.
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The following table contains the values of A corresponding to Wirsing’s
Theorem, the Theorem above and the Conjecture:

n Wirsing, 1961 Theorem Conj.

3 3.2807764 3.4364917 4
4 3.8228757 4.1009866 5
5 4.3507811 4.7677925 6
6 4.8708287 5.4350702 7
7 5.3860009 6.1024184 8

2. Preliminaries. We can confine ourselves to the range 0 < ξ < 1/4.
We suppose that there exists a real number 0 < ξ < 1/4 which is not an
algebraic number of degree ≤ n, such that

(2.1) ∀c > 0 ∃H̃0 > 0 ∀α ∈ An, H(α) > H̃0, |ξ − α| > cH(α)−A,

where An denotes the set of algebraic numbers of degree ≤ n. Also, we may
assume that H̃0 > ((2n)!)30ne60n2

.

By Lemma 1 of [2] we have

(2.2) |ξ − α| ≤ n |P (ξ)|
|P ′(ξ)| ,

where α is the root of the polynomial P (x) closest to ξ. In fact, we get

|P ′(ξ)|
|P (ξ)| =

∣∣∣∣
n∑

i=1

1
ξ − αi

∣∣∣∣ ≤
n∑

i=1

1
|ξ − αi| ≤

n

|ξ − α| ,

which gives (2.2). Put

cT = 4n
2
(n!)4n3

ξ−2n5
.

By (2.1) and (2.2) we obtain

(2.3) ∃H̃0 > 0 ∀Q(x) ∈ Z[x], degQ(x) ≤ n, Q > H̃0,

|Q(ξ)|
|Q′(ξ)| > cT Q

−A.

Throughout the paper L denotes the height of the polynomial L(x).

3. Auxiliary lemmas

Lemma 3.1. Let L(x) = cnx
n+ . . .+c1x+c0 be a polynomial with integer

coefficients such that |L(ξ)| < 1/2. Then there is an index j1 ∈ {1, . . . , n}
such that |cj1 | = L .
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P r o o f. Assume that |cj1 | < L for any j1 ∈ {1, . . . , n}. Then

|L(ξ)| =
∣∣∣
n∑
ν=0

cνξ
ν
∣∣∣ >

∣∣∣−
n∑
ν=1

L ξν + L
∣∣∣ = L

∣∣∣−
n∑
ν=1

ξν + 1
∣∣∣ > 1

2
.

Lemma 3.2. Let L(x) be a polynomial and j1 an index as in Lemma 3.1.
Suppose |ci|≤ξn−1 L for every i∈{1, . . . , n}\{j1}. Then L <ξ−n+1|L′(ξ)|.

P r o o f. We have

|L′(ξ)| =
∣∣∣
n∑
ν=1

νcνξ
ν−1
∣∣∣ =

∣∣∣j1cj1ξj1−1 +
( n∑
ν=1

νcνξ
ν−1 − j1cj1ξj1−1

)∣∣∣.

Since |j1cj1ξj1−1| = j1 L ξj1−1 ≥ n L ξn−1,
∣∣∣
n∑
ν=1

νcνξ
ν−1 − j1cj1ξj1−1

∣∣∣ ≤ ξn−1 L
( n∑
ν=1

νξν−1 − j1ξj1−1
)

≤ ξn−1 L

n−1∑
ν=1

νξν−1,

and n−∑n−1
ν=1 νξ

ν−1 > 1, we obtain

|L′(ξ)| ≥ |j1cj1ξj1−1| −
∣∣∣
n∑
ν=1

νcνξ
ν−1 − j1cj1ξj1−1

∣∣∣

≥ nξn−1 L − ξn−1 L

n−1∑
ν=1

νξν−1 = ξn−1 L
(
n−

n−1∑
ν=1

νξν−1
)

> ξn−1 L .

Notations. In this section L(k)(x) denotes the kth derivative of a poly-
nomial L(x). However, in Sections 4–7 we will use Q̃

(l)
i (x) to denote the

polynomial with indices l and i.

Lemma 3.3. For any polynomials F (x) and G(x) the following identity
is valid :

(3.1) R(F,G) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F (l)(ξ)
l! . . . F ′(ξ) F (ξ)

. . .
. . .

. . .
F (l)(ξ)
l! . . . F ′(ξ) F (ξ)

G(m)(ξ)
m! . . . G′(ξ) G(ξ)

. . .
. . .

. . .
G(m)(ξ)
m! . . . G′(ξ) G(ξ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




m




l

,
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where R(F,G) denotes the resultant of F (x) and G(x), ξ is any real , complex
or p-adic number , degF (x) = l, degG(x) = m.

P r o o f. Write

F (x) =
l∑

ν=0

aνx
ν = al

l∏
ν=1

(x− αν), G(x) =
m∑
ν=0

bνx
ν = bm

m∏
ν=1

(x− βν),

F̃ (x) = F (x+ ξ) =
l∑

ν=0

ãνx
ν , G̃(x) = G(x+ ξ) =

m∑
ν=0

b̃νx
ν .

Denote by∆l,m(Ai, Bj) the determinant obtained from (3.1) by replacing
F (i)(ξ)/i! and G(j)(ξ)/j! with Ai and Bj , 0 ≤ i ≤ l, 0 ≤ j ≤ m, respectively.
For example, according to the definition of resultant we have R(F,G) =
∆l,m(ai, bj). We now obtain

R(F,G) = aml b
l
m

∏

i,j

(αi − βj) = aml b
l
m

∏

i,j

(αi − ξ − (βj − ξ)) = ∆l,m(ãi, b̃j)

= ∆l,m

(
F̃ (i)(0)
i!

,
G̃(j)(0)
j!

)
= ∆l,m

(
F (i)(ξ)
i!

,
G(j)(ξ)
j!

)
.

Lemma 3.4. Let F (x), G(x) ∈ Z[x] be nonzero polynomials with degF (x)
= l ≤ n, degG(x) = m ≤ n, lm ≥ 2. Suppose that F (x) and G(x) have no
common root. Then at least one of the following estimates is true:

(3.2)

(I) 1<cR max(|F (ξ)|, |G(ξ)|)2 max( F , G )m+l−2,

(II) 1<cR max(|F (ξ)| · |F ′(ξ)| · |G′(ξ)|, |G(ξ)| · |F ′(ξ)|2) F m−2 G l−1,

(III) 1<cR max(|G(ξ)| · |F ′(ξ)| · |G′(ξ)|, |F (ξ)| · |G′(ξ)|2) F m−1 G l−2,

where 0 < ξ < 1 and cR = (2n)!((n+ 1)!)2n−2.

P r o o f. Consider the identity of Lemma 3.3. Since the polynomials
F (x), G(x) ∈ Z[x] have no common root, it follows that

(3.3) |R(F,G)| ≥ 1.

We will obtain an upper bound for the absolute value of the determinant
(3.1). Let us expand it with respect to the last column. Obviously, any
nonzero term contains the factor F (ξ) or G(ξ). We distinguish two cases.

Case A. Suppose that some nonzero term contains F (ξ)2, G(ξ)2 or
F (ξ)G(ξ). Using the inequality

(3.4) |L(k)(ξ)| < (n+ 1)! L ,

where degL(x) ≤ n, we estimate other factors. Hence this term has absolute
value at most

((n+ 1)!)m+l−2 max(|F (ξ)|, |G(ξ)|)2 max( F , G )m+l−2.
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Case B. Suppose that some nonzero term contains F (ξ) or G(ξ) together
with the other factors F (i)(ξ)/i! or G(j)(ξ)/j! where 1 ≤ i ≤ l, 1 ≤ j ≤ m.
If we expand the determinant (3.1) according to the last three columns,
we see that the term considered contains one of the following expressions:
F (ξ)F ′(ξ)G′(ξ), G(ξ)F ′(ξ)2, G(ξ)F ′(ξ)G′(ξ) or F (ξ)G′(ξ)2. Using (3.4) we
conclude that this term has absolute value at most

((n+ 1)!)m+l−3 max(|F (ξ)| · |F ′(ξ)| · |G′(ξ)|, |G(ξ)| · |F ′(ξ)|2) F m−2 G l−1

or

((n+ 1)!)m+l−3 max(|G(ξ)| · |F ′(ξ)| · |G′(ξ)|, |F (ξ)| · |G′(ξ)|2) F m−1 G l−2.

Finally, when expanding the determinant (3.1), we obtain (l+m)! terms.
Combining this information with (3.3), we get (3.2)(I)–(III).

The following two lemmas are well known.

Lemma 3.5 (see [4], [5]). Let R(x), R1(x), . . . , Rν(x) be polynomials such
that R(x) = R1(x) . . . Rν(x), degR(x) = l. Then

(3.5) e−l R1 . . . Rν ≤ R ≤ (l + 1)ν−1 R1 . . . Rν .

Lemma 3.6. Let F (x) and G(x) be polynomials with integer coefficients
of degree ≤ l. Let F (x) be a polynomial irreducible over Z with F > el G .
Then F (x) and G(x) have no common root.

P r o o f. Assume that F (x) and G(x) have a common root. Then there
exists a polynomial F̃ (x) ∈ Z[x], F̃ (x) 6≡ 1, dividing both F (x) and G(x).
Since F (x) is irreducible, we have F̃ (x)≡F (x). Therefore G(x) = F (x)G̃(x),

where G̃(x) ∈ Z[x]. By (3.5) we have G ≥ e−l F G̃ ≥ e−l F .

Lemma 3.7. Consider the following system of inequalities:

(3.6)





|a11x1 + . . .+ a1nxn| ≤ A1,
|a21x1 + . . .+ a2nxn| ≤ A2,
. . . . . . . . . . . . . . . . . . . . . . . . . . .
|an1x1 + . . .+ annxn| ≤ An,

where aij ∈ R, Ai ∈ R+, 1 ≤ i, j ≤ n. Suppose that

(I) for any 1≤j ≤ n, max2≤i≤n(|aij |)≤Bj ,min1≤j≤n−1(Bj)≥Bn > 0;
(II) max1≤j≤n−1(|a1j |) ≤ |a1n|, a1n 6= 0;

(III) max2≤ν≤n−1(Aν) ≤ An;
(IV) |∆| > cd |a1n|B1 . . . Bn−1, where ∆ is the determinant of the system

(3.6), and cd is some positive constant.

Then for any solution (x̃1, . . . , x̃n) ∈ Rn of the system (3.6) the following
estimates hold :

(3.7) |x̃l| < n!
cd
B−1
l max

(
A1Bn
|a1n| , An

)
(1 ≤ l ≤ n).
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P r o o f. Using the Theorem of Cramer, we have

(3.8) |x̃l| = |∆l|
|∆| (1 ≤ l ≤ n),

where ∆l is the determinant obtained from ∆ by replacing lth column with
[θ1A1, . . . , θnAn]T, |θν | ≤ 1, 1 ≤ ν ≤ n.

When expanding ∆l with respect to the lth column, we get

(3.9) |∆l| ≤ nmax(A1|M1|, . . . , An|Mn|),
where Mν are the minors corresponding to θνAν for 1 ≤ ν ≤ n.

By (I) we have

(3.10) |M1| ≤ (n− 1)!B1 . . . BnB
−1
l .

Let us show that

(3.11) |Mν | ≤ (n− 1)!|a1n|B1 . . . Bn−1B
−1
l (2 ≤ ν ≤ n).

In fact, by (II) the absolute values of a1j from the first line of the minors
Mν , 2 ≤ ν ≤ n, are less than or equal to |a1n|. On the other hand, by (I) the
absolute values of any minors mνj of Mν which correspond to the elements
a1j are less than or equal to (n− 2)!B1 . . . Bn−1B

−1
l . This gives (3.11).

Using (III) and (3.9)–(3.11), we get

(3.12) |∆l| ≤ n!B1 . . . Bn−1B
−1
l max(A1Bn, An|a1n|).

By substituting the estimate (IV) and (3.12) into (3.8), we obtain (3.7).

4. Construction of Q̃(0)
i (x), . . . , Q̃(n−1)

i (x). Fix some h ∈ N, h > H̃0.
We consider the finite set of polynomials P (x) ∈ Z[x] with degP (x) ≤ n,
P ≤ h. Their values at ξ are distinct. Hence we can choose a unique (up to
sign) polynomial P̃0(x) ∈ Z[x], P̃0(x) 6≡ 0, with minimal absolute value at ξ.

Put

cp = n! ξ−n
2
.

We now increase h until a polynomial P̃1(x) ∈ Z[x], P̃1(x) 6≡ 0, of

degree ≤ n with P̃1 ≤ h, |P̃1(ξ)| < c−1
p |P̃0(ξ)| appears. If there are several

polynomials of this kind, pick one with minimal absolute value at ξ. It is

clear that H̃0 < P̃1 . We increase h again until a polynomial P̃2(x) ∈ Z[x]

of degree ≤ n with H̃0 < P̃1 < P̃2 ≤ h, |P̃2(ξ)| < c−1
p |P̃1(ξ)| appears. By

repeating this process, we obtain a sequence of polynomials P̃i(x) ∈ Z[x],
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deg P̃i(x) ≤ n, such that

(4.1)

(i) 1/2 > |P̃1(ξ)| > cp|P̃2(ξ)| > . . . > ck−1
p |P̃k(ξ)| > . . . ,

(ii) H̃0 < P̃1 < P̃2 < . . . < P̃k < . . . ,

(iii) ∀P (x) ∈ Z[x], P (x) 6≡ 0, degP (x) ≤ n, P < P̃k+1 ,

|P (ξ)|≥c−1
p |P̃k(ξ)|.

For any natural i we set

Q̃
(0)
i (x) = P̃i(x).

Write Q̃(0)
i (x) = a

(0)
n xn + . . .+ a

(0)
1 x+ a

(0)
0 . By Lemma 3.1 there is an index

j1 ∈ {1, . . . , n} such that |a(0)
j1
| = Q̃

(0)
i .

We successively construct nonzero polynomials Q̃(0)
i (x), . . . , Q̃(n−1)

i (x) in
Z[x] of degree ≤ n and distinct integers j1, . . . , jn from {1, . . . , n}. We write
Q̃

(l)
i (x) = a

(l)
n xn + . . .+ a

(l)
1 x+ a

(l)
0 , 0 ≤ l ≤ n− 1. The polynomials Q̃(l)

i (x)
and the numbers jl+1 (which we call the indices of the Q̃i-system) will have
the following properties:

(1l) |Q̃(l)
i (ξ)| < c−1

p |P̃i−1(ξ)|,

(2l) |a(l)
jµ
| ≤ c−1

p Q̃
(µ−1)
i (µ = 1, . . . , l),

(3l) |a(l)
jl+1
| > ξn−1 Q̃

(l)
i

(if l = 0, we have (1l), (3l) only). Moreover, if for some 0 ≤ l ≤ n − 1 any
nonzero polynomial Q(x) = anx

n + . . .+ a1x+ a0 ∈ Z[x] satisfies

|Q(ξ)| < c−1
p |P̃i−1(ξ)|,

|ajµ | ≤ c−1
p Q̃

(µ−1)
i (µ = 1, . . . , l)

(if l = 0, we have |Q(ξ)| < c−1
p |P̃i−1(ξ)| only), then Q ≥ Q̃

(l)
i . In other

words, Q̃(l)
i (x) has minimum height among nonzero polynomials in Z[x] with

(1l), (2l). We call this the minimality property of Q̃(l)
i (x), 0 ≤ l ≤ n− 1.

The pair (Q̃(0)
i (x), j1) has the desired properties. Suppose 0 ≤ t <

n − 1, and (Q̃(0)
i (x), j1), . . . , (Q̃(t)

i (x), jt+1) have been constructed so that
(1l), (2l), (3l) with l = 0, . . . , t and the minimality property hold, and j1, . . .
. . . , jt+1 are distinct integers in {1, . . . , n}. By Minkowski’s Theorem on lin-
ear forms there is a nonzero polynomial Q(x) = anx

n+ . . .+a1x+a0 ∈ Z[x]
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having

(4.2)

|Q(ξ)| < c−1
p |P̃i−1(ξ)|,

|ajµ | ≤ c−1
p Q̃

(µ−1)
i (µ = 1, . . . , t+ 1),

|akη |≤
(
c−t−2
p |P̃i−1(ξ)|

t∏
ν=0

Q̃
(ν)
i

)−1/(n−t−1)
(η=1, . . . , n− t− 1),

where {k1, . . . , kn−t−1} = {1, . . . , n} \ {j1, . . . , jt+1}.
If there are several polynomials of this kind, pick one whose height is

minimal. We denote it by Q̃(t+1)
i (x). By Lemma 3.1, there is an index j in

{1, . . . , n} such that |a(t+1)
j | = Q̃

(t+1)
i . On the other hand, by the minimal-

ity property of Q̃(l)
i (x) we have Q̃

(l)
i ≤ Q̃

(t+1)
i for any 0 ≤ l ≤ t. Hence

|a(t+1)
jµ
| < Q̃

(µ−1)
i ≤ Q̃

(t+1)
i for µ = 1, . . . , t + 1. Therefore j is distinct

from j1, . . . , jt+1. We set jt+2 = j. Then (1t+1), (2t+1), (3t+1), and the min-
imality property hold for Q̃(t+1)

i (x). In Section 5 we will slightly modify the
construction of the polynomials Q(0)

i (x), . . . , Q(n−1)
i (x) (see (5.7) and Re-

mark 5.8). Therefore we use the inequality |a(l)
jl+1
| > ξn−1 Q̃

(l)
i instead of

|a(l)
jl+1
| = Q̃

(l)
i , 0 ≤ l ≤ n− 1.

In this way (Q̃(0)
i (x), j1), . . . , (Q̃(n−1)

i (x), jn) can be constructed. Clearly

(4.3) Q̃
(0)
i ≤ Q̃

(1)
i ≤ . . . ≤ Q̃

(n−1)
i .

5. Properties of Q̃(0)
i (x), . . . , Q̃(n−1)

i (x). Using Lemma 3.1, the last two
inequalities from (4.2), and (4.3), we deduce

(5.1) Q̃
(l)
i ≤ c(l+1)/(n−l)

p

(
|P̃i−1(ξ)|

l−1∏
ν=0

Q̃
(ν)
i

)−1/(n−l)
(1 ≤ l ≤ n− 1).

Applying (4.3) to (5.1) with l = n− 1, we get

(5.2) Q̃
(n−1)
i ≤ cnp |P̃i−1(ξ)|−1

( n−2∏
ν=0

Q̃
(ν)
i

)−1
≤ cnp |P̃i−1(ξ)|−1 P̃i

−n+1
.

Similarly, (4.3) and (5.1) imply that

Q̃
(l)
i ≤ Q̃

(n−2)
i ≤ c(n−1)/2

p |P̃i−1(ξ)|−1/2
( n−3∏
ν=0

Q̃
(ν)
i

)−1/2
(5.3)

≤ c(n−1)/2
p |P̃i−1(ξ)|−1/2 P̃i

1−n/2
(0 ≤ l ≤ n− 2).
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Lemma 5.1. Let i be any natural number > 1. Suppose that for some
0 ≤ l ≤ n− 1 the polynomial Q̃(l)

i (x) satisfies the conditions of Lemma 3.2.
Then

(5.4) Q̃
(l)
i

−1
< (cT cp ξn−1)−1/(A−1)|P̃i−1(ξ)|1/(A−1).

P r o o f. By Lemma 3.2 we obtain Q̃
(l)
i < ξ−n+1|Q̃(l)′

i (ξ)|. On the other

hand, Q̃
(l)
i > H̃0. Therefore by (2.3) and (1l) we get

cT Q̃
(l)
i

−A
<
|Q̃(l)

i (ξ)|
|Q̃(l)′

i (ξ)|
< ξ−n+1 |Q̃(l)

i (ξ)|
Q̃

(l)
i

< c−1
p ξ−n+1|P̃i−1(ξ)| Q̃(l)

i

−1
,

hence

Q̃
(l)
i

−A+1
< c−1

T c−1
p ξ−n+1|P̃i−1(ξ)|,

and the result follows.

Define

cM = min
P (x)∈Z[x], P (x)6≡0

degP (x)≤n, P ≤en P̃1

(|P (ξ)|),(5.5)

H0 = c−30n
M c15n

R e60n2
P̃1

n

.(5.6)

By (4.1)(ii) there exists an index k0 ∈ N such that P̃k0 ≤ H0 < P̃k0+1 .
From now on

(5.7) Q
(l)
i (x) = Q̃

(l)
k0+i(x) for any i ∈ N and l = 0, . . . , n− 1.

In particular,

Pi(x) = P̃k0+i(x) for any i ∈ N.
Lemma 5.2. For any natural i > 1 we have

(5.8)
(I) |P̃i−1(ξ)| < P̃i

−(n−1)(A−1)/(A−2)
,

(II)
n−2∏
ν=0

Q
(ν)
i < c−np |Pi−1(ξ)|−(A−2)/(A−1).

P r o o f. It follows from (2l) with l = n−1 and (4.3) that the polynomials
Q̃

(n−1)
i (x) satisfy the conditions of Lemma 3.2. Substituting (5.2) into (5.4),

we get
(
cnp |P̃i−1(ξ)|−1 P̃i

−n+1)−1
< (cT cpξn−1)−1/(A−1)|P̃i−1(ξ)|1/(A−1),

hence

|P̃i−1(ξ)|(A−2)/(A−1) < cnp (cT cpξn−1)−1/(A−1) P̃i
−n+1

,
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and so, by the definitions of cT and cp, we obtain

|P̃i−1(ξ)|(A−2)/(A−1) < P̃i
−n+1

,

which gives (5.8)(I).
Similarly, substituting (5.1) with l = n − 1 into (5.4) and keeping (5.7)

in mind, we deduce

(
cnp |Pi−1(ξ)|−1

( n−2∏
ν=0

Q
(ν)
i

)−1)−1
< (cT cpξn−1)−1/(A−1)|Pi−1(ξ)|1/(A−1),

hence
n−2∏
ν=0

Q
(ν)
i < cnp (cT cpξn−1)−1/(A−1)|Pi−1(ξ)|−(A−2)/(A−1).

Using the definitions of cT and cp, we get (5.8)(II).

Corollary 5.3. For any natural i > 1 we have

(5.9)
(I) |Pi−1(ξ)| < Pi

−(n−1)(A−1)/(A−2),

(II) |Pi−1(ξ)| < Pi
−n.

P r o o f. The inequality (5.9)(I) immediately follows from (5.7) and
(5.8)(I). To obtain (5.9)(II) we must use (5.9)(I) and the inequality A <
n+ 1 :

|Pi−1(ξ)| < Pi
−(n−1)(A−1)/(A−2) < Pi

−(n−1)(n+1−1)/(n+1−2) = Pi
−n.

Lemma 5.4. For any i ∈ N the polynomials Pi(x) are irreducible over Z
and have degree n.

P r o o f. Assume that Pi(x) = Pi1(x) . . . Piγ (x), 1 ≤ γ ≤ n, where
Pi1(x), . . . , Piγ (x) are irreducible over Z, have degree < n and integer coef-

ficients. Let the heights of Pi1(x), . . . , Piλ(x) be greater than en P̃1 and the

heights of the others be at most en P̃1 . It is obvious that λ ≤ n. We now
show that λ ≥ 1. In fact, assume that the heights of Pi1(x), . . . , Piγ (x) do

not exceed en P̃1 . Then by (3.5) we get

Pi ≤ (n+ 1)n−1 Pi1 . . . Piγ ≤ (n+ 1)n−1
(
en P̃1

)n
,

hence Pi ≤ (n+ 1)n−1 en
2
P̃1

n

. On the other hand, (5.6) and (5.7) yield

(5.10) Pi > c−30n
M c15n

R e60n2
P̃1

n

for any i ∈ N. This gives a contradiction.
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We now prove that there exists an index 1 ≤ j0 ≤ λ such that

(5.11) |Pij0 (ξ)| < c
−1/2
R Pij0

−(n−1)(A−1)/(A−2)+1/30.

Assume the contrary. Then by (5.9)(I), the definition of cM , (3.5), and
(5.10) we have

Pi+1
−(n−1)(A−1)/(A−2)

> |Pi(ξ)| =
γ∏
ν=1

|Piν (ξ)| ≥ cγ−λM

λ∏
ν=1

|Piν (ξ)|

≥ cγ−λM c
−λ/2
R

( λ∏
ν=1

Piν

)−(n−1)(A−1)/(A−2)+1/30

> cnMc
−n/2
R (en Pi )−(n−1)(A−1)/(A−2)+1/30

= cnMc
−n/2
R e−n(n−1)(A−1)/(A−2)+n/30 Pi

1/30 Pi
−(n−1)(A−1)/(A−2)

> Pi
−(n−1)(A−1)/(A−2),

which is impossible.

Since 1 ≤ j0 ≤ λ, we have Pij0 > en P̃1 . Therefore there exists an
index k ∈ N such that

(5.12) en P̃k < Pij0 ≤ en P̃k+1 .

Combining (5.8)(I) with (5.12), then using the inequality Pij0 > H̃0 >

c15
R e

60n2
, we obtain

|P̃k(ξ)| < P̃k+1

−(n−1)(A−1)/(A−2)
≤ (e−n Pij0 )−(n−1)(A−1)/(A−2)(5.13)

= en(n−1)(A−1)/(A−2) Pij0
−1/30 Pij0

−(n−1)(A−1)/(A−2)+1/30

< c
−1/2
R Pij0

−(n−1)(A−1)/(A−2)+1/30.

Since Pij0 > en P̃k and Pij0 (x) is irreducible over Z, by Lemma 3.6 the

polynomials P̃k(x) and Pij0 (x) have no common root. Moreover, deg P̃k(x) ≥
2 and degPij0 (x) ≥ 2, since otherwise we get

|P̃k(ξ)|
|P̃ ′k(ξ)|

=
|P̃k(ξ)|
P̃k

< P̃k
−(n−1)(A−1)/(A−2)+1/30−1

,

and a simple calculation shows that

−(n− 1)
A− 1
A− 2

− 29
30

< −A,



12 K. I. Tishchenko

hence
|P̃k(ξ)|
|P̃ ′k(ξ)|

< P̃k
−A
,

which contradicts (2.3). The same holds for Pij0 (x). Thus, we can apply

(3.2) to P̃k(x) and Pij0 (x).

(a) Substituting (5.11) and (5.13) into (3.2)(I), then using (5.12), we
deduce

1 < cR max(|P̃k(ξ)|, |Pij0 (ξ)|)2 max
(
P̃k , Pij0

)2n−3

< cRc
−1
R Pij0

−2(n−1)(A−1)/(A−2)+1/15 Pij0
2n−3

= Pij0
−2(n−1)(A−1)/(A−2)+2n−44/15.

Here we have used the inequalities deg P̃k(x) ≤ n, degPij0 (x) ≤ n− 1. It is
easy to verify that

−2(n− 1)
A− 1
A− 2

+ 2n− 44
15

< 0 for n = 3, . . . , 7,

and we obtain a contradiction.
Since min( P̃k , Pij0 ) > H̃0, we can apply (2.3) to the polynomials

P̃k(x) and Pij0 (x).
(b) Applying (2.3) to (3.2)(II)–(III), then using (5.11)–(5.13) and the

definitions of cT and cR, we have

1 < cRc
−2
T max(|P̃k(ξ)|, |Pij0 (ξ)|)3 max

(
P̃k , Pij0

)2A
max

(
P̃k , Pij0

)2n−4

< cRc
−3/2
R c−2

T Pij0
−3(n−1)(A−1)/(A−2)+1/10 Pij0

2A+2n−4

< Pij0
−3(n−1)(A−1)/(A−2)+2A+2n−39/10.

Since

−3(n− 1)
A− 1
A− 2

+ 2A+ 2n− 39
10

< 0 for n = 3, . . . , 7,

we come to a contradiction again. This completes the proof.

Lemma 5.5. For any natural i > 1 we have

(5.14) |Pi−1(ξ)|−1 < Pi
(2A+n−2)/3 Pi−1

(n−1)/3.

P r o o f. By Lemma 5.4 the polynomials Pi−1(x) and Pi(x) are irreducible
over Z and have degree n. Therefore they have no common root. Moreover,
degPi−1(x) ≥ 2 and degPi(x) ≥ 2, since otherwise by (5.9)(II) we get

|Pi(ξ)|
|P ′i (ξ)|

=
|Pi(ξ)|
Pi

< Pi
−n−1,
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which contradicts (2.3). The same holds for Pi−1(x). Thus, we can apply
(3.2) to Pi−1(x) and Pi(x).

(a) Substituting (5.9)(II) into (3.2)(I) and using (4.1)(ii), we obtain

1 < cR max(|Pi−1(ξ)|, |Pi(ξ)|)2 max( Pi−1 , Pi )2n−2

< cR Pi
−2n Pi

2n−2 = cR Pi
−2,

hence Pi
2 < cR. This gives a contradiction with (5.10).

Since min( Pi−1 , Pi ) > H̃0, we can apply (2.3) to the polynomials
Pi−1(x) and Pi(x).

(b) Applying (2.3) to (3.2)(II), then using (4.1)(i), (4.1)(ii), and the
definitions of cT and cR, we deduce

1 < cR max(|Pi−1(ξ)| · |P ′i−1(ξ)| · |P ′i (ξ)|, |Pi(ξ)| · |P ′i−1(ξ)|2) Pi−1
n−2 Pi

n−1

< cRc
−2
T |Pi−1(ξ)|3 Pi−1

A Pi
A Pi−1

n−2 Pi
n−1

= cRc
−2
T |Pi−1(ξ)|3 Pi A+n−1 Pi−1

A+n−2

< |Pi−1(ξ)|3 Pi 2A+n−2 Pi−1
n−1.

(c) Similarly, by (2.3), (3.2)(III), (4.1)(i), (4.1)(ii), and the definitions of
cT and cR, we have

1 < cR max(|Pi(ξ)| · |P ′i−1(ξ)| · |P ′i (ξ)|, |Pi−1(ξ)| · |P ′i (ξ)|2) Pi−1
n−1 Pi

n−2

< cRc
−2
T |Pi−1(ξ)|3 Pi 2A Pi−1

n−1 Pi
n−2

= cRc
−2
T |Pi−1(ξ)|3 Pi 2A+n−2 Pi−1

n−1

< |Pi−1(ξ)|3 Pi 2A+n−2 Pi−1
n−1.

It is easy to see that either one of the above two inequalities gives (5.14).

Lemma 5.6. For any natural i > 1 we have

(5.15)
n−2∏
ν=0

Q
(ν)
i < c−np |Pi−1(ξ)|−1/2 Pi

−1+n/2.

P r o o f. From (5.8)(II) we deduce

(5.16)
n−2∏
ν=0

Q
(ν)
i

< c−np |Pi−1(ξ)|−(A−2)/(A−1)

≡ c−np |Pi−1(ξ)|−1/2 Pi
−1+n/2|Pi−1(ξ)|−(A−3)/(2(A−1)) Pi

1−n/2.

We now prove that

(5.17) |Pi−1(ξ)|−(A−3)/(2(A−1)) Pi
1−n/2 < 1.
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If the result were false, we should have

|Pi−1(ξ)| ≤ Pi
−(n−2)(A−1)/(A−3).

Substituting this into (5.14), we get

1 < |Pi−1(ξ)| Pi (2A+n−2)/3 Pi−1
(n−1)/3

≤ Pi
−(n−2)(A−1)/(A−3)+(2A+n−2)/3 Pi−1

(n−1)/3

< Pi
−(n−2)(A−1)/(A−3)+(2A+n−2)/3+(n−1)/3.

A simple calculation shows that

− (n− 2)(A− 1)
A− 3

+
2A+ 2n− 3

3
< 0 for n = 3, . . . , 7,

and we obtain a contradiction. This gives (5.17). Finally, (5.16) and (5.17)
imply (5.15).

Lemma 5.7. Let i be any natural number > 1. Then for any 0 ≤ l ≤ n−2
there exist at least two indices {k1, k2} ⊂ {1, . . . , n} such that

|a(l)
kν
| > ξn−1 Q

(l)
i (ν = 1, 2).

P r o o f. By Lemma 3.1 for any 0 ≤ l ≤ n − 1 there exists an index

k1 ∈ {1, . . . , n} such that |a(l)
k1
| = Q

(l)
i .

Fix some 0 ≤ l ≤ n − 2 and suppose that |a(l)
k | ≤ ξn−1 Q

(l)
i for all

k ∈ {1, . . . , n} \ {k1}. Then the polynomial Q(l)
i (x) satisfies the conditions

of Lemma 3.2. Therefore we can apply Lemma 5.1 to Q(l)
i (x). Substituting

(5.3) into (5.4) and keeping (5.7) in mind, we obtain

(c(n−1)/2
p |Pi−1(ξ)|−1/2 Pi

1−n/2)−1 < (cT cpξn−1)−1/(A−1)|Pi−1(ξ)|1/(A−1).

This inequality can be written as

|Pi−1(ξ)|(A−3)/(2(A−1)) Pi
−1+n/2 < (cT cpξn−1)−1/(A−1)c(n−1)/2

p ,

and so, by the definitions of cT and cp, we get

|Pi−1(ξ)|(A−3)/(2(A−1)) Pi
−1+n/2 < 1,

which contradicts (5.17).

Remark 5.8. We now can slightly modify the construction of the poly-
nomials Q(0)

i (x), . . . , Q(n−1)
i (x). By Lemma 5.7 there are at least two indices

{k1, k2} ⊂ {1, . . . , n} such that

|a(0)
kν
| > ξn−1 Q

(0)
i (ν = 1, 2).

We may suppose that k1 ∈ {1, . . . , n−1} and set j1 = k1. We now construct
(Q(1)

i (x), j2), . . . , (Q(n−1)
i (x), jn) with this (possibly new) value of j1. Again
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there are at least two indices {k1, k2} ⊂ {1, . . . , n} with

|a(1)
kν
| > ξn−1 Q

(1)
i (ν = 1, 2).

Since |a(1)
j1
| ≤ c−1

p Q
(0)
i < ξn−1 Q

(1)
i , these indices are distinct from j1.

So, we can pick j2 ∈ {1, . . . , n − 1} \ {j1}, etc. In this way we can arrange
j1, . . . , jn−1 so that {j1, . . . , jn−1} = {1, . . . , n − 1}. Below, we assume this
is true.

6. Three statements. The following results are of great importance
for this paper.

Statement 6.1. Let i be any natural number > 1. Write

Pi−1(x) = bnx
n + . . .+ b1x+ b0.

Then the polynomials Pi−1(x), Q
(0)
i (x), . . . , Q(n−2)

i (x) are linearly inde-
pendent and also

(6.1) |∆| =

∥∥∥∥∥∥∥∥

a
(n−2)
j1

. . . a
(n−2)
jn−1

Q
(n−2)
i (ξ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a

(0)
j1

. . . a
(0)
jn−1

Q
(0)
i (ξ)

bj1 . . . bjn−1 Pi−1(ξ)

∥∥∥∥∥∥∥∥
> ξn

2 |Pi−1(ξ)|
n−2∏
ν=0

Q
(ν)
i ,

where j1, . . . , jn−1 are the indices of the Qi-system.

P r o o f. From this moment on, we will take into account the notation
(5.7) when using the formulas from Section 4. By (2l) with 1 ≤ l ≤ n − 2
and (4.3) we have

|a(l)
jµ
| ≤ c−1

p Q
(µ−1)
i ≤ c−1

p Q
(l)
i (1 ≤ µ ≤ l),

hence ∥∥∥∥∥∥
a

(n−2)
j1

. . . a
(n−2)
jn−1

. . . . . . . . . . . . . . . . . . .
a

(0)
j1

. . . a
(0)
jn−1

∥∥∥∥∥∥
≥
n−2∏
ν=0

|a(ν)
jν+1
| − (n− 1)!

cp

n−2∏
ν=0

Q
(ν)
i .

Applying (3l) with l = 0, . . . , n− 2 to
∏n−2
ν=0 |a(ν)

jν+1
|, we obtain

∥∥∥∥∥∥
a

(n−2)
j1

. . . a
(n−2)
jn−1

. . . . . . . . . . . . . . . . . . .
a

(0)
j1

. . . a
(0)
jn−1

∥∥∥∥∥∥
≥ ξ(n−1)2

n−2∏
ν=0

Q
(ν)
i − (n− 1)!

cp

n−2∏
ν=0

Q
(ν)
i(6.2)

=
(
ξ(n−1)2 − (n− 1)!

cp

) n−2∏
ν=0

Q
(ν)
i .

On the other hand, by (4.1)(ii) and (4.3) the absolute values of other
minors from the first n − 1 columns of the determinant ∆ are less than or
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equal to (n− 1)!
∏n−2
ν=0 Q

(ν)
i . Hence by (1l) with l = 0, . . . , n− 2, (6.2) and

the definition of cp, we get

|∆| >
(
ξ(n−1)2 − (n− 1)!

cp

)
|Pi−1(ξ)|

n−2∏
ν=0

Q
(ν)
i

− (n− 1)!
( n−2∑
ν=0

|Q(ν)
i (ξ)|

) n−2∏
ν=0

Q
(ν)
i

>

(
ξ(n−1)2 − (n− 1)!

cp

)
|Pi−1(ξ)|

n−2∏
ν=0

Q
(ν)
i

− (n− 1)!(n− 1)
cp

|Pi−1(ξ)|
n−2∏
ν=0

Q
(ν)
i

> ξn
2 |Pi−1(ξ)|

n−2∏
ν=0

Q
(ν)
i .

This gives (6.1). Finally, since |∆| > 0, the polynomials Pi−1(x), Q(0)
i (x), . . .

. . . , Q
(n−2)
i (x) are linearly independent.

Statement 6.2. Let i and τ be natural numbers such that

(6.3) Pi−1 ≤ ch Pτ , 1 ≤ τ ≤ i− 1, i > 1,

where
ch = 4 (n!)2 c2np .

Let also L(x) be a nonzero polynomial satisfying

|L(ξ)| < |Pi−1(ξ)|1/2 Pi −1+n/2 Pτ
−n+1,(6.4)

|L′(ξ)| < |Pi−1(ξ)|1−A/2 Pi (n−2)(1−A/2) Pτ
−n+2,(6.5)

L < ξ−n+1|L′(ξ)|.(6.6)

Then

(6.7)
|L(ξ)|
|L′(ξ)| < (ch ξ−1)(n−1)A L −A.

P r o o f. By (6.4), (6.3), (5.9)(II), and (5.14) we get

|L(ξ)| < |Pi−1(ξ)|1/2 Pi −1+n/2 Pτ
−n+1(6.8)

≤ cn−1
h |Pi−1(ξ)|1/2 Pi −1+n/2 Pi−1

−n+1

= cn−1
h |Pi−1(ξ)|1/2+α1−α2 |Pi−1(ξ)|−α1 |Pi−1(ξ)|α2

× Pi
−1+n/2 Pi−1

−n+1

< cn−1
h |Pi−1(ξ)|1/2+α1−α2 Pi

(2A+n−2)α1/3 Pi−1
(n−1)α1/3

× Pi
−nα2 Pi

−1+n/2 Pi−1
−n+1
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= cn−1
h |Pi−1(ξ)|1/2+α1−α2 Pi

(2A+n−2)α1/3−nα2−1+n/2

× Pi−1
(n−1)α1/3−n+1,

where α1 and α2 are any nonnegative constants. Put

(6.9)
α1 =

3(n− 2)(A− 1)
n− 1

+ 3,

α2 =
7
2

+
3(n− 2)(A− 1)

n− 1
−
(
A

2
− 1
)

(A− 1).

It is easy to verify that for n = 3, . . . , 7 the constants α1 and α2 are positive.
By (6.9) we have

(6.10)
1
2

+α1−α2 =
(
A

2
−1
)

(A−1),
n− 1

3
α1−n+1 = (n−2)(A−1),

and

2A+ n− 2
3

α1 − nα2 − 1 +
n

2

=
n2A2 + 3nA2 − 7n2A+ 7nA− 8A2 + 12A+ 2n2 − 8n− 2

2(n− 1)

≡ 2((3n−5)A2−(2n2+n−9)A−n−3)+(n−1)(n−2)(A−2)(A−1)
2(n− 1)

,

hence by (1.3) we obtain

(6.11)
2A+ n− 2

3
α1 − nα2 − 1 +

n

2

=
(n− 1)(n− 2)(A− 2)(A− 1)

2(n− 1)
= (n− 2)

(
A

2
− 1
)

(A− 1).

Finally, (6.8), (6.10), and (6.11) imply that

|L(ξ)| < cn−1
h |Pi−1(ξ)|(A/2−1)(A−1)(6.12)

× Pi
(n−2)(A/2−1)(A−1) Pi−1

(n−2)(A−1).

On the other hand, if we raise both sides of (6.5) to the power −A+ 1 and
apply (6.3), we get

|L′(ξ)|−A+1 > |Pi−1(ξ)|(A/2−1)(A−1) Pi
(n−2)(A/2−1)(A−1) Pτ

(n−2)(A−1)

≥ c−(n−2)(A−1)
h |Pi−1(ξ)|(A/2−1)(A−1)

× Pi
(n−2)(A/2−1)(A−1) Pi−1

(n−2)(A−1).

Combining this with (6.12), we find that |L(ξ)| < c
(n−1)A
h |L′(ξ)|−A+1. We

now divide both sides of this inequality by |L′(ξ)| and apply (6.6):
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|L(ξ)|
|L′(ξ)| < c

(n−1)A
h |L′(ξ)|−A < c

(n−1)A
h ξ−(n−1)A L −A,

which gives (6.7).

Statement 6.3. Let i and τ be as in Statement 6.2. Let also A1, . . . , An
be positive numbers such that

n∏
ν=1

Aν ≥ n!|Pi−1(ξ)|
n−2∏
ν=0

Q
(ν)
i ,(6.13)

A1 ≤ cnp |Pi−1(ξ)|
n−2∏
ν=0

Q
(ν)
i Pτ

−n+1,(6.14)

P̃1 ≤ A2 ≤ . . . ≤ An ≤ c(n−3)/2
p |Pi−1(ξ)|−1/2 Pi

−1+n/2 Pτ
−n+2.(6.15)

Then there exists a nonzero polynomial L(x) = cnx
n + . . . + c1x + c0 with

integer coefficients which satisfies

|L(ξ)| < A1,(6.16)

|ckν | ≤ Aν+1 (1 ≤ ν ≤ n− 1),(6.17)

L < ξ−n+1An,(6.18)

where {k1, . . . , kn−1} = {1, . . . , n− 1}.
P r o o f. First we note that by (5.9)(II), (6.3), and (4.1)(ii) we obtain

P̃1 ≤ |Pi−1(ξ)|−1/2 Pi
−1+n/2 Pτ

−n+2,

so (6.15) is correct.
Consider the following system of inequalities:

(6.19)





∣∣∣
n−2∑
ν=0

Q
(ν)
i (ξ)xν + Pi−1(ξ)xn−1

∣∣∣ < A1,

∣∣∣
n−2∑
ν=0

a
(ν)
k1
xν + bk1xn−1

∣∣∣ ≤ A2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∣∣∣
n−2∑
ν=0

a
(ν)
kn−1

xν + bkn−1xn−1

∣∣∣ ≤ An.

We now prove that

(6.20) |∆| =

∥∥∥∥∥∥∥∥∥∥

Q
(0)
i (ξ) . . . Q

(n−2)
i (ξ) Pi−1(ξ)

a
(0)
k1

. . . a
(n−2)
k1

bk1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a
(0)
kn−1

. . . a
(n−2)
kn−1

bkn−1

∥∥∥∥∥∥∥∥∥∥

≤n!|Pi−1(ξ)|
n−2∏
ν=0

Q
(ν)
i .
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In fact, it follows from (1l) with l = 0, . . . , n− 2 that the entries of the first
line of the determinant ∆ are at most |Pi−1(ξ)| in absolute value. On the
other hand, (4.1)(ii) and (4.3) imply that any minor of the other n− 1 lines

has absolute value at most (n− 1)!
∏n−2
ν=0 Q

(ν)
i . This gives (6.20).

Thanks to (6.13), (6.20), and Minkowski’s Theorem on linear forms there
exists a nonzero integer solution (x̃0, . . . , x̃n−1) ∈ Zn of (6.19). Using Re-
mark 5.8, we have {k1, . . . , kn−1} = {j1, . . . , jn−1}, where j1, . . . , jn−1 are
the indices of the Qi-system. Therefore we can apply (6.1) to the determi-
nant ∆. It follows from (1l) with l = 0, . . . , n− 2, (4.1)(ii), (4.3), (6.1), and
(6.15) that the system (6.19) satisfies the conditions of Lemma 3.7. By this
lemma and the definition of cp we have

(6.21)

|x̃ν | ≤ cp max
(

A1 Pi−1

|Pi−1(ξ)| Q(ν)
i

,
An

Q
(ν)
i

)
(ν = 0, . . . , n− 2),

|x̃n−1| ≤ cp max
(

A1

|Pi−1(ξ)| ,
An

Pi−1

)
.

Put

(6.22) L(x) =
n−2∑
ν=0

Q
(ν)
i (x)x̃ν + Pi−1(x)x̃n−1 = cnx

n + . . .+ c1x+ c0.

The polynomials Q(0)
i (x), . . . , Q(n−2)

i (x) and Pi−1(x) have integer coeffi-
cients and by Statement 6.1 are linearly independent. On the other hand,
the solution (x̃0, . . . , x̃n−1) is nonzero and integer. Hence the polynomial
L(x) is nonzero and has integer coefficients as well.

From (6.19) and (6.22) we deduce (6.16) and (6.17). Let us prove (6.18).
We first obtain an upper bound for |L(ξ)| and |L′(ξ)|.

Applying (6.14) to (6.16) and using (5.15), we find that

(6.23) |L(ξ)| < |Pi−1(ξ)|1/2 Pi −1+n/2 Pτ
−n+1.

Using (6.22), (2.3), (6.21), (1l) with l = 0, . . . , n− 2, (4.1)(ii), and (4.3),
we get

|L′(ξ)| ≤
n−2∑
ν=0

|Q(ν)′
i (ξ)| · |x̃ν |+ |P ′i−1(ξ)| · |x̃n−1|(6.24)

≤ c−1
T cp

( n−2∑
ν=0

|Q(ν)
i (ξ)| Q(ν)

i
A max

(
A1 Pi−1

|Pi−1(ξ)| Q(ν)
i

,
An

Q
(ν)
i

)

+ |Pi−1(ξ)| Pi−1
A max

(
A1

|Pi−1(ξ)| ,
An

Pi−1

))



20 K. I. Tishchenko

< c−1
T cp|Pi−1(ξ)|

( n−2∑
ν=0

Q
(ν)
i

A−1 + Pi−1
A−1

)

×max
(
A1 Pi−1

|Pi−1(ξ)| , An
)

< nc−1
T cp|Pi−1(ξ)| Q(n−2)

i
A−1 max

(
A1 Pi−1

|Pi−1(ξ)| , An
)
.

By (6.14), (5.15), and (6.3) we have

A1 Pi−1

|Pi−1(ξ)| ≤ c
n
p

n−2∏
ν=0

Q
(ν)
i Pτ

−n+1 Pi−1(6.25)

< |Pi−1(ξ)|−1/2 Pi
−1+n/2 Pτ

−n+1 Pi−1

≤ ch|Pi−1(ξ)|−1/2 Pi
−1+n/2 Pτ

−n+2.

Substituting (6.15) and (6.25) into (6.24), then using (5.3) and the defi-
nitions of cT , cp and ch, we obtain

|L′(ξ)| < nc−1
T cpch|Pi−1(ξ)|1/2 Q(n−2)

i
A−1 Pi

−1+n/2 Pτ
−n+2(6.26)

< nc−1
T cpchc

(n−1)(A−1)/2
p |Pi−1(ξ)|1/2|Pi−1(ξ)|−(A−1)/2

× Pi
(1−n/2)(A−1) Pi

−1+n/2 Pτ
−n+2

< |Pi−1(ξ)|1−A/2 Pi (n−2)(1−A/2) Pτ
−n+2.

Now we can complete the proof of (6.18). Assume that L ≥ ξ−n+1An.
Hence by (6.15) and (6.17) we have |ckν | ≤ Aν+1 ≤ An ≤ ξn−1 L , ν =
1, . . . , n − 1. Therefore L(x) satisfies the conditions of Lemma 3.2. Thus
L < ξ−n+1|L′(ξ)|. Hence by (6.23) and (6.26) the polynomial L(x) satisfies
the conditions of Statement 6.2. It follows that

|L(ξ)|
|L′(ξ)| < (chξ−1)(n−1)A L −A.

Since L ≥ ξ−n+1An > P̃1 and cT > (chξ−1)(n−1)A, we obtain a contra-
diction with (2.3). Hence L < ξ−n+1An.

Corollary 6.4. For any natural i > 2 we have

(6.27) |Pτ−1(ξ)|
n−2∏
ν=0

Q
(ν)
τ < n! cnp |Pi−1(ξ)|

n−2∏
ν=0

Q
(ν)
i ,

where Pτ−1(x) is the polynomial from (4.1) with Pi−1 ≤ ch Pτ , 1 < τ ≤
i− 1.
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P r o o f. Suppose that

(6.28) |Pτ−1(ξ)|
n−2∏
ν=0

Q
(ν)
τ ≥ n! cnp |Pi−1(ξ)|

n−2∏
ν=0

Q
(ν)
i

for some natural i > 2. Put

A1 = min
(
c−1
p |Pτ−1(ξ)|, cnp |Pi−1(ξ)|

n−2∏
ν=0

Q
(ν)
i Pτ

−n+1
)
,(6.29)

Aν = c−1
p Q

(ν−2)
τ (2 ≤ ν ≤ n).(6.30)

We now prove that A1, . . . , An satisfy the conditions of Statement 6.3.
In fact, if A1 = c−1

p |Pτ−1(ξ)|, then by (6.28)–(6.30) we get

n∏
ν=1

Aν = c−np |Pτ−1(ξ)|
n−2∏
ν=0

Q
(ν)
τ ≥ c−np n! cnp |Pi−1(ξ)|

n−2∏
ν=0

Q
(ν)
i

= n!|Pi−1(ξ)|
n−2∏
ν=0

Q
(ν)
i .

Similarly, if A1 = cnp |Pi−1(ξ)|∏n−2
ν=0 Q

(ν)
i Pτ

−n+1, then by (6.30), (4.3),
and the definition of cp,
n∏
ν=1

Aν = cp|Pi−1(ξ)|
n−2∏
ν=0

Q
(ν)
i Pτ

−n+1
n−2∏
ν=0

Q
(ν)
τ > n!|Pi−1(ξ)|

n−2∏
ν=0

Q
(ν)
i .

By (6.29) we have

A1 ≤ cnp |Pi−1(ξ)|
n−2∏
ν=0

Q
(ν)
i Pτ

−n+1.

Finally, by (6.30) and (5.3) we obtain

An = c−1
p Q

(n−2)
τ ≤ c(n−3)/2

p |Pτ−1(ξ)|−1/2 Pτ
1−n/2(6.31)

= c(n−3)/2
p |Pi−1(ξ)|−1/2 |Pτ−1(ξ)|−1/2

|Pi−1(ξ)|−1/2

× Pi
−1+n/2 Pτ

−1+n/2

Pi −1+n/2
Pτ
−n+2.

Since τ ≤ i− 1, from (6.31), (4.1)(i), and (4.1)(ii) we deduce

An < c(n−3)/2
p |Pi−1(ξ)|−1/2 Pi

−1+n/2 Pτ
−n+2,

hence by (6.30) and (4.3) we get

P̃1 ≤ A2 ≤ . . . ≤ An ≤ c(n−3)/2
p |Pi−1(ξ)|−1/2 Pi

−1+n/2 Pτ
−n+2.
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Thus, A1, . . . , An satisfy the conditions of Statement 6.3. Hence there exists
a nonzero polynomial L(x) = cnx

n + . . .+ c1x+ c0 with integer coefficients
which satisfies

|L(ξ)| < A1 ≤ c−1
p |Pτ−1(ξ)|,

|cjν | ≤ c−1
p Q

(ν−1)
τ (ν = 1, . . . , n− 1),

L < ξ−n+1An = ξ−n+1c−1
p Q

(n−2)
τ < Q

(n−2)
τ ≤ Q

(n−1)
τ ,

where j1, . . . , jn−1 are the indices of the Qτ -system. We obtain a contradic-
tion with the minimality property of Q(n−1)

τ (x). This contradiction proves
Corollary 6.4.

7. Proof of the Theorem. We consider a sequence of natural numbers
1 = m1 < m2 < . . . such that

Pmk+1 ≤ max(ch Pmk , Pmk+1 ) < Pmk+1+1 .

We have

ch Pmk−1+1 ≤ ch Pmk ≤ max(ch Pmk , Pmk+1 ) < Pmk+1+1 ,

hence

Pmk+1+1
−1 < c−1

h Pmk−1+1
−1,

for any natural k > 1. If we multiply these inequalities together for all
1 < k ≤ l, we obtain

(7.1) Pml+1+1
−1 < c

−l/2
h P2

−1,

where l is even. It follows from Corollary 6.4 that for any k ∈ N,

|Pmk(ξ)|
n−2∏
ν=0

Q
(ν)
mk+1 < n!cnp |Pmk+1(ξ)|

n−2∏
ν=0

Q
(ν)
mk+1+1 .

If we multiply these inequalities together for all 1 ≤ k ≤ l, we obtain

|P1(ξ)|
n−2∏
ν=0

Q
(ν)
2 < (n!cnp )l|Pml+1(ξ)|

n−2∏
ν=0

Q
(ν)
ml+1+1 ,

for any l ∈ N. Hence

(7.2) |P1(ξ)| < (n!cnp )l|Pml+1(ξ)|
n−2∏
ν=0

Q
(ν)
ml+1+1 .

Let l be even. We substitute (5.15) into (7.2) and apply first (5.9)(II), then
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(7.1) and the definition of ch:

|P1(ξ)| < (n!cnp )l|Pml+1(ξ)|1/2 Pml+1+1
−1+n/2 < (n!cnp )l Pml+1+1

−1

< (n!cnp )l c−l/2h P2
−1 < (n!cnp )l c−l/2h =

(
1
2

)l
.

Letting l→∞ we come to a contradiction with the boundedness of |P1(ξ)|.
Thus, the assumption

∃H̃0 > 0 ∀Q(x) ∈ Z[x], degQ(x) ≤ n, Q > H̃0,

|Q(ξ)|
|Q′(ξ)| > cT Q

−A,

cannot be true. So neither can (2.1). Hence for any real number 0 < ξ < 1/4
which is not an algebraic number of degree ≤ n, we have

∃c > 0 ∀H̃0 > 0 ∃α ∈ An, H(α) > H̃0, |ξ − α| ≤ cH(α)−A,

and this completes the proof of the Theorem.
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