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0. Introduction. The numbers introduced by Stirling in 1730 in his
Methodus differentialis [11], subsequently called “Stirling numbers” of the
first and second kind, are of the greatest utility in the calculus of finite
differences, in number theory, in the summation of series, in the theory
of algorithms, in the calculation of the Bernstein polynomials [9]. In this
study, we demonstrate some properties of Stirling numbers of the second
kind similar to those satisfied by binomial coefficients; in particular we
show that they satisfy a congruence analogous to that of Lucas, that is to:
(1) =11, (’;) mod p with a = Y7 ja;p',b =1 bips 0 <a; <p-—1,
0 < b; < p—1. Using Proposition 4.1 we give another proof for Kaneko’s
recurrence formula for poly-Bernoulli numbers [10]. Some of the results are
similar to those of Howard [5].

In conclusion, I wish to give my best thanks to the Geometry Group of
the Dipartimento di Matematica Pura ed Applicata and Dipartimento di
Metodi Matematici per le Scienze Applicate of the University of Padova, for
support and help given during the preparation of this work. In particular,
I wish to thank Frank Sullivan for his precious advice and suggestions.

1. Notations and definitions. In this section, we will review various
definitions and notations for Stirling numbers of the second kind. Let s,t
€ N. We set

1 ift=0, s=0,
. 0 ift>0,s=0,
{ }: 0 ift=0,s>0,
5{t—1}+{t—1} if t >0,s>0.
S s—1
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DEFINITION 1.1. The numbers represented by the symbols { i } are called
Stirling numbers of the second kind.

As this note deals only with the Stirling numbers of the second kind, we
will call them simply Stirling numbers. Stirling numbers of the second kind
are also indicated in the literature with other symbols: S(t,s) [3]; &; [6].
The notation used here has been proposed by D. Knuth [4]; following his
advice we may read it as “t bracket s”.

With Definition 1.1 the integers ¢, s are assumed non-negative. Never-
theless, it is useful to simplify notation in all the necessary passages, giving
a value to the number {2} even when s < 0. In this case, we conventionally
put {{} = 0. For (2), = z(z —1)...(z — n + 1), with simple considera-
tions one verifies that z™ = "_, {Z}(w)s Traditionally, this is the way in
which Stirling numbers are introduced [6]. It should be noticed, moreover,
that the Stirling number {Z} is equal to the number of partitions of the set
{1,...,n} into k-blocks [2, 3]. Moreover, Stirling numbers have the following
properties:

1.{t}:01fs>t;
s

2. {z} — ;20(1)f<j>(sj)t.

!
]_
See [6], pages 168 and 169, for demonstrations.

2. Addition formula. As a consequence of
> ()i =0
0<j<i J

and of property 2, we have the following

PROPOSITION 2.1. For each prime number p, p > 2, the Stirling numbers
satisfy

{i)} =0modp foreachi#1, p.
PROPOSITION 2.2 (addition). Let x,t,n € N. Then

W {x:t}_]Zt;)izt%(E)ni(—l)tﬂﬂ‘{t;i}{nfj}.

Proof. The proof is by induction on t. When ¢ = 1, the right hand side
of (1) reduces to
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However, the latter is equal to {**'}. Thus, formula (1) holds when ¢ = 1.
Now it remains to demonstrate that if (1) is true for a natural number ¢ > 1,
then it is also true for ¢ + 1:

r+ 1+t
n

23 (e
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_ izt: <§>ni+1(—1)t+j+i{t;i}{nij}
+Zzt: (Z)ni(—l)t+1+f+i{t+}—i}{nff}

MO ERT Gl I
0 EE (e Y ) e
+zt:-zt:(Z>ni(_1)t+l+f+i{nff}{tJr}_i}+{n_g;_l}-

Ify >z, (5) = 0. Therefore, in the third addend of (2) we can extend
the second sum to i = ¢+ 1, and (2) becomes

2 [(0 ) (vt {5

f=1h=1
(DR CUN BN

t+1

:Z (tz1>nh(—1)t+1+h+f{hff}{t+1f—h}

=1h=1

B )

+

]~

f

~

f=1
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COROLLARY 2.1. If t = p then

(2

This formula has been demonstrated by Becker & Riordan [1], using
another method.
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LEMMA 2.1. Let t,zq,y0 € N. Then
t
yo+tp)| _ t\ [ yo+i
(3) {l‘o—Ftp}_iZ:;(i){l‘o-i—ip}mOdp'
The proof is by induction on ¢ If ¢ = 1, then (3) is true according
to Corollary 2.1. It remains to be shown that if (3) is true for a natural

number ¢ > 1, then it also holds for ¢+ 1. To do this, we can use a procedure
analogous to that used to prove Newton’s Binomial Formula.

REMARK 2.1. This lemma is similar to Theorem 4.2 of Howard [5] in the
case 0 < xg,yo < p.

This lemma, together with an easy induction argument on r, gives a
more elementary proof of Theorem 4.4 of Howard [5].

COROLLARY 2.2. Let i,z,y € N. Then
y+p' y+1 : y
()L e

j=1
3. First approach to the Lucas Theorem

PROPOSITION 3.1. Let zg,y0,5,t € N with 0 < 29 < yo < p — 1,
s<t<p-—1. Then

yot+tp | _ Jyo+t—s t Yo+t—s+1 t
SRE S S (O e (R R

Proof. Let sg =t — s, from Lemma 2.1 it follows that
S
Yo+ip | _ Jyo+sop+sp| _ s\ J Yo+ sop+1
{x0+sp}_{ xo + sp }_§<z>{ xo + ip }mOdp
" (s S Yo+1+ 7
0 0
= . ) S d
33 () (5 N 4855 f o
=0 j=0
W S S Yo +m
_ 0 0
(5) _ZZ<i><m—i>{xo+mp—sop}m0dp‘

i=0 m=i
Addends of (5) which correspond to m > so + 2 are null in view of
property 1 of Section 1, because, in this case, yo + m < zo + (m — sg)p.
Addends for which m < so — 1 are null, since z¢ + (m — so)p < 0. Hence, we
conclude that the second sum in (5) reduces to only the addends for which
m = sg and m = sg + 1:

(6) g{()(_){‘“}+(><+1_>{y++;1}]
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{06 ) s 06as)

If we use Vandermonde’s equality [6] for binomial coefficients, equation
(6) reduces to

s+ so Yo + So n s+ sp Yo+ so+ 1 .
s T s0+1 To+p '

OBSERVATION. With the hypothesis that yo +t — s+ 1 < 2o + p, (4)

reduces to
yot+tp | _ Jyo+t—s|(t
b= () meas

It is useful to notice that this formula is very similar to Lucas’ formula for
binomial coefficients.

REMARK 3.1. In the case r < p the congruence (4) gives the formulas
(4.17) and (4.18) of Howard [5].

4. The Lucas Theorem

ProroSITION 4.1. Let x,y,a,n € N. Then

y+apn . a y+l0
7 = n d p.
(7) { . } 2. (lo,zl,...,zn){m_zklzkpk}mo P

lo+li+..+ln=a

Proof. The proof is by induction on a. First of all, according to Corol-
lary 2.2 formula (7) is true when a = 1. It remains to be shown that if (7)
is true for a natural number a > 1, then it is also true for a + 1:

X
a y+p"+ o
Z <l07ll7'-~7ln>{x_zz1lkpk}m0dp

lo+li+...+lh=a

Z < a )H y+1lo+1 }
lg,ll,...,ln xr — ZZ:llkpk

lo+li+..+lh=a
y+lo } { y+lo }
+ . + " + ...
{ x =Y kp* —p x =Yy bp” = p?
y+lo
+ » ¢ | mod
{ T — Zzzllkpk —-D H P

_ Z a Y + mo
mo, M1, ..., My w—zzzlmkpk

mo+mi+...+mp=a+1
mOfo
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LD

mo+mi+...+mp=a+1
’ITL17£0

+ )
mo+mi+...+mp=a+1
mz#O

DD

mo+mi+...+mp=a+1

my#0
a
mo,mq, ...

mo+mi+...+myp=a+1

a
mo, My, ...

a
mo, My, ...

a
mo, My, ...

y M, ) { T — Zkzlmkp

Y+ mg

)y Mn ) { L= Zzzlmkpk

Y+ mg

)y Mn ) { L= Zﬁzlmkpk

+...

Y+ mg

» M ) { L= Zzzlmw’“

Y+ mo

|
|
|
|

-
D ST (R

mo+mi+...+mp=a+1

+ 2
mop,mq, ..

( a
mo+mi+...+my=a+1

a
+ Z <m0,m1,.

mo+mi+...+mp=a+1
a+1
mo, My, ...

Applying Proposition 4.1 now gives the following theorem.

m Yy +mo
y M - EZ:lmkpk

Mo Y+ mo
<y Mn = ZZ:lmkpk

IR
C My "l x— Zzzlmkpk

= 2.

+m
Yy 0 -
mo+mi+...+my=a+1

» Mn ) { x = 3 pymep”

THEOREM 4.1 (Lucas). Let x,y,z;,y; € N, i = 1,...,m, 0 < z;,y; <
P—LYn =Yno+ Yni+ - -+ Ynn, Yns EN,n=1,...,m. Then

Y+ yip+ypi + .o+ Ymp™
T+ TP+ xop® + .. Tp™

-y ¥

Y10+tY11=Y1 Y20+y21+y22=y2

D

Ym0+t Ymit.. - FYmm=Ym

aymm>

m

Ym

Lot ) )
Y10, Y11 Y20, Y21, Y22 Ym0, Ymi, - - -

Y+ Yo+ Y20+ .-+ Ymo
X+ (T1 = Ym1 — ... — Y21 — Y11)D
+($2_ym2 __y22)p2+($m_ymm)p

mod p.
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5. An application to Clausen—Von Staudt’s congruence for the
poly-Bernoulli numbers. For every integer k, we define a sequence of
rational numbers B¥ (n = 0,1,...), which we refer to as poly-Bernoulli
numbers, by

1. > [k
(8) > le(z)‘zzl—eﬂ” = ~ noon
Here, for any integer k, Liy(z) denotes the formal power series > -_ 2™ /m”,
the kth polylogarithm if £ > 1 and a rational function if £ < 0. When
k=1, B! is the usual Bernoulli number (with B = 1/2) [8].

Throughout this section, v, is the standard p-adic valuation on Q. The
rational p-adic integers Z,NQ are the rational numbers rsuch that v,(r) > 0.
We have the following expansions of the numbers B,’i in terms of the Stirling
numbers of second kind.

THEOREM 5.1.

(See [7] for demonstration.)

We set m +1 = ¢.p" + arp1p" ™ + ... + a;pt with ¢. € [1,p — 1] and
a; € [0,p—1] fori=r+1,...,l. Then

m!
o ()
"1 (G -D" -1+ a(p -1
e P @D DR e - )
p—1 p—1
REMARK 5.1. We denote the right hand side of (9) by O.

Let (p—1)ko = n, and let n = bg+b1p+...+bp' be the p-adic expansion
of n. Put s(n) = Zi:o b;. Then

REMARK 5.2. We have (p—1)|n < (p—1)|s(n).

We establish the following lemma which will be constantly used below.

n _ J1modp if (p—1)|n,
p—1[ " | O0modp if(p—1)fn.
Proof. With the notation introduced after Remark 5.1, it follows from
Proposition 4.1 and Remark 5.2 that

{ n } _ { s(n) } _ { (p— 1k } mod p, where (p—1)k; = s(n).

p—1 p—1 p—1

LEMMA 5.1.
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We can iterate this procedure and at the end we obtain

(10) {pfl}z{’"g’__ll)}modp with r < p.

Since r < p and by Proposition 3.1 congruence (10) is equivalent to
p j } mod p, by Proposition 2.1 we obtain the first equality. For the second
case the proof is the same.

THEOREM 5.2. If k>2, (p—1)|n, and k+2 <p<n+1, then
pkaL +1€pZy, e pkaL = —1 mod p.
Proof. Let p be a positive prime. By Theorem 5.1 we obtain

B " (=1)"m! (n
(11) pkB’I::L_kanZO (m+1)k{m}

We set m+1 = qrpr—l—aHlpTH—i—. ..~+a;p' with ¢, € [1,p—1] and a; € [0, p—1]
for i =7+ 1,...,1. Then by (9) equation (11) is equivalent to

m e BRI K AR

r=1,0>0
(13) Zp {;;;} (- 1)!{pf1 }

Because {m} is an integer the right hand side of (12) is an element of
pZy. Since p is a prime and {:1} is an integer, we can prove that the sum
in (13) is an element of pZ,. By Lemma 5.1 and by Wilson’s Theorem the
second sum in (13) is equivalent to —1 (mod p). Thus we finally obtain the
assertion of Theorem 5.2.

THEOREM 5.3. If k > 2,(p—1)tn and k+2 < p <n—+1 then pklefL
€ L.

The proof of this theorem is similar to that of Theorem 5.2.

REMARK 5.3. The case k = 2 of Theorem 5.2 is given by Kaneko [7].

For p < k + 2 the behaviour of the v,(B¥) is chaotic. We show this in
the case p=2,3, k= 3.
PROPOSITION 5.1. If n is even, then vp(B3) = —4.

Proof. Using (9) we see that the only summands in

3 _ - (=1)"m! [ n
B.= D <m+1>3{m}
which have valuation less than —3 are _3'{ } and _7'{ } but { }
2 mod 4 and {’;} = 0 mod 4.
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PROPOSITION 5.2. If n = 2 mod 3, then v3(B3) = —4.

Proof. Using (9) we see that the only summand in B? which gives the
valuation of BY is 8:{ %}, but 8!1{ %} =9 mod 3°.

PROPOSITION 5.3. If n = 16 + 18ay or 22 + 18as, then v3(B3) = —3.

Proof. By ( 9) the only summands in B which give a contribution to the
valuation are { } _5'{ } and 3 { } We find by Lemma 5.1 and by
induction that { 5 } =1+3d, {7} = O mod 3, 8!{ 16%80‘2 }=(2+3a2)3% +
e3® and 8!{ 22+;8a3} = (1 + a3)3* + h3%, with d,e, h € N. In the first case

we have
16 4+ 18 4 d+ s €.
”3<{ 3 }>:”3<33+32 +3);

in the second case we have

22 +18a3 |\ _ 2 dtaz h
”3<{ 3 })—“3(33+ 32 T3)

PROPOSITION 5.4. Let n =10+ 18k. If n = 10 + 54a, then
-1  if a3 =0 mod 3,
-]

—1  if a3 =1 mod 3,
>0 if ag =2mod 3.

In the remaining cases n=28+ 54ay and n=464+54as we have v3(B2)=—2.

Proof. By direct calculation and by induction we obtain { 5 } = 25+33%d,
51{%} = 33, and 81{ *73**1 } = (134 901)3° + 30 f with d, e, f € N. In the
cases 1 = 0 mod 3 and «; = 1 mod 3 we obtain

T+«
VB(B?0+54041) = V3< Lyd+ f>;
in the case a; = 2 4 3a we obtain
v3(Blotsia,) = min{yg(a+ 2+d+f)vs (2)} > 0.

If n = 28 + 54ar; we obtain 8!{ 28+§4a2 } = (9as +7)3%+ ¢3% with g € N
and so

19+ 3a

If n = 46 + 543 we obtain 81{ 01243 } = (9a3 +1)3% +3%h with h € N
and so

17+ 3043
VS(B26+54043) =3 (3 +d+ h)

REMARK 5.4. In Propositions 5.3 and 5.4, n = 1 mod 3.
PROPOSITION 5.5. If n. = 12 + 18aq or 24 4+ 18as, then v3(B3) = —3.
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Proof. By (9) the only summands in B3 which may give a contribution
to valuation are { } { } and g {8 } Using Lemma 5.1 we obtain
{g} =1+ 3a and by 1nduct10n we get {g} = 0 mod 3.

{12+818a0} _ 2+6b + 35

In the first case we obtain 8! c SO

4 2a+b c
3
V3(B12+18a0) =3 <33 + T3z + 3)-

In the second case we obtain 8!{ 24+§8°‘2 } = 3*d and thus

24 3a
(B24+18a2) = V3( 33 )

PROPOSITION 5.6. Let n = 18«. We have

-1 i a=3mod9
v3(Blg,) = { >0 if a=6mod9,
—2  otherwise.

Proof. By induction and by direct calculation we obtain { 5 } = 13+33a,
5!{2} = 18 + 33b, and 8!{2} = (1 + 6k)3% + 3%d. Then

2l (n 5! [n 8! (n 8k —3
3y _ _
e =n(5{s o5 e {i)) (%)
REMARK 5.5. In Propositions 5.5 and 5.6, n = 0 mod 3.
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