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1. Introduction. Let Fq denote the finite (Galois) field of order q, a
power of a prime p. The multiplicative group F∗q of Fq is cyclic of order q−1:
a generator is known as a primitive element of Fq. Hence Fq contains φ(q−1)
primitive elements, where φ is Euler’s function. Generally, primitivity is a
fragile property that may be destroyed when the element in question is
modified through multiplication or addition. Nevertheless, if ξ is a primitive
element, then so is 1/ξ.

When q = 2, H. Niederreiter [Ni] has expressed the number of irreducible
polynomials of degree n (≥ 3) over the binary field F2, having the coefficients
of xn−1 and x both equal to 1, as a formula involving Kloosterman sums
over F2n . Thereby, this number is shown to be positive, except when n = 3.
An alternative formulation of this conclusion is that, except when n = 3,
F2n contains an element ξ such that F2n = F2(ξ), and both ξ and 1/ξ
have (F2n ,F2)-trace equal to 1. In this paper we consider extensions Fqn
of a general finite field Fq. The aim is to show that Kloosterman sums are
adequate for the stiffer task of generalising the above result (when n ≥ 5)
to yield the existence of a primitive element ξ of Fqn such that Tn(ξ) = a
and Tn(1/ξ) = b, where a and b are (arbitrary) given elements of Fq and
Tn(ξ) := ξ + ξq + . . .+ ξq

n−1
denotes the (Fqn ,Fq)-trace of ξ. The result to

be proved is as follows.

Theorem 1.1. Let q be a prime power and n (≥ 5) be an integer. Suppose
that arbitrary elements a and b of Fq are given. Then there exists a primitive
element ξ of Fqn such that Tn(ξ) = a and Tn(1/ξ) = b, except when a =
b = 0 and (q, n) = (4, 5), (2, 6), or (3, 6).

Theorem 1.1 is consistent with the pattern that, as n increases, one can
expect to guarantee the existence of a primitive element satisfying additional
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constraints. Let it be stressed that what are sought are complete results
listing all exceptions. For example, prior to Theorem 1.1 is the theorem of
Cohen [Co1] (see also [JuVa]) that, given a ∈ Fq and n ≥ 2 (n ≥ 3, if
a = 0), there exists a primitive element ξ of Fqn with Tn(ξ) = a, except
when n = 3, q = 4, and a = 0. Another stage in the scheme is described
later in the introduction.

The proof of Theorem 1.1 derives from careful estimates in respect of
expressions that combine Kloosterman sums over Fqn and over Fq. Next,
some properties of Kloosterman sums (and Gauss sums) will be developed.
For example, whereas the absolute value of a Kloosterman sum over Fq is
bounded by 2

√
q, on average, it is less than

√
q (Corollary 3.2). By means

of a sieving process, the proof is completed theoretically, without direct
verification, except for a few small values of q (≤ 16) and n = 5 or 6, plus
q = 2 when n = 8 (when a and b are not both zero). In fact, when a and b
are both zero, then Theorem 1.1 follows from the work of W.-S. Chou and
the author [ChCo] and is “best possible” in the sense that it fails for all
pairs (q, n) with n < 5. Otherwise, the method will succeed, in principle,
also when n = 4. We defer the study of this case to a further paper, because
of the difficulty of identifying efficiently those values of q for which direct
verification is required. The question addressed is sensible even when n = 3,
but the method fails, and it may be difficult to resolve that case.

For n ≥ 2, the associated (irreducible) minimal polynomial (of degree n)
over Fq of a primitive element ξ of Fq is itself referred to as primitive. Since
the (Fqn ,Fq)-norm of such an element ξ is necessarily a primitive element of
Fq, and so, when q = 2 or 3, is uniquely determined, we have the following
consequence of Theorem 1.1.

Corollary 1.2. Suppose that q is a prime power , n ≥ 5, and an−1 and
a1 are given elements of Fq. Then, if either an−1 = a1 = 0 or q ≤ 3, there
exists a primitive polynomial of the form

(1.1) xn + an−1x
n−1 + . . .+ a1x+ a0.

More generally, Theorem 1.1 implies that there is a primitive polynomial
of the form (1.1) for n ≥ 5 with both an−1 and the ratio a1/a0 prescribed.
The Kloosterman sum technique should be instrumental in delivering the
next stage in the programme beyond Theorem 1.1, namely, that for given
values of an−1, a1, and a0 (with a0 a primitive element of Fq and n ≥ 6
or, perhaps, n ≥ 7), there is a primitive polynomial (1.1) with prescribed
values of an−1, a1 and a0. For other results, conjectures, and data on the
existence of primitive elements of Fqn satisfying further constraints, see, for
example, [HaMu], [Mu], [MoMu], [Ha], [CoHa1,2], [Co2]. I also acknowledge
some preliminary notes by Dr Wun-Seng Chou (Taipei) on the “fixed traces”
question, out of which the considerations of this paper arose.
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From the results of [ChCo] we can exclude the case a = b = 0 of Theorem
1.1 in what follows. Indeed, by symmetry, we shall assume, without loss of
generality, that a 6= 0.

2. Character sum formulation. The number of elements ξ of F∗q for
which Tn(ξ) = a and Tn(1/ξ) = b can be expressed in terms of (standard)
Kloosterman sums over Fqn . The further constraint that ξ can be primitive
heralds the introduction of multiplicative characters and more intricate ex-
pressions involving generalised (or twisted) Kloosterman sums. Obtaining
the relevant formulae in their most transparent form is the object of this
section. For the background on Kloosterman sums and Gauss sums for this
section and Section 3, Chapter 5 of [LiNi] (including the Exercises) or some
other source may be consulted.

Let M be a divisor of qn− 1. If ξ ∈ F∗qn is such that ξ = αd, where d |M
and α ∈ Fqn , implies d = 1, we shall say that ξ is not any kind of Mth power
in Fqn . Given q, n, a, b as in Section 1, define Nq,n(M ; a, b) (= Nq,n(M) =
N(M)) to be the number of elements ξ of F∗qn , scaled (multiplied) by a factor
q2 (for convenience), such that Tn(ξ) = a, Tn(1/ξ) = b, and ξ is not any
kind of Mth power in Fqn . To establish Theorem 1.1 in respect of q, n, a, b,
it is necessary to show that Nq,n(M ; a, b) for general divisors M of qn − 1.
Note, in particular, that the value of N(M) depends only on the distinct
prime divisors of M , i.e., on the square-free part of M .

Next, we lay down the basic material on characters. It will be amplified
later. Let χ be the canonical additive character of Fq. Thus, for x ∈ Fq,
χ(x) = exp(2πiT (x)/p), where here T denotes the absolute trace (from
Fq to Fp). Moreover, every additive character χ̂ of Fq is such that χ̂(x) =
χ(cx) (x ∈ Fq) for some c ∈ Fq; take c = 0 to obtain the trivial character χ0.
Further, let χ′ = χ(Tn) denote the lift of χ to Fqn . Passing to multiplicative
characters of Fqn , we shall reserve the symbol ψ for such; more precisely, for
any divisor d of qn − 1, ψd will denote a typical character of Fqn of exact
order d. Thus, ψ1 is the trivial character.

Now, for any α, β ∈ Fqn and any multiplicative character ψ, we define
the generalised Kloosterman sum Kn(α, β;ψ) (= Kq,n(α, β;ψ)) by

Kn(α, β;ψ) =
∑

ξ∈F∗
qn

χ′(αξ + βξ−1)ψ(ξ).

In particular, we write Kn(α, β) for Kn(α, β;ψ1), the (standard) Klooster-
man sum.

As a final preliminary to the basic formula, we describe some further
notation. In a sum

∑
u (or double sum

∑
u,v), the variable(s) will be assumed

to run over all members of the ground field Fq. If u runs over F∗q we will
write

∑
u 6=0, etc. For any divisor M of qn−1, abbreviate to

T
d|M a weighted
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sum of the form
∑
d|M (µ(d)/φ(d))

∑
(d) ψd, where µ is the Möbius function,

and the inner sum ranges over all φ(d) characters of order d. Further for any
positive integer h, set

Θ(h) = φ(h)/h =
∏

l|h, l prime

(1− l−1).

Moreover, a bar over a symbol signifies complex conjugation.

Proposition 2.1. Let q be a prime power and n a positive integer. Sup-
pose that elements a, b of Fq are given. Then, for any divisor M of qn − 1,
we have

(2.1) Nq,n(M ; a, b) = Θ(M)
∑
u,v

χ(au+ bv)
\

d|M
Kn(u, v;ψd).

P r o o f. The characteristic function for the subset of F∗qn comprising
elements that are not any kind of Mth power can be expressed as an ex-
tension of the Vinogradov formula, [Ju], Lemma 7.5.3. It takes the form
Θ(M)

T
d|M ψd(ξ). Moreover, that for the subset of Fqn comprising elements

with Tn(ξ) = a is (1/q)
∑
c χ(c(Tn(ξ) − a)). Hence, taking account of the

scaling factor q2, we have

Nq,n(M ; a, b) =
∑

ξ∈F∗
qn

Θ(M)
∑
u,v

χ(u(Tn(ξ)− a))χ(v(Tn(ξ−1)− b))
\

d|M
ψd(ξ)

= Θ(M)
∑
u,v

χ(au+ bv)
\

d|M
χ(Tn(uξ + vξ−1))ψd(ξ),

and the result follows from the definition of the Kloosterman sum.

From Proposition 2.1, N(M) can immediately be estimated using the
standard bound for Kloosterman sums that follows.

Lemma 2.2. Let ψ be a multiplicative character of Fqn . Then

Kn(0, 0;ψ) =
{
qn − 1 if ψ = ψ1,
0 otherwise.

Further , if either ψ 6= ψ1 or α, β ∈ Fqn are not both zero, then

|Kn(α, β;ψ)| ≤ 2qn/2.

Nevertheless, before applying Lemma 2.2, it is profitable to develop the
formula (2.1). This is the aim in the next sequence of lemmas. They also
involve Gauss sums, since some Kloosterman sums reduce to these. The
Gauss sum Gn(ψ) is defined by

Gn(ψ) =
∑

ξ∈F∗
qn

χ′(ξ)ψ(ξ).
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Lemma 2.3. (i) If α (6= 0), β ∈ Fqn , then

Kn(α, β;ψ) = ψ(α)Kn(1, αβ;ψ).

(ii) If β 6= 0, then Kn(0, β;ψ) = ψ(β)Gn(ψ).
(iii) If α 6= 0, then Kn(α, 0;ψ) = ψ(α)Gn(ψ).

Lemma 2.4. (i) Gn(ψ1) = −1.
(ii) If ψ 6= ψ1, then |Gn(ψ)| = qn/2.

(iii) If q is odd and n = 1, then G2
1(ψ2) = (−1)(q−1)/2q.

(iv) If q is odd and n is even, then Gn(ψ2) = −(−1)n(q−1)/4qn/2.
(v) If q and n are odd and λ2 is the quadratic character on F∗q , then

G1(λ2)Gn(ψ2) = (−1)(n−1)(q−1)/4q(n+1)/2.

Note that Lemma 2.4 contains information relating to the specific char-
acters ψ1 and (when q is odd) ψ2, the quadratic character. Similarly, we
can specialise Kloosterman sums to these cases, though the results are more
complicated. First, when ψ = ψ1 and u, v are in the ground field Fq, then
Kn(u, v) can be expressed in terms of Kloosterman sums over Fq. For t ∈ F∗q ,
set kt := K1(1, t). Further, let Dn(X, c) be the Dickson polynomial of the
first kind of degree n. Thus, Dn(X + c/X, c) = Xn + cn/Xn.

Lemma 2.5. Suppose t ∈ Fq∗ . Then

Kn(1, t) = (−1)n−1Dn(kt, q).

Define

δq,n :=
{

1
q − 1

∑

t 6=0

Kn(1, t)
}/

qn/2, δ∗q,n :=
{

1
q − 1

∑

t 6=0

|Kn(1, t)|
}/

qn/2.

Then, from Lemma 2.2, it follows that

(2.2) |δq,n| ≤ δ∗q,n ≤ 2.

The next result indicates that the numbers kt are essentially uniformly
distributed.

Lemma 2.6. For a given prime power q,
∑
t 6=0 kt = 1.

P r o o f.
∑

t 6=0

kt =
∑

t,u6=0

χ

(
u+

t

u

)
= χ(0) = 1,

since, evidently, for any c ∈ Fq, the equation u+ t/u = c (i.e., t = u(c− u))
has q − 2 solution pairs (t, u) ∈ (F∗q)2, unless c = 0, when there are q − 1
solutions.

When q is odd, Kloosterman sums with ψ = ψ2 (the quadratic character)
are apparently easier to evaluate than standard sums. The following two
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results derive, in essence, from Lemma 3.5 and Corollary 3.6 of [ChCo]. For
clarity, for any divisor e of q − 1, we denote a multiplicative character of
order e of Fq by λe.

Lemma 2.7. Let q be an odd prime power. If n is odd and t ∈ F∗q is such
that λ2(t) = −1, then Kn(1, t;ψ2) = 0. If λ2(t) = 1 with s2 = t (s ∈ Fq)
and p -n, then

Kn(1, t;ψ2) = (χ(2ns) + χ(−2ns))Gn(ψ2).

Otherwise, if n is odd , p |n, and λ2(t) = 1, or n is even and either p |n or
λ2(t) = −1, then

Kn(1, t;ψ2) = 2Gn(ψ2).

Lemma 2.8. Let q be an odd prime power and n be an even integer. Then
∑

t 6=0

Kn(1, t;ψ2) = −(−1)n(q−1)/4(εq − 2)qn/2,

where

ε =
{

2 if p |n,
1 if p -n.

Given q, n, define

m = m(q, n) :=
qn − 1
q − 1

.

The significance of this number is that there are occasions when it is useful to
distinguish characters ψd for which d |m. This arises as follows. For any divi-
sor d of qn−1, the restriction to F∗q of a character ψd (of F∗qn) will be denoted

by ψ̂d. Then, in fact, ψ̂d = λd∗ , where d∗ = (q − 1)/gcd((qn − 1)/d, q − 1).
In particular, ψ̂d = λ1 if and only if d |m. Moreover, if q is odd, then

(2.3) ψ̂d =
{
λ2 if n is odd,
λ1 if n is even.

To present refinements of Proposition 2.1, we modify the notation
T
d|M

used in its statement. First, for a divisor M ′ of M , write
T
d|M,d -M ′ to

indicate a similar sum that excludes terms corresponding to divisors d of
M ′. This is modified further to

T
d|M,d -M ′, 6=2 to signify that the terms with

d = 2 are excluded (if there remain any). This makes a difference only if q is
odd, M is even, and M ′ is odd. A frequent choice of M ′ is M∗ := gcd(M,m).

We come to the main theorems of this section; their statements depend
heavily on declared notation. Because the formulae have a different shape
according to whether a, b are zero or not, it is from this point on we insist
that a 6= 0. In the first case, we also suppose that b 6= 0.
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Theorem 2.9. Let q be a prime power and n (≥ 4) an integer. Suppose
that a, b ∈ F∗q . Then, for any divisor M of qn − 1, we have

Nq,n(M ; a, b) = Θ(M)
{
qn + 1 +∆2 + (−1)n−1

∑

t 6=0

ktabDn(kt, q)(2.4)

+
\

d|M
d - 2

∑

t 6=0

K1(1, tab; ψ̂d)Kn(1, t;ψd)− 2
\

d|M∗
d - 2

Gn(ψd)

+
\

d|M
d -M∗, 6=2

(ψ̂d(a) + ψ̂d(b))G1(ψ̂d)Gn(ψd)
}
,

where ∆2 = 0, unless q is odd and M is even. In the latter event , if n is
odd ,

∆2 = (−1)(n−1)(q−1)/4γq(n+1)/2,

where

γ =





4 if λ2(a) = λ2(b) = −1, but ab 6= n2,
2(1− λ2(a))− q if ab = n2,
0 otherwise,

and , if n is even, ∆2 = (−1)n(q−1)/4γqn/2, where

γ =
{(

(−1)(q+1)/2 + 1
2

)
q − 1

2 if ab = n2,
(−1)(q+1)/2

(
λ2(ab)− 1

2λ2(ab− n2)
)
q − 1

2 otherwise.

P r o o f. We consider the terms on the right hand side of (2.1) (taking
for granted the factor Θ(M)). First, by Lemma 2.2, the contribution of
the terms with u = v = 0 is exactly qn − 1. Next, by Lemma 2.3(i), the
contribution of the terms with uv 6= 0, on replacement of uv by t, becomes

∑

t 6=0

∑

u 6=0

χ

(
au+

bt

u

)
ψ̂d(u)Kn(1, t;ψd).

This yields the first two sums on the right hand side of (2.4) (with
T
1 6=d|M

rather than
T
d|M,d - 2) on replacing au by u and separating, with the aid of

Lemma 2.5, the contribution arising from ψ1.
Next, by Lemma 2.3(ii), the contribution of the terms of (2.1) with u = 0,

v 6= 0, is \
d|M

{∑

v 6=0

χ(bv)ψ̂d(v)
}
Gn(ψd).

On interchanging ψd with its conjugate and replacing bv by v, we obtain\
d|M

ψ̂d(b)G1(ψ̂d)GN (ψd) = 1−
\

1 6=d|M∗
Gn(ψd) +

\
d|M
d -M∗

ψ̂d(b)G1(ψd)Gn(ψd),
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by Lemma 2.4(i). There is a similar contribution from the terms with u 6= 0,
v = 0.

As a consequence of the above, it suffices to assume that q is odd andM is
even, and prove that the net contribution of the terms in (2.1) corresponding
to ψ2 is the designated expression for ∆2.

To this end, suppose first that n is odd; thus M∗ is odd. Observing that
the weighting factor µ(2)/φ(2) = −1, from (2.4) we have

∆2 = −λ2(a)(λ2(ab) + 1)G1(λ2)Gn(ψ2)−
∑

t 6=0

K1(1, tab;λ2)Kn(1, t;ψ2).

Now, for t ∈ F∗q , λ2(a) = 1 if and only if ψ2(a) = 1. Consequently, from
Lemma 2.7, the product K1(1, tab;λ2)Kn(1, t;ψ2) is zero unless λ2(t) =
λ2(tab) = 1. Evidently, therefore, ∆2 = 0, unless λ2(ab) = 1. Moreover, if
λ2(ab) = 1 and c2 = ab, c ∈ F∗q , then, by Lemma 2.7 again, we have
∑

t 6=0

K1(1, tab;λ2)Kn(1, t;ψ2)

= G1(λ2)Gn(ψ2)
∑

s 6=0

χ(2ns)(χ(2sc) + χ(−2sc))

= G1(λ2)Gn(ψ2)
∑

s 6=0

{χ(2s(n+ c)) + χ(2s(n− c))}.

The sum in this expression is q − 2 if c = ±n (i.e., ab = n2). Otherwise, it
is −2. The result for n odd now follows from Lemma 2.4(v).

Finally, suppose n is even, so that M∗ is even. Then, by (2.3), ψ̂2 = λ1,
and

∆2 = 2Gn(ψ2)−
∑

t 6=0

K1(1, tab)Kn(1, t;ψ2)(2.5)

= Gn(ψ2)
(

2−
∑

t 6=0

(1− λ2(t))K1(1, tab)−
∑

s 6=0

χ(2ns)K1(1, s2ab)
)

= Gn(ψ2)
(

1 +
∑

t 6=0

λ2(t)K1(1, tab)−
∑

s 6=0

χ(2ns)K1(1, s2ab)
)
,

by Lemmas 2.7 and 2.6. Now, in (2.5), we have
∑

t 6=0

λ2(t)K1(1, tab) =
∑

t,u6=0

χ

(
u+

tab

u

)
λ2(t) =

∑

u 6=0

χ(u)
∑

t 6=0

χ

(
abt

u

)
λ2(t)

= λ2(ab)
∑

u 6=0

χ(u)λ2(u)G1(λ2)

= λ2(ab)G2
1(λ2) = (−1)(q−1)/2λ2(ab)q,
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by Lemma 2.4(iii). Also, in (2.5), we have

S :=
∑

s 6=0

χ(2ns)K1(1, s2ab) = 1 +
∑
s

∑

u6=0

χ

(
u+

s2ab

u
+ 2ns

)

= 1 +
∑

u 6=0

χ

(
u

(
1− n2

ab

))∑
s

χ

(
ab

u

(
s− nu

ab

)2)

= 1 +
∑

u 6=0

χ

(
u

(
1− n2

ab

)){[
1
2

∑

v 6=0

χ

(
ab

u
v

)
(1 + λ2(v))

]
+ 1
}
.

Now, if ab = n2, it follows that

S = 1+q−1+
1
2

∑

v 6=0

(1+λ2(v))
∑

u 6=0

χ(abvu) = q− 1
2

∑

v 6=0

(1+λ2(v)) =
1
2

(q+1).

Hence, in this case,

∆2 = Gn(ψ2)
(

1
2

+ (−1)(q−1)/2q − 1
2
q

)
,

as required (by Lemma 2.4(iv)). On the other hand, if ab 6= n2, then

S =
1
2

∑

u 6=0

χ

(
u

(
1− n2

ab

)){
−1 +

∑

v 6=0

χ

(
ab

u
v

)
λ2(v)

}

=
1
2

(
1 +G1(λ2)

∑

u 6=0

χ

(
u

(
1− n2

ab

))
λ2(abu)

)

=
1
2

(1 + λ2(ab− n2)G2
1(λ2)) =

1
2

(1 + (−1)(q−1)/2λ2(ab− n2)q).

Again, by Lemma 2.4(iv), this yields the stated expression for ∆2.

Here now is the corresponding result with b = 0.

Theorem 2.10. Let q be a prime power and n (≥ 4) an integer. Suppose
that a ∈ F∗q . Then, for any divisor M of qn − 1, we have

Nq,n(M ; a, 0) = Θ(M)
{
qn − q + 1 +∆2 + (−1)n

∑

t 6=0

Dn(kt, q)(2.6)

+
\

d|M∗
d - 2

[
(q − 2)Gn(ψd)−

∑

t 6=0

Kn(1, t;ψd)
]

+
\

d|M
d -M∗, 6=2

ψd(a)G1(ψ̂d)
[
Gn(ψd) +

∑

t6=0

Kn(1, t;ψd)
]}
,
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where ∆2 = 0, unless q is odd , M is even and p |n. In the latter event , we
have

∆2 =
{
−(−1)n(q−1)/4qn/2+1 if n is even,
−λ2(a)(−1)(n−1)(q−1)/4q(n+3)/2 if n is odd.

P r o o f. Again the contribution of the terms in (2.1) with u = v = 0 is
qn − 1. That from the terms with u = 0, v 6= 0 is\

d|M
Gn(ψd)

∑

v 6=0

ψ̂d(v) = −(q − 1) + (q + 1)
\

1 6=d|M∗
Gn(ψd),

by Lemmas 2.3 and 2.4, plus the fact that ψ̂d is non-trivial if and only if
d -M∗. The contribution from the terms with u 6= 0, v = 0 is\
d|M

Gn(ψd)
∑

u6=0

χ(au)ψ̂d(u) = 1−
\

1 6=d|M∗
Gn(ψd)+

\
d|M
d|M∗

ψd(a)G1(ψ̂d)Gn(ψd).

This, again, has used the fact that ψ̂d is trivial whenever d |M∗. The con-
tribution of the terms with uv 6= 0 is\

d|M

∑

t,u 6=0

χ(au)ψ̂d(u)Kn(1, t;ψd)

= −
\

d|M∗
Kn(1, t;ψd) +

\
d|M
d -M∗

ψd(a)G1(ψ̂d)Kn(1, t;ψd).

This yields the remaining terms on the right-hand side of (2.6), apart from
the evaluation of the terms arising from ψ2.

Indeed, we now describe the contribution of the terms involving ψ2 (when
q is odd and M is even). If n is even, then M∗ is even and

∆2 = −(q − 2)Gn(ψ2) +
∑

t 6=0

Kn(1, t;ψ2)

=
{
−(−1)n(q−1)/4qn/2+1 if p |n,
0 otherwise,

by Lemma 2.8. On the other hand, if n is odd and so M∗ is odd, then

∆2 = −λ2(a)G1(λ2)
(
Gn(ψ2) +

∑

t 6=0

Kn(1, t;ψd)
)

= −λ2(a)G1(λ2)
(
Gn(ψ2) +

∑

s 6=0

χ(2ns)Gn(ψd)
)
,

by Lemma 2.7. Thus, λ2 = 0, unless p |n, in which event,

∆2 = −qλ2(a)G1(λ2)Gn(ψ2) = −λ2(a)(−1)(n−1)(q−1)/4q(n+3)/2,
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by Lemma 2.4(v). Hence, everything is proved.

3. Inequalities. The sums in the identities of Theorems 2.9 and 2.10
can obviously be estimated by means of the fundamental bounds for Kloost-
erman sums and Gauss sums stated in Lemmas 2.2 and 2.4(ii). Thus, for
example, with regard to the main error terms in Theorem 2.9, we have∣∣∣

∑

t 6=0

K1(1, tab; ψ̂d)Kn(1, t;ψd)
∣∣∣ ≤ 4(q − 1)q(n+1)/2, d > 1.

Crucially, we are able to halve this estimate; it then becomes similar to the
corresponding estimate for the main error terms in Theorem 2.10, namely∣∣∣G1(ψ̂d)

∑

t6=0

Kn(1, t;ψd)
∣∣∣ ≤ 2(t− 1)q(n+1)/2, d > 1.

Lemma 3.1. For any multiplicative character λ of F∗q , we have

∑

t 6=0

|K1(1, t;λ)|2 =
{
q(q − 1)− 1 if λ = λ1,
q(q − 2) if λ 6= λ1.

P r o o f.
∑

t 6=0

|K1(1, t;λ)|2 =
∑

t,u,v 6=0

χ

(
u+

t

u
− v − t

v

)
λ

(
u

v

)

= (q − 1)2 +
∑

t 6=u

∑

u,v 6=0
u 6=v

χ

(
u− v − t(u− v)

uv

)
λ

(
u

v

)

= (q − 1)2 +
∑

t 6=u

∑

y 6=0
z 6=0,1

χ

(
y − t(z − 1)2

yz

)
λ(z)

= (q − 1)2 +
∑

y 6=0
z 6=0,1

λ(z)
∑

t 6=0

χ

(
y − t(z − 1)2

yz

)

= (q − 1)2 −
∑

z 6=0,1

λ(z)
∑

y 6=0

χ(y) = (q − 1)2 +
∑

z 6=0,1

λ(z)

=
{

(q − 1)2 + (q − 2) if λ = λ1,
(q − 1)2 − 1 if λ 6= λ1,

and the result follows.

Corollary 3.2. For λ as in Lemma 3.1,
∑

t 6=0

|K1(1, t;λ)| < (q − 1)
√
q.
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Hence, if d (> 1) is a divisor of qn − 1 and ab ∈ F∗q , then
∣∣∣
∑

t6=0

K1(1, tab; ψ̂d)Kn(1, t;ψd)
∣∣∣ < 2(q − 1)q(n+1)/2.

P r o o f. By Cauchy’s inequality and Lemma 3.1,
∑

t 6=0

|K1(1, t;λ)| ≤
√
q − 1

(∑

t 6=0

|K1(1, t;λ)|2
)1/2

<
√
q − 1

√
q(q − 1)

= (q − 1)
√
q.

Granted Lemma 2.2, the other inequality is immediate.

Taking λ = λ1 in Corollary 3.2, we see that δ∗q := δ∗q,1 (see Section 2)
satisfies δ∗q < 1 (cf. (2.2)). Indeed, for a range of prime values of q tested
(with 7 < q < 200), δ∗q lay within the interval (0.82, 0.89).

Moreover, we can effectively improve further on Corollary 3.2 under the
following circumstances: q, n odd, d even, d | 2m (so that ψ̂d = λ2).

Lemma 3.3. Let q be an odd prime power and χ be the canonical additive
character on Fq. Then

∑
s

|χ(s) + 1| = 2q
p

cosec
(
π

2p

)
.

P r o o f. Suppose q = p, an odd prime. Then
∑
s

|χ(s) + 1| =
∑
s

2|cos(πs/p)| = 2
(

1 + 2
(p−1)/2∑
s=0

cos(πs/p)
)

= 2 cosec(π/(2p)).

This implies the result for a prime power q, since the elements of Fq are
uniformly distributed with respect to absolute trace.

Lemma 3.4. Let q be an odd prime power. Define κq by

κq =





4
π

if q = p or p2,

4
π

(
1 +

2
p2

)
otherwise.

Then ∑

s6=0

|χ(s) + 1| < κq(q − 1).

P r o o f. Using Lemma 3.3 and setting x = π/(2p), we obtain
∑

s 6=0

|χ(s) + 1| = 2
(
q

p
cosecx− 1

)
< 2
(

q

p(x− x3/6)

)
− 1 <

4
π

(q − 1),
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provided
q

p2 <
12
π

(
1− 2

π

)(
1− x2

6

)
.

Because x = π/(2p) ≤ π/6, the right side of this inequality exceeds 1.3,
and so the inequality holds whenever q = p or p2. The adjustment shown
suffices for general values of q.

Lemma 3.5. For any α ∈ F∗qn and multiplicative character ψ,

Kn(1, α;ψ) = ψ(α)Kn(1, α;ψ).

P r o o f. Replace ξ by α/ξ in the definition of Kn(1, α;ψ).

The climax of the preceding few lemmas comes next. In it, for a character
ψ, set

S(ψ) :=
∑

t6=0

K1(1, t; ψ̂)Kn(1, t;ψ).

Lemma 3.6. Let q be an odd prime power and n an odd integer. Suppose
that a, b ∈ F∗q and d is an even divisor of 2m. If λ2(ab) = −1, then S(ψd)+
S(ψd) = 0, whereas if λ2(ab) = 1, then

|S(ψd) + S(ψd)| < 2κq(q − 1)q(n+1)/2,

where κq is as defined in Lemma 3.4; in particular , κq = 4/π whenever
q = p or p2.

P r o o f. By Lemma 3.5, and the fact that ψ̂d = λ2,

S(ψd) + S(ψd) =
∑

t 6=0

(1 + λ2(t))K1(1, tab;λ2)Kn(1, t;ψd).

If λ2(ab) = −1, then either λ2(t) = −1 or λ2(tab) = −1 whenever t ∈ F∗q .
Hence, the above expression is zero by Lemma 2.7. If λ2(ab) = 1, with
c2 = ab (c ∈ F∗q), then, again by Lemma 2.7,

|S(ψd) + S(ψd)| = 2|G1(λ2)|
∣∣∣
∑

s 6=0

χ(2cs)Kn(1, s2;ψd)
∣∣∣

=
√
q
∣∣∣
∑

s 6=0

(χ(2cs) + χ(−2cs))Kn(1, s2;ψd)
∣∣∣

≤ 2q(n+1)/2
∑

s6=0

|χ(2cs) + χ(−2cs)|,

by Lemma 2.2. The result follows from Lemma 3.4, since
∑

s 6=0

|χ(2cs) + χ(−2cs)| =
∑

s6=0

|χ(s/2) + χ(−s/2)| =
∑

s 6=0

|χ(s) + 1|.
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Lemma 3.5 can be exploited for other characters χ, but not with such
generality. The consequences tend to depend on the order of ab more specif-
ically.

The remaining inequality is of a different nature and derives from a
sieving process. The aim is to obtain a lower bound for Nq,n(M) that may
not be good asymptotically (as q →∞) but is especially effective for small
values of q.

As noted in Section 2, given q, n, a, b, the value ofN(M) (M is a divisor of
qn−1) depends only on the distinct prime factors of M . Accordingly, divisors
M1, . . . ,Mr (r ≥ 1) of M will be called complementary divisors of M with
common divisor M0 if the set of distinct prime divisors of lcm{M1, . . . ,Mr}
is the same as that of M , and, for any pair (i, j) with 1 ≤ i 6= j ≤ r, the
set of distinct prime divisors of gcd(Mi,Mj) is that of M0. When r = 1, we
have M1 = M0 = M . Though easy to prove (see [ChCo], Proposition 6.1),
the following inequality is extremely useful.

Proposition 3.7. Let q be a prime power and n (≥ 1) an integer. Sup-
pose that a, b ∈ Fq. Let M1, . . . ,Mr be complementary divisors of M (it-
self a divisor of qn − 1) with common divisor M0. Then, with N(M) =
Nq,n(M ; a, b), etc., we have

N(M) ≥
{ r∑

i=1

N(Mi)
}
− (r − 1)N(M0).

Proposition 3.7 motivates a generalisation of the ratio Θ(M) defined in
Section 2. With the same notation, define

Θ(M1, . . . ,Mr) :=
{ r∑

i=1

Θ(Mi)
}
− (r − 1)Θ(M0).

This number represents the coefficient of qn on the right hand side of the
inequality when Theorems 2.9 or 2.10 are applied to each of the constituents.
To be useful, therefore, it is vital that Θ(M1, . . . ,Mr) be positive. Indeed,
preferably the ratio Θ̂(M1, . . . ,Mr) := Θ(M1, . . . ,Mr)/Θ(M0) should not be
too small. For this reason, when q is odd we suppose (except in one place)
that M0 is even, because of the effect of the prime 2 otherwise. Consequently,
we say that the complementary divisors are regular if qM0 is even.

4. Criteria for success. These criteria are effective only if n ≥ 4, which
we assume from now on. Again, assume also that the prime power q and a
(6= 0), b ∈ Fq are given. Also, from now on, fix M as qn − 1; M1, . . . ,Mr

will be regular complementary divisors of M with common divisor M0. We
supplement the previously defined integer m = (qn − 1)/(q − 1) with the
definitions mi := gcd(Mi,m), i = 0, 1, . . . , r. For any positive integer h, let
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W (h) = 2ω(h) be the number of square-free divisors of h (where ω(h) is the
number of distinct prime factors of h).

We derive criteria for Nq,n(M ; a, b) to be positive. First, we suppose
b 6= 0.

Proposition 4.1. Let q be a prime power and n (≥ 4) be an integer.
Suppose that a, b ∈ Fq. Let M1, . . . ,Mr be regular complementary divisors
of M with common divisor M0. Assume that Θ := Θ(M1, . . . ,Mr) is posi-
tive. If the following condition (labelled Aq,n(M1, . . . ,Mr)) is satisfied , then
Nq,n(M ; a, b) is positive:

(4.1) q(n−3)/2

> 2
{
W (M0)−W (m0) + δ∗q

(
1− 1

q

)
(W (m0)− η1) +

1
q3/2

(W (m0)− 1)
}

+ η1
3

2
√
q
− η2

[(
2− κq

(
1− 1

q

))
(W (m0)− 1) + 1

]

+Θ−1
r∑

i=1

Θ(Mi)
{

2
[
W (Mi)−W (M0)−W (mi) +W (m0)

+
(
δ∗q

(
1− 1

q

)
+

1
q3/2

)
(W (mi)−W (m0))

]

− η2

[(
2− κq

(
1− 1

q

))
(W (mi)−W (m0))

]}
,

where κq (∼ 4/π) and δ∗q (< 1) are as in Section 3, and

η1 =
{

1 if q is odd and n is even,
0 otherwise;

η2 =
{

1 if q and n are odd ,
0 otherwise.

P r o o f. By Proposition 3.7 and Theorem 2.9,

N(M) = ΘN(M0) +
r∑

i=1

Θ(Mi)
{ \

d|Mi

d -M0

∑

t 6=0

K1Kn − 2
\

d|mi
d -m0

Gn(4.2)

+
\

d|Mi

d -M0

(ψ̂d(a) + ψ̂d(b))G1Gn

}
,

where we have employed an abbreviated notation based on (2.4). Further,
N(M0) itself is given by (2.4) with M = M0, M∗ = m0. In particular,
since the complementary divisors are regular, all contributions relating to
ψ2 are counted within N(M0). Now, for each of the φ(d) characters ψd, we
have an absolute bound of 2q(n+3)/2 for

∑
t 6=0K1Kn+(ψ̂d(a)+ ψ̂d(b))G1Gn
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in (4.2), by Corollary 3.2 and Lemma 2.4(iii). Indeed, for those d that are
divisors of mi, but not m0 (so that ψ̂d is trivial), we have the improve-
ment that the factor 2 may be replaced by 2(1 − q−1)δ∗q , and we have a
further contribution (bounded absolutely by 2qn/2) from the minor term
−2

T
d|mi, d -m0

Gn.

More significantly, when q and n are odd (so that η2 = 1) and d is an
even divisor of 2mi, we can, on average (when ψd is paired with ψd), replace
the factor 2 by κq(1 − q−1), by Lemma 3.6. Because each d in

T
d|Mi, d -M0

,

say, appears with a weighting factor µ(d)/φ(d) (so that only square-free d
matter, and each carries an absolute weight 1/φ(d)), and because the main
term in ΘN(M0) is Θqn, we deduce that (4.1) is correct insofar as the terms
under the sum

∑r
i=1 are concerned.

The estimate for the remaining terms of N(M0) is similar. The only
modifications are as follows. There is no contribution from d = 1 to
−2

T
d|M0, d - 2Gn. Also, when q is odd, then M0 is even and we need to

adjust the terms with ψ2 using the expression for ∆2 in Theorem 2.9. Thus,
if n (and so m0) are even, then η1 = 1 and |∆2| < 3

2q
n/2+1, whereas, if n

(and so m0) are odd, the contribution in the worst case (when ab = n2) is
halved to q(n+1)/2. This completes the proof.

When b = 0, we analogously employ Theorem 2.10.

Proposition 4.2. Let q be a prime power and n (≥ 4) an integer. Sup-
pose that a ∈ F∗q . Let M1, . . . ,Mr be regular complementary divisors of M
with common divisor M0. Assume that Θ is positive. If the following condi-
tion (labelled Bq,n(M1, . . . ,Mr)) is satisfied , then Nq,n(M ; a, 0) is positive:

(4.3) q(n−3)/2 − q − 1
q(n+3)/2

>

(
2− 1

q

)
(W (M0)−W (m0)− η2) + (−1)(n−1)(q−1)/4λ2(a)ε2

+
1√
q

{
(W (m0)− 1− η1) +

(
1− 1

q

)
δq,n + (−1)n(q−1)/4ε1

}

+Θ−1
r∑

i=1

Θ(Mi)
{(

2− 1
q

)
(W (Mi)−W (M0)−W (mi) +W (m0))

+
1√
q

(
3− 4

q

)
(W (mi)−W (m0))

}

where η1 and η2 are as in Proposition 4.1, δq,n (with absolute value at most
2) is as defined in Section 2, and ε1 and ε2 are zero, unless q is odd and
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p |n, in which case,

ε1 =
{

1 if n is even,
0 otherwise;

ε2 =
{

1 if n is odd ,
0 otherwise.

P r o o f. This is similar to Proposition 4.1. But note the extra (mi-
nor) term on the left hand side of (4.3) springing from terms of the shape
−Θ(Mi)(q−1) on the right side of (2.6). Further, for d a divisor of Mi (say),
but neither of mi nor M0, the contribution from ψ̂d(a)G1(Gn+

∑
t 6=0Kn) is

(1+2(q−1))q(n+1)/2 = (2−q−1)q(n+3)/2, and, for d a divisor of mi, but not
m0, that of (q−2)Gn−

∑
t 6=0Kn is ((q−2)+2(q−1))qn/2 = (3−4/q)qn/2+1.

In this way, the result is proved.
We shall sometimes abbreviate Aq,n(M1, . . . ,Mr), say, to Aq,n. We also

use Rq,n(M1, . . . ,Mr) (possibly abbreviated) and Lq,n to denote the right
and left sides of (4.1) or (4.3) as appropriate to the context. Note that, even
for Bq,n, Lq,n is essentially q(n−3)/2 as the other term is generally negligible.
Although these conditions seem complicated, for larger values of q and n,
it suffices to use the coarser estimate obtained by selecting only the terms
involving M0,M1, . . . ,Mr. Note finally that, because the terms in respect
of divisors of m are generally diminished in Bq,n by a factor of order

√
q,

the condition Aq,n is essentially more stringent than Bq,n and therefore, as
a rule, Bq,n holds whenever Aq,n does.

5. Theorem 1.1 for “almost all” pairs (q, n). In this section we shall
take r = 1 and show that Aq,n(M) and Bq,n(M) hold for all but finitely
many pairs (q, n). Nevertheless, in interpreting this conclusion, caution must
be exercised because the number of potential exceptions is huge. Hence,
properly understood, this is merely the first stage in the application of the
theory. Note that, in Aq,n(M), say, all the “Θ-terms” are absent.

We begin with a weak, but convenient, lemma to bound the function W .
Note that 2 · 3 · 5 · 7 · 11 · 13 = 30030.

Lemma 5.1. Set γ := 64/300301/4 < 4.9. Suppose that h is an integer
indivisible by a prime p. Then

W (h) ≤ γph1/4, where γp =
{

1
2p

1/4γ if p < 16,
γ if p > 16.

In particular , γ2 < 2.9, γ3 < 3.2, γ5 < 3.7.

P r o o f. Granted that W is multiplicative, the proof is easy.

Now, we resume the assumption that q, n, a, b are given as in Section 4
with M = qn−1, etc. We shall denote ω(M) by ωq,n. From now on we shall
also suppose n ≥ 5, as in Theorem 1.1.
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Lemma 5.2. Let q be a prime power and n ≥ 5. Suppose that Aq,n(M)
does not hold. Then n ≤ 9 and q < 22(ω+1)/(n−3), where ω = ωq,n. Moreover ,
if n has the specified value, then

ωq,5 ≤ 17, ωq,6 ≤ 17, ωq,7 ≤ 6, ωq,8 ≤ 11, ωq,9 ≤ 7.

Further , identical conclusions hold in respect of the condition Bq,n(M).

P r o o f. For both Aq,n and Bq,n, for most of the proof it suffices to use
the rough bounds

Rq,n(M) < 2
(
W (M)− 1

q

)
, Lq,n > q(n−3)/2 − 1

q4 .

It follows that, if the relevant condition fails, then

(5.1) q(n−3)/2 < 2W (M).

From Lemma 5.1, (5.1) implies that

(5.2) q(n−6)/4 < 2γp < 9.8.

Suppose n ≥ 10. It follows from (5.2) that q ≤ 9. Indeed, substituting
bounds for γ3, γ2, we deduce that q ≤ 7. Moreover, n = 10 if q = 7 or 5
(using γ5); n ≤ 11 if q = 4; n ≤ 12 if q = 3; n ≤ 16 if q = 2. But ω2,11 = 2
and ω2,n ≤ 4 for 13 ≤ n ≤ 16; consequently, by (5.1), if q = 2, then n = 10
or 12. For q = 3, ω3,10 = ω3,11 = 3, ω3,12 = 5; hence (5.1) is false in each
case. Further, for q = 4, 5 or 7, ωq,n ≤ 5 in the relevant cases (with n = 10
or 11). Hence, again (5.1) cannot hold. This leaves only the aforementioned
possibilities, that q = 2 and n = 10 or 12.

Now, for A2,n(M), we have

R2,n = δ∗2W (M) +
1√
2

(W (M)− 1) =
√

2W (M)− 1√
2

since, trivially, δ∗2 = 1/
√

2. Since ω2,10 = 3, ω2,12 = 5, we deduce that

R2,10 = 27/2 − 1/
√

2 < L2,10 = 27/2,

R2,12 = 29/2 − 1/
√

2 < L2,12 = 29/2.

Hence, A2,n(M) holds in both cases.
Similarly, for B2,n(M), we have

R2,n =
1√
2

[
W (M)− 1 +

δ2,n
2

]
<
W (M)√

2
and it is evident that B2,n(M) holds for n = 10, 12.

Accordingly, we may assume that ω ≤ 9 and (5.1) holds. In particular,
q < 22(ω+1)/(n−3). We establish the displayed bounds for ω in the most
delicate case, namely, when n = 5, so that (5.1) has the form

q < 2W (M).
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In this proof, let r = ω(q − 1), s = ω(m). Now, primes that are candi-
dates for the divisors of m must lie in the set S5 = {5, 11, 31, 41, . . .} whose
members (other than 5) are congruent to 1 (mod 10). Moreover, 5 |m if and
only if 5 | q − 1; indeed gcd(m, q − 1) = 1 or 5. Hence,

(5.3) q < 2W (M) =
{

2r+s if q ≡ 1 (mod 5),
2r+s+1 if q 6≡ 1 (mod 5).

On the other hand, any prime (other than p) is a potential factor of q−1. We
use Pr for the product of the smallest r primes, possibly excluding some that
cannot be factors of q − 1, as specified by context. Similarly, let P ∗s be the
product of the smallest (relevant) s primes in S5, and set Qs = (P ∗s )1/4− 1.
Then, evidently, (q + 1)4 > m ≥ P ∗s , and hence

max(Pr, Qs) < q < 2W (M),

where the latter is given in (5.3).
Suppose ωq,5 ≥ 18. A pivotal case occurs when r = 7, s = 12. By (5.3),

we have

• 8.8 · 105 < P7 < q < 219 < 5.3 · 105 if q ≡ 1 (mod 5), q 6≡ 1 (mod 55),
• 5.4 · 105 < Q12 < q < 5.3 · 105 if q ≡ 1 (mod 55),
• 1.9 · 106 < P7 < q < 220 < 1.1 · 106 if q 6≡ 1 (mod 5),

a contradiction in each case. A similar argument rules out the possibilities
that r = 6, s = 13, q ≡ 1 (mod 5), and r = 7, s = 11, q 6≡ 1 (mod 5). More
generally, we distinguish two cases.

Case (i): s ≤ 3(r + 1)/2. First, suppose q ≡ 1 (mod 5) so that r + s =
ω + 1 ≥ 19. Having excluded (r, s) = (7, 12), we deduce that r ≥ 8. By
assumption, 2r+s ≤ 2(5r+3)/2, and we obtain

3.2 < P8/243/2 ≤ Pr/2(5r+3)/2 ≤ q/2r+s < 1,

a contradiction. For justification, note that Pr/2(5r+3)/2 is increasing for
r ≥ 8, since the new prime factor of Pr+1, not a factor of Pr, exceeds
25/2 = 4

√
2.

Now, suppose q 6≡ 1 (mod 5), so that r + s = ω ≥ 18. Similarly, we can
suppose r ≥ 8, and derive a contradiction, namely

7 < P8/245/2 ≤ Pr/25(r+1)/2 ≤ q/2r+s+1 < 1.

Case (ii): s > 3(r + 1)/2. Again, first suppose q ≡ 1 (mod 5). Then
s ≥ 13. From the preliminary step, s = 13 implies r = 7, whence q < 220 <
1.05·106. If q ≡ 1 (mod 11), then 11 -m and Q13 > 2.1·106, a contradiction.
Hence, q 6≡ 1 (mod 11) and q ≥ P7 + 1 = 881791, which, in fact, is not a
prime power. Indeed, the next admissible candidate for P7 is 1067430; since
this exceeds q (from the above), this is a contradiction. We conclude that
s ≥ 14.
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If s = 14, then r = 7 or 8. In these cases,

1.86 < Q14/221, 2.3 < P8/222,

respectively, yield contradictions. Similarly, if s = 15, then r ≤ 8, and we
obtain the contradiction

1.89 < Q15/223 < q/2r+s < 1.

For s ≥ 16, we similarly use

1.2 < Q16/277/3 ≤ Q5/2(55−3)/3 < q/2r+s < 1.

When q 6≡ 1 (mod 5), the corresponding work is easier. Granted the
preliminary step, we may suppose s ≥ 13. If s = 13, then r ≤ 7, and

1.2 < Q13/221 < q/2r+s+1 < 1;

if s ≥ 14, then

1.005 < Q14/270/3 < Qs/255/3 < q/2r+s+1 < 1,

a contradiction in every case.
Summarising, we have shown that ωq,5 ≤ 17 as claimed. For 6 ≤ n ≤ 9,

similar (but simpler) reasoning leads to the displayed bounds for ωq,n. When
n = 7, we can exploit the fact that all prime factors of m lie in the set S7 =
{7, 29, 43, 71, . . .} whose members (> 7) are all congruent to 1 (mod 14). In
the other cases, the bounds were obtained without making special allowance
for the form of prime factors of m.

6. More complementary divisors. From Section 5, towards the goal
of Theorem 1.1, we may suppose 5 ≤ n ≤ 9 and q < 22(ω+1)/(n−3), with
ω = ωq,n bounded as indicated in Lemma 5.2. In this section we (almost)
complete the proof by describing other choices of complementary divisors
such thatAq,n(M1, . . . ,Mr) andBq,n(M1, . . . ,Mr) are satisfied. The method
fails only for a tiny set of prime powers q, with q ≤ 16, n = 5, q ≤ 11, n = 6,
or q = 2, n = 8. Within the framework of the above parameters, we deal
with larger values of ω and q in sizeable batches, based on convenient weaker
forms of Propositions 4.1 and 4.2.

A key principle that will operate is the following. Let M∗1 , . . . ,M
∗
r be

obtained by replacing each prime in M by one that is smaller (or the same).
Then Aq,n(M1, . . . ,Mr) holds whenever Aq,n(M∗1 , . . . ,M

∗
r ) does (as a for-

mal inequality). This is obvious, as can be seen by replacing the primes
one at a time: its merit is that large numbers of individual cases can be
dealt with simultaneously. In particular, the value of Θ̂ = Θ/Θ(M0), where
Θ = Θ(M1, . . . ,Mr), is especially influential, and replacement by Θ̂∗ =
Θ∗/Θ(M∗0 ), where Θ∗ = Θ(M∗1 , . . . ,M

∗
r ) is a significant component of this

broad approach. For smaller values of ω and q, we make specific application
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of Propositions 4.1 and 4.2, taking advantage of the more delicate refine-
ments these offer.

We reduce the length of the proof (perhaps, by one half) by illustrating
some of the procedures, but always in the most unfavourable cases, so that
their wider validity will be apparent. As it turns out, we focus on degrees
n = 5 or 6, which are of comparable difficulty, because the advantage of the
extra factor

√
q in Lq,6 is offset by the restricted candidate set S5 for prime

factors of m when n = 5 (as in Lemma 5.2). From this working, it becomes
apparent that it is unnecessary to consider the cases n ≥ 7 in full detail.

First, we suppose n = 5.

Lemma 6.1. Let q be a prime power and n = 5.

(A) There are regular complementary divisors M1, . . . ,Mr of M such
that Aq,5(M1, . . . ,Mr) is valid , except when q ≤ 8 or q = 16.

(B) There are complementary divisors such that Bq,5(M1, . . . ,Mr) holds,
except when q = 4, 5 or 7.

P r o o f. We suppress subscripts relating to the degree n = 5. When q is
odd, we shall have M0 = 2; when q is even, M0 = 1. By Lemma 5.2, we can
assume ω ≤ 17.

(A) We break the argument into a series of stages.

I: q odd , 11 ≤ ω ≤ 17. Note that, in Proposition 4.1, η1 = 0, η2 = 1. We
select complementary divisors M1,M2 (r = 2) with M0 = 2 (and m0 = 1).
Observe that, here, the portion of Rq involving M0, m0, but not Θ, is

1 + 2δ∗q (1− 1/q) < 3.

To illustrate, suppose ω = 11 and q ≡ 1 (mod 5), so that q < 212 = 4096
and ω(q − 1) ≤ 5. The more difficult case is when q 6≡ 1 (mod 11) (so that
11 may be a factor of m). Assume first that ω(q − 1) = 5 so that q >
2 ·3 ·5 ·7 ·13 = 2730. Take M1 = 2p1 . . . p5, M2 = 2p6 . . . p10, where p1, . . . , p4

are the odd primes in q − 1 (including 5) and p5, . . . , p10 are the primes
(> 5) dividing m (in increasing order). Replace p1, . . . , p10 by the members
of S = {3, 5, 7, 13, 11, 31, 41, 61, 71, 101} (in order) to yield M∗1 ,M

∗
2 , with

m∗1 = 5 · 11, m∗2 = 1
2M

∗
2 . Moreover, Θ̂(M∗1 ) = Θ(M∗1 )/Θ(M0) = 2Θ(M∗1 ) =

0.3836 . . . , Θ̂(M∗2 ) = 0.9065 . . . , and Θ̂ ≥ Θ̂∗ > 0.2901. Using the trivial
bound δ∗q (1− 1/q) + 1/q3/2 < 1, we have

Rq(M1,M2) ≤ Rq(M∗1 ,M∗2 )

< 3 +
Θ̂(M∗1 )(59 · 2 + 3κq) + (Θ̂(M∗2 ) · 31)(2 + κq)

0.2901
< 481 < q = Lq,
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since q > 2730. Here we have substituted κq = 4/π. The adjustment when
q 6= p or p2 (p small) is offset by the exclusion of p as a possible factor of
Mi, i = 1, 2.

Still with q ≡ 1 (mod 5) but q ≡ 1 (mod 11), next suppose ω(q−1) = 4,
so that ω(m) = 8 and, as in the proof of Lemma 5.2, q > (5 · 11 · 31 · 41 ·
61 · 71 · 101 · 131)1/4− 1 > 1413. Proceed as before, except that p1, p2, p3 are
the odd primes in q − 1, and p4, . . . , p10 the primes (> 5) in m (in order).
The replacement set S becomes {3, 5, 7, 11, 31, 41, 61, 71, 101, 131}. Further,
m∗1 = 5 · 11 · 31, m∗2 = 1

2M
∗
2 , and Θ̂(M∗1 ) = 0.4021 . . . , Θ(M∗2 ) = 0.9295 . . . ,

and Θ̂∗ > 0.3317. Then

Rq(M1,M2) < 3 +
Θ̂(M∗1 )(55 · 2 + 7κq) + (Θ̂(M∗2 ) · 31)(2 + κq)

0.3317
< 449 < q.

Thus Aq(M1,M2) holds in the above cases. When q ≡ 1 (mod 55), with
ω(q − 1) = 5, then q > 2310 and the argument proceeds as in the last case,
with the same S and Θ̂∗, and only the slight change that m∗1 = 5 · 31. In all
other cases with ω = 11, similar arguments, with more comfortable margins,
succeed.

II: q even, 10 ≤ ω ≤ 17. Since q < 2ω+1, we have q ≤ 217 and these pow-
ers of 2 could be tackled individually. But a general argument, independent
of the actual factorisation of M , works. To illustrate take ω = 10 so that
q ≤ 1024 < 3 · 5 · 7 · 11 and hence ω(q − 1) ≤ 3. As in I, if q ≡ 1 (mod 5),
then q > 1413. Thus, q 6≡ 1 (mod 5), and q > (11 ·31 · . . . ·131)1/4−1 > 945.
Necessarily, also, ω(q − 1) = 3. Set M1 = p1 . . . p5, M2 = p6 . . . p10, where
p1, p2, p3 divide q − 1, and p4, . . . , p10 divide m. The replacement set S
may be taken to be {3, 7, 13, 11, 31, . . . , 131}, yielding Θ(M∗1 ) = 0.4640 . . . ,
Θ(M∗2 ) = 0.9295 . . . , and Θ∗ > 0.3936. Since the Θ-free part of Rq is now
2δ∗q (1− 1/q) < 2, we derive

Rq(M1,M2) < 2 +
2 · 31Θ(M∗1 ) +Θ(M∗2 )

0.3936
< 222 < q.

III: q odd, 6 ≤ ω ≤ 10. We have q < 2048, ω(q − 1) ≤ 4. First suppose
ω ≥ 7. By actually factorising numbers of the form M = q5 − 1, with q a
prime power ≤ 223, we see that q ≥ 223. Take r = ω−1 and complementary
divisors Mi = 2pi, i = 1, . . . , r, where p1, . . . , pr are the odd divisors of M .
Hence mi = pi if pi |m; otherwise, mi = 1. Further, W (Mi) = 4, W (mi) = 1
or 2, i = 1, . . . , r. Clearly, Rq(M1, . . . ,Mr) is maximised under these con-
ditions when r = 9 and S = {3, 5, 7, 11, 31, 41, 61, 71, 101} (with 13 instead
of 5, if q 6≡ 1 (mod 5), etc). Thus Θ̂∗ exceeds 0.1358 if q ≡ 1 (mod 5).
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It is considerably larger (> 0.2589) if q 6≡ 1 (mod 5), or if ω(q − 1) = 3,
etc. So, we illustrate with the most delicate case with q ≡ 1 (mod 5) and
ω(q − 1) = 4. With S as above, we deduce

Rq(M1, . . . ,Mr) < 3 +
1.538 · 4 + 6.6121(2 + κq)

0.1358
< 208 < q.

In all other cases, the bound for Rq is (much) smaller, and Aq(M1,M2)
holds.

The above general discussion did not extend to cover the case ω = 6,
but a similar argument, specifically with r = 6, works. For then, q < 128
and ω(q − 1) ≤ 3. Furthermore, the least relevant prime power of q is 59.
To illustrate, suppose q ≡ 1 (mod 5) and ω(q − 1) = 3. Then we can take
S = {3, 5, 11, 31, 41}, Θ̂∗ > 0.3751, and obtain

Rq(M1, . . . ,Mr) < 3 +
4 · 2

3 + 3.6525(2 + κq)
0.3751

< 49 < q.

IV: q even, 6 ≤ ω ≤ 9. A general argument with r = ω and M1, . . . ,Mr

the primes in M succeeds for 7 ≤ ω ≤ 9. For ω = 6, we have q ≤ 64, with
equality, in fact, precisely when q = 64. In this case

R64(3, 7, 11, 31, 151, 331) <
2 · 5.391

0.391
+ 2 < 30 < q,

and A64 holds.

V: q < 64, ω ≤ 5. We identify the relevant prime powers q for each value
of ω. For ω = 5, q ∈ {16, 25, 31, 37, 47}. Bounding R31 more accurately from
(4.1), we have

R31(6, 10, 22, 34702) < 1 +
60
31
δ∗31 +

4 · 2
3 +

[
30
31

(
2δ∗31 + 4

π

)
+ 2

313/2

]

0.3751
< 30.7 < q,

using the easily calculated bound δ∗31 < 0.8503. This yields A31 with little to
spare. In fact, A37 and A47 hold more readily because, in these cases, q 6≡ 1
(mod 5) and Θ̂ > 0.55. For q = 25, simply using 24

25δ
∗ < 1, we have

R25(6, 22, 142, 1042) <
4 · 2

3 + 2.894
(
2 + 4

π

)

0.5597
+ 3 < 24.7 < q.

On the other hand, when q = 16, M agrees with its minimal theoretical
value of 3 · 5 · 11 · 31 · 41 and A16(3, 5, 11, 31, 41) does not hold. Although,
with care, A16 can be modified to yield a positive result when ab 6= 1, we
have to list this case as an exception.
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For ω = 4, q < 31, we have q ∈ {19, 27} and Aq holds. For,

R19(6, 302, 1822) <
4 · 2

3 + 1.993
(
2 + 4

π

)

0.6589
+ 3 < 17;

R27(22, 26, 9122) <
4 · 12

13 + 1.909(2 + κ27)
0.8319

+ 3 < 16,

using κ27 = 4
π

(
1 + 2

9

)
< 1.5562.

For ω ≤ 3, q < 16, we have q ≤ 8 or q ∈ {11, 13}. The largest pair of
these can be eliminated because

R11(10, 6442) <
4 · 4

5 + 0.9997
[

10
11

(
2 + 4

π

)
+ 2

113/2

]

0.7996
+ 1 +

20
11

< 10.7;

R13(6, 61882) <
4 · 2

3 +
(
2 + 4

π

)

0.666
+ 3 < 12.

Prime powers q ≤ 8 are listed as exceptions to (A).

(B) If the bound δ∗q (1− 1/q) + 1/q3/2 is used in (4.1) (as it was through
most of the working in (A)), then the coefficient of Θ(Mi) in (4.1) (relating
to Aq) exceeds that in (4.3) (relating to Bq) by an amount

q−1(W (Mi)−W (M0)−W (mi) +W (m0)) + ν(W (mi)−W (m0)),

where

ν =





κq

(
1− 1

q

)
− 1√

q

(
3− 4

q

)
, q odd,

2− 1√
q

(
3− 4

q

)
, q even,

and this is positive (whenever Mi 6= M0). Hence Aq implies Bq in virtually
every case treated in (A), and it suffices to check Bq for values of q such as
31 and 11, and those listed as exceptional for Aq.

When q = 31, the only odd prime divisor of M , not a divisor of m, is 3
and, in (4.3), we have η1 = 1, η2 = ε1 = ε2 = 0 and

R31(6, 10, 22, 34702) <
2
(

4
3 + 2.71

)
+ 3√

31
· 2.71

0.3751
+

2√
31

< 26 < L31 = 30.99 . . .
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Further

R16(3, 5, 11, 31, 41) =
4
3 + 3

4 · 3.6525
0.319

+
1
2
< 13.3,

R11(10, 6442) <
2
(

8
3 + 1

)
+ 3√

11

0.7996
+

2√
11

< 8.3,

R8(7, 31, 151) <
12
7 + 3√

8
· 1.961

0.818
+

2√
8
< 5.4,

which is less than Lq (> q − 1/q3) in each case. We even obtain a positive
result for q ∈ {2, 3}. Thus,

R2(31) =
1√
2

(1 + 12δ2,5) <
√

2 < L2 = 31/16.

For q = 3, we use non-regular complementary divisors 2, 11 and (4.3)
(slightly modified), with η2 = 1, ε1 = ε2 = η1 = 0, to yield

R3(2, 11) <
10
11 · 5

3
√

3

0.409
+

2

3
√

3
δ3,5 < 2.83 < L3 = 2.975 . . .

This completes the verification in every case not listed as exceptional.

Lemma 6.2. Let q be a prime power and n = 6.

(A) There are regular complementary divisors M1, . . . ,Mr of M such
that Aq,6(M1, . . . ,Mr) is valid , except when q ≤ 5 or q = 11.

(B) There are regular complementary divisors such that Bq,6(M1, . . .
. . . ,Mr) holds, except when q = 4.

P r o o f. We suppress subscripts relating to the degree n = 6, and assume
ω ≤ 17.

(A) Note that Lq = q3/2.

I: q odd , 10 ≤ ω ≤ 17. In Proposition 4.1 we have η1 = 1, ε1 = 1 if and
only if p = 3, and η2 = ε2 = 0. Of course, m is even; m is also divisible by
3 if and only if q ≡ 1 (mod 3). Note also that M is divisible by 8.

Given ω, we select complementary divisors M1,M2, with common divisor
2l, where l is the least odd prime factor of M . Then m0 = 2 (unless l = 3,
when m0 = 6). Thus, from Proposition 4.1,

(6.1) Rq < 2Θ−1
( 2∑

i=1

Θ(Mi)(W (Mi)− 4)
)

+ 7,

where the final 7 may be replaced by 3 when l = 3.
To illustrate, we treat the most delicate case, namely, ω = 10, l = 3 (i.e.,

q ≡ 1 (mod 6)). Set M1 = 6p1 . . . p4, M2 = 6p5 . . . p8, where p1, . . . , p8 are
the odd primes (> 3) dividing M (in increasing order). Thus W (M1) =
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W (M2) = 64, and Rq(M1,M2) ≤ Rq(M∗1 ,M
∗
2 ), where M∗1 ,M

∗
2 are ob-

tained by replacing p1, . . . , p8 by the smallest 8 primes exceeding 3, i.e.,
by 5, 7, . . . , 29. Moreover, Θ̂ = Θ/Θ(6) = 3Θ ≥ Θ̂∗ = 3Θ∗ > 0.3988. Hence,
by (6.1),

Rq(M1,M2) <
120(Θ̂(M∗1 ) + Θ̂(M∗2 ))

0.3988
+ 7 < 428.

On the other hand, from M , q > (8 · 3 · 5 · 7 · . . . · 29)1/6 − 1 > 53. Thus,
because q is a prime power, q ≥ 59 and Lq > 453 > Rq(M1,M2) (by the
above). Consequently, Aq(M1,M2) holds. For 11 ≤ ω ≤ 17, the argument
is similar, but there is no need for a step analogous to the one above which
allowed 53 to be replaced by 59.

II: q even, 10 ≤ ω ≤ 17. Take complementary divisors M1,M2 with
common divisor l, the least (odd) prime factor of M and proceed as in I.
The working is more comfortable because W (Mi) is approximately halved,
in general.

III: q odd (≥ 29), ω ≤ 9. Take r = ω− 2 ≤ 7 and Mi = 2lpi, i = 1, . . . , r,
where l is the least odd prime divisor of M and p1, . . . , pr the remaining
odd prime divisors (as in I). Then M0 = 2l, m0 = 2 (unless l = 3, when
m0 = 6). To illustrate, take l = 3, so that q ≡ 1 (mod 6). Clearly, Rq is
maximised when r = 9 and p1, . . . , p7 are replaced by the primes in [5, 23].
Thus Θ̂ ≥ Θ̂∗ > 0.3443 and, extending (6.1) to r complementary divisors,
we obtain

Rq <
8 · 6.3443

0.3443
+ 7 < 155 < Lq = q3/2,

since q ≥ 29, and so q2/3 > 156. Thus Aq holds.

IV: q even (≥ 32), ω ≤ 9. This is similar to III, except that r = ω − 1,
Mi = lpi, i = 1, . . . , r, and M0 = l.

V: q ≤ 27. We deal with the remaining powers in order of decreasing ω,
taking M0 = 2 or 1 according as q is odd or even. In fact, ω ≤ 6 for all
q ≤ 27, and, hence, by Lemma 5.2, q < 214/3 < 25.4, i.e., q ≤ 25.

For ω = 6, there remains q ∈ {11, 16, 23, 25}. Indeed, we have

R25(6, 14, 26, 62, 1202) <
4 · 4.413

0.413
+ 3 < 46 < L25 = 125;

R23(6, 14, 22, 26, 158) <
4 · 4.344

0.344
+ 3 < 54 < L23 = 110.3 . . . ;

R16(3, 5, 7, 13, 17, 24) <
2 · 5.1839

0.1839
+ 2 < 59 < L16 = 64.

Unfortunately, when q = 11, then M = 2 · 3 · 5 · 7 · 19 · 37, and A11 appears
not to hold for any choice of complementary divisors. Hence, this value is
listed as an exception.
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For ω = 5, we can suppose q < 24 = 16. This leaves q ∈ {9, 13}. For
q = 9, all prime factors of M divide m (so that Mi = mi in every case). We
obtain

R9(10, 14, 26, 146) <
4
(

8
9 + 1

27

) · 3.566
0.566

+ 2.5 < 26 < L9 = 27,

since 2(δ∗9(1− 1/9)) + 3/(2
√

9) < 2.5;

R13(6, 14, 122, 314) <
4 · 3.501

0.501
+ 3 < 31 < L13 = 46.8 . . .

For ω ≤ 4, we can assume q < 210/3 < 10.1, and hence q ≤ 8. We can
eliminate q ∈ {7, 8}. When q = 8, we have

R8(3, 7, 19, 73) <
2 · 3.457

0.457
+ 2 < R8 = 22.6 . . .

When q = 7, all prime factors of M divide m, and, using more care, we have

R7(6, 38, 86) <

(
6
7δ
∗
7 + 1

73/2

) · 2.5907

0.5907
+ 2
(

6
7
δ∗7 +

1
73/2

)
+

3

2
√

7
< 18.4 < L7 = 18.52 . . . ,

simply using δ∗7 < 1. (In fact, δ∗7 < 0.902.)
Values of q remaining are listed as exceptions. This completes the proof

for Aq.

(B) SinceAq generally impliesBq, it suffices to check q ∈ {2, 3, 5, 7, 9, 11},
which includes all exceptions to (A), except q = 4.

First, we verify B11(6, 10, 14, 38, 74), observing that 5 is the only prime
divisor of M , not a divisor of m. Thus Mi = mi, except for Mi = 10. Thus,

R11(6, 10, 14, 38, 74) <
21
11 · 8

5 + 1√
11

(
2 · 29

11 · 3.445
)

0.2441
+

20
11
δ11,5

< 35.5 < L11 = 36.48 . . .

Further

R9(10, 14, 26, 146) <
1
3

((
2 · 23

9

) · 3.566
0.566

+
16
9

+ 1
)
< 12 < L9 = 26.99 . . . ;

R7(6, 38, 86) <
1√
7

((
2 · 17

7

) · 2.591
0.591

+
12
7

)
< 8.7 < L7 = 18.51 . . . ;

R5(6, 14, 62) <
1√
5

((
2 · 11

5

) · 2.491
0.491

+
8
5

)
< 10.7 < L5 = 11.17 . . . ;

R3(14, 26) <
1√
3

((
2 · 5

3

) · 1.7802
0.7802

+
4
3
− 1
)
< 4.6 < L3 = 5.18 . . . ,
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exploiting the fact that here the ε1-term is negative;

R2(3, 7) <
1√
2

(
1.5238
0.5238

+ 1
)
< 2.765 < L2 = 2.784 . . .

This completes the proof of the lemma.

Lemma 6.3. Let q be a prime power and n (≥ 7) be an integer.

(A) There are regular complementary divisors M1, . . . ,Mr of M such
that Aq,n(M1, . . . ,Mr) holds, except for A2,8.

(B) There are regular complementary divisors such that Bq,n(M1, . . .
. . . ,Mr) holds.

P r o o f. By Lemmas 5.2, 6.1 and 6.2, it suffices to suppose n = 7 (with
ω ≤ 6), n = 8 (with ω ≤ 11), or n = 9 (with ω ≤ 7). From the working
of this section so far, plus the fact that (essentially) Lq,n+1 =

√
qLq,n, it is

clear that only extremely small values of q (say, q ≤ 5) could be in doubt.
Moreover, when n = 7, because the bulk of the prime factors of M divide
m and so lie in S7 = {7, 29, 43, 71, . . .}, the result easily holds in this case.
The only pair (q, n) for which the result is delicate is (2, 8). This was an
exceptional case for the corresponding condition in [ChCo] for a = b = 0
and, again, A2,8 fails here. But B2,8 holds. For, then,

R2,8(3, 5, 17) <
1√
2

(
2.407
0.407

+
δ2,8
2

)
< 4.9 < L2,8 = 5.63 . . .

7. Completion of proof of Theorem 1.1. We used MAPLE (Version
5, Release 3) to test the results for the twelve pairs (q, n) not (wholly)
covered by Lemmas 6.1–6.3. Specifically, in each case, we generated Fqn
over the prime field Fp by means of the primitive polynomial P of Fqn listed
in [HaMu]. Using the MAPLE Galois Field package and a root α of P , a
representation was obtained for each pair (Tn(αi), Tn(1/αi)), i = 1, 2, 3, . . . ,
proceeding as far as was necessary for the cardinality of the set of such
pairs (and their reflections) to reach q2. This occurred within a few minutes
in every case, except for the three exceptional pairs listed in Theorem 1.1,
when, following a complete run, we found that the set of pairs was deficient
by (0, 0) in each case.
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