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1. Introduction. We are concerned with diophantine approximation
and continued fractions in function fields. The rôles of Z, Q, and R in the
classical theory are played by K[T ], K(T ) and K((T−1)), where K is an
arbitrary given field. An element of the field K((T−1)) of power series will
be denoted by α = akT

k + ak−1T
k−1 + . . . where k ∈ Z, ai ∈ K and ak 6= 0.

The rational k is called the degree of α, denoted by degα. An ultrametric
absolute value is defined by |α| = |T |degα and |0| = 0, where |T | is a fixed
real number greater than 1. Thus the field K((T−1)) should be viewed as a
completion of the field K(T ) for this absolute value.

We are considering the case when the base field K is finite. Let p be a
prime number and q a positive power of p. Let K be a field of characteristic p.
We consider the following algebraic equation with coefficients A,B,C and
D in K[T ] and ∆ = AD −BC 6= 0:

(1) x =
Axq +B

Cxq +D
.

If α is an irrational solution in K((T−1)) of such an equation, we say that
α is algebraic of class I . The subset of algebraic elements of class I has
different important properties concerning diophantine approximation. One
of these properties, proved by Voloch [11] and de Mathan [7], implies the
following:

If α is algebraic of class I , and P/Q ∈ K(T ), either we have

(2) lim inf
|Q|→∞

|Q|2|α− P/Q| > 0

or there exists a real number µ > 2 such that

(3) lim inf
|Q|→∞

|Q|µ|α− P/Q| <∞.
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Notice that there exist in K((T−1)) algebraic elements over K(T ) which
satisfy none of these two conditions and thus are not of class I. For such an
algebraic element α we have lim inf |Q|→∞ |Q|2|α− P/Q| = 0 and

lim inf
|Q|→∞

|Q|µ|α− P/Q| =∞ for all µ > 2.

An example of such an algebraic element is given in [3].
We will now use the continued fractions in the field K((T−1)). The reader

is referred to [9] for a good study on this subject. If α ∈ K((T−1)) we write
α = [a0, a1, . . .] for its continued fraction expansion, where the ai ∈ K[T ]
are the partial quotients and deg ai > 0 for i > 0. We denote by (pn/qn)n≥0

the sequence of the convergents to α such that pn/qn = [a0, a1, . . . , an] for
n ≥ 0. We have the following important equation:

|α− pn/qn| = |an+1|−1|qn|−2 for n ≥ 0.

Then the two conditions above can be translated into the following:

(2) The sequence of partial quotients in the continued fraction expansion
for α is bounded , i.e. lim supn |an| <∞.

(3) The sequence of partial quotients in the continued fraction expansion
for α is unbounded and moreover there exists a positive number µ′ such that
lim supn |an+1| · |qn|−µ′ > 0.

If an element in K((T−1)) of class I satisfies condition (2) we will say
that it is an element of class Ib and if it satisfies condition (3) we will say
that it is of class Iub.

It is easy to remark that an element in K((T−1)) which is algebraic
over K(T ) of degree at most 3 is of class I. By Liouville’s theorem [6] we
know that the quadratic elements in K((T−1)) are of class Ib. Moreover the
continued fraction for quadratic power series has been studied [9] and it is
periodic when the base field K is finite. This is another argument to see
that a quadratic element in K((T−1)) is of class Ib.

Most of the elements of class I are of class Iub. Actually it is possible
to show that if an element is of class Ib then the degree of its partial quo-
tients is bounded by deg∆/(q − 1), except for the first ones ([4] and [8]).
Consequently, if q > 1 + deg∆ in equation (1), then the corresponding so-
lution is of class Iub. Of course, this condition is only sufficient. The case
where ∆ ∈ K∗ is special and has been studied in [9]. In this case the above
condition, i.e. q > 1 + deg∆, is true for all p and q, thus such an element
is always of class Iub. Moreover the continued fraction expansion for these
elements can be explicitly described ([9] and [10]).

When K = F2, Baum and Sweet [1] were the first to prove that the
class Ib is larger than the class of quadratic elements. They gave a famous
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example of a cubic power series with partial quotients of degree two or less.
Their approach has been generalized and we have obtained other examples
when the base field is F2 [4]. Furthermore, Baum and Sweet [2] have also
described the power series in F2((T−1)) which have all partial quotients of
degree one in their continued fraction expansion. We have given a different
characterization of these elements [5]. It follows from this new characteri-
zation that if an algebraic element in F2((T−1)) is not quadratic and has
all its partial quotients of degree one, then it is not an element of class I.
Thakur [10] has also given examples of non-quadratic elements of class Ib

when the base field K is a finite extension of F2.
In characteristic p ≥ 3 less examples are known. Nevertheless Mills and

Robbins [8] have described an algorithm to compute the continued fraction
expansion for elements of class I. This enabled them to give an example of
a non-quadratic element of class Ib with all partial quotients of degree one
when the base field is Fp for all prime p ≥ 3.

As was first observed by Baum and Sweet [1] and [2], each of the three
classes I, Ib and Iub, is stable under a Möbius transformation, under the
Frobenius isomorphism and also under the substitution of T into a poly-
nomial in T . These two last transformations induce an evident transfor-
mation on the corresponding continued fractions. But it is not easy to say
in general what the partial quotients become after a Möbius transforma-
tion. Nevertheless, the case when the determinant of this map is in the
base field K is special and in this situation the element and its image
have almost the same expansion [9]. It is also interesting to notice that
each of these three transformations preserves the degree of an algebraic el-
ement.

2. The case K = F3 and q = p = 3. We have investigated the case
when the base field is F3. Non-quadratic elements of class Ib seem to be rare
in class I. We have searched for examples with all partial quotients of de-
gree one. According to what we have said above, if an element in F3((T−1))
is of class Ib and if deg∆ = 2 then all its partial quotients are of degree
one, except for a finite number. Thus we have checked up all possible equa-
tions (1) having a unique solution α in F3((T−1)) with |α| = |T |−1 and
where the polynomials A,B,C and D ∈ F3[T ] are of low degree satisfying
deg(AD −BC) = 2.

From the results obtained by computer, we think that after some of the
transformations mentioned above—i.e. a Möbius transformation of determi-
nant in F∗3 and the change of T into uT + v—the non-quadratic elements
of class Ib that have all partial quotients of degree one reduce to a set of
exceptional cases. These elements have a very peculiar continued fraction
expansion and this is what we want to illustrate with the following theorem.
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Theorem. Let k be a non-negative integer. Define the sequence of inte-
gers (un)n≥0 by

u0 = k and un+1 = 3un + 4 for n ≥ 0.

If a ∈ F3[T ] and n ≥ 0 is an integer , a[n] denotes the sequence a, a, . . . , a
where a is repeated n times and a[0] is the empty sequence. Then define a
finite sequence Hn(T ) of elements of F3[T ], for n ≥ 0, by

Hn(T ) = T + 1, T [un], T + 1.

Let H∞(k) be the infinite sequence defined by juxtaposition

H∞(k) = H0(T ),H1(−T ),H2(T ), . . . , Hn((−1)nT ), . . .

Let ω(k) be the element of F3((T−1)) defined by its continued fraction ex-
pansion

ω(k) = [0,H∞(k)].
Let (pn)n≥0 and (qn)n≥0 be the usual sequences for the numerators and the
denominators of the convergents of ω(k).

Then ω(k) is the unique solution in F3((T−1)) of the irreducible quartic
equation

(1) x =
pkx

3 + pk+3

qkx3 + qk+3
.

Remark. For example, if k = 0 then

ω(0) = [0, T + 1, T + 1,−T + 1,−T [4],−T + 1, T + 1, T [16], T + 1,−T + 1, . . .]

and this element satisfies the algebraic equation

x =
T 2 + 1

T 3 + T 2 − T − x3 .

Moreover, it is easy to show that equation (1) has a unique solution in
F3((T−1)). Therefore if we prove that this solution is ω(k), then since its
continued fraction expansion is neither finite nor periodic, it will follow that
ω(k) is algebraic of degree 4 over F3(T ).

P r o o f (of the Theorem). Let k be a non-negative integer. Let ω(k) ∈
F3((T−1)) be defined by the continued fraction expansion described in the
Theorem. We write ω(k) = [a0, a1, . . .] where the ai ∈ F3[T ] are the partial
quotients. We recall that if (pn/qn)n≥0 is the sequence of convergents to
ω(k) defined by pn/qn = [a0, a1, . . . , an], we have

(2) pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2

for n ≥ 0 with p−2 = 0, q−2 = 1, p−1 = 1, q−1 = 0. Since a0 = 0 and
|an| = |T | for n ≥ 1, it is clear that |qn| = |T |n for n ≥ 0. Moreover we have

(3) |ω(k)− pn/qn| = |an+1|−1|qn|−2 = |T |−1|qn|−2 for n ≥ 0.
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The first step will be to prove that the Theorem is equivalent to a prop-
erty satisfied by the two sequences (pn)n≥0 and (qn)n≥0. Let fk be the
Möbius transformation involved in equation (1), such that (1) can be writ-
ten x = fk(x3). Hence we must prove that ω(k) = fk(ω(k)3).

We put

(4)
{
An = pkp

3
n + pk+3q

3
n,

Bn = qkp
3
n + qk+3q

3
n

for n ≥ 0. Thus we have

An
Bn

= fk

((
pn
qn

)3)
.

Suppose now that ω(k) = fk(ω(k)3). Then

(5) |ω(k)−An/Bn| = |fk(ω(k)3)− fk((pn/qn)3)|.
By straightforward calculation we obtain

(6) fk(ω(k)3)− fk((pn/qn)3) =
(qk+3pk − pk+3qk)(ω(k)− pn/qn)3

(qkω(k)3 + qk+3)(qk(pn/qn)3 + qk+3)
.

Since |pn/qn| = |ω(k)| = |T |−1, we have

(7) |qkω(k)3 + qk+3| = |qk(pn/qn)3 + qk+3| = |qk+3|.
By (5)–(7), we can write

(8) |ω(k)−An/Bn| = |qk+3pk − pk+3qk| · |qk+3|−2|ω(k)− pn/qn|3.
Now we have

|pk+3/qk+3 − pk/qk| = |ω(k)− pk/qk| = |T |−1|qk|−2

and, since |qn| = |T |n for n ≥ 0, we get

|qk+3pk − pk+3qk| = |T |−1|qk|−1|qk+3| = |T |2.
Finally, using (3) and observing that |Bn| = |qk+3q

3
n|, (8) becomes

(9) |ω(k)−An/Bn| = |T |−1|Bn|−2.

Consequently, by (9) we have |Bn|2|ω(k)−An/Bn| < 1, and this proves that
An/Bn is a convergent to ω(k). Put An/Bn = pm/qm. Comparing equality
(3) for n = m to (9) we obtain |Bn| = |qm|. Since |qm| = |T |m and |Bn| =
|T |3n+k+3, we get m = 3n+ k + 3 and thus An/Bn = p3n+k+3/q3n+k+3.

Conversely, if An/Bn = p3n+k+3/q3n+k+3, then it follows from (4) that
p3n+k+3/q3n+k+3 = fk((pn/qn)3) for n ≥ 0. Letting now n go to infinity, we
obtain ω(k) = fk(ω(k)3).
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This shows that the theorem is equivalent to the following: There exists
εn ∈ F∗3, for n ≥ 0, such that

(10)
{
p3n+k+3 = εn(pkp3

n + pk+3q
3
n),

q3n+k+3 = εn(qkp3
n + qk+3q

3
n).

We now introduce the following notation: for a ∈ F3[T ], we denote by
ε(a) the leading coefficient of the polynomial a. Then ε(a) = ±1. By (2),
we have ε(qn) = ε(an)ε(qn−1) for n ≥ 1. Thus ε(qn) =

∏
1≤i≤n ε(ai). This

allows us to determine εn, assuming that (10) holds. We see indeed that

ε(q3n+k+3) = εnε(qkp3
n + qk+3q

3
n) = εnε(qk+3q

3
n) = εnε(qk+3)ε(qn).

We observe that ε(ai) = 1 for 1 ≤ i ≤ k + 2 and ε(ak+3) = −1. Hence
ε(qk+3) = −1 and εn = −ε(q3n+k+3)ε(qn). Consequently, we have

(11) εn = −
∏

n+1≤i≤3n+k+3

ε(ai) for n ≥ 0.

The last step will be to prove (10). For this we shall use induction on n.
Clearly (10) is true for n = 0 with ε0 = 1. Next, it follows from (2) and (4)
that we can write

An = pkp
3
n + pk+3q

3
n = pk(anpn−1 + pn−2)3 + pk+3(anqn−1 + qn−2)3.

Using the Frobenius isomorphism, this equality becomes

(12) An = a3
nAn−1 +An−2 for n ≥ 2.

Because of the same recursive definition for the two sequences (pn)n≥0 and
(qn)n≥0, the same recurrence relation holds clearly for the sequence (Bn)n≥0.

In order to prove (10) by induction, we will show that the sequences
(p3n+k+3)n≥0 and (q3n+k+3)n≥0 satisfy a recurrence relation similar to (12).
For this we first express pn in terms of pn−3, pn−5 and pn−6. Applying (2)
successively, we can write

pn = anpn−1 + pn−2 = an(an−1pn−2 + pn−3) + pn−2,

pn = an[an−1(an−2pn−3 + pn−4) + pn−3] + an−2pn−3 + pn−4,

pn = (anan−1an−2 + an + an−2)pn−3 + (anan−1 + 1)pn−4

for n ≥ 6. We now introduce some new notations. Since ai and aj are
polynomials of degree 1 for i, j ≥ 1, there exist λi,j ∈ F∗3 and µi,j ∈ F3, such
that we can write ai = λi,jaj + µi,j . Thus we obtain

(anan−1 + 1)pn−4 = an(λn−1,n−3an−3 + µn−1,n−3)pn−4 + pn−4

= anλn−1,n−3(pn−3 − pn−5)

+ (λn,n−3an−3 + µn,n−3)µn−1,n−3pn−4 + pn−4

= (anλn−1,n−3 + λn,n−3µn−1,n−3)(pn−3 − pn−5)

+ (1 + µn,n−3µn−1,n−3)pn−4.
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Finally, combining these equalities and using again pn−4 = an−4pn−5+pn−6,
we can write

(13) pn = xnpn−3 + ynpn−6 + znpn−5

for n ≥ 6 with

(14)




xn = anan−1an−2 + an(1 + λn−1,n−3) + an−2 + λn,n−3µn−1,n−3,
yn = 1 + µn,n−3µn−1,n−3,
zn = an−4(1 + µn,n−3µn−1,n−3)− λn−1,n−3an − λn,n−3µn−1,n−3.

Once again, the same recursive definition for the two sequences (pn)n≥0 and
(qn)n≥0 shows that (13) holds with p changed to q.

We want to apply (13) with n replaced by 3n + k + 3. Since (13) holds
for n ≥ 6, the same relation with 3n+k+ 3 instead of n will hold for n ≥ 1.
We need to express x3n+k+3, y3n+k+3 and z3n+k+3 for n ≥ 1. It is clear that
this will be possible if we know the five consecutive partial quotients from
a3n+k+3 to a3n+k−1. For this reason, we return to the description of the
sequence of partial quotients (an)n≥0 given in the Theorem. We introduce
the sequence of integers (πi)i≥0 in the following way. The finite subsequence
of partial quotients represented by Hi((−1)iT ) will be denoted by

Hi((−1)iT ) = aπi , aπi+1, . . . , aπi+1−1.

From the definition of the sequence (an)n≥0 it is easy to remark that we
have πi+1 − πi = ui + 2 for i ≥ 0 and therefore πi+1 − πi = 3ui−1 + 6 =
3(πi − πi−1 − 2) + 6 = 3(πi − πi−1) for i ≥ 1. Thus πi+1 − 3πi = πi − 3πi−1,
and we obtain πi+1 − 3πi = π1 − 3π0 = (k + 3)− 3 = k for i ≥ 0. Thus the
sequence (πi)i≥0 is defined by

(15) π0 = 1 and πi+1 = 3πi + k.

We now use a partition of the set N∗ = N−{0} into three classes defined by

E1 = {n ∈ N∗ : there exists i ≥ 0 such that n = πi},
E2 = {n ∈ N∗ : there exists i ≥ 1 such that n = πi − 1},
E3 = {n ∈ N∗ : there exists i ≥ 1 such that πi−1 < n < πi − 1}.

The expression of x3n+k+3, y3n+k+3 and z3n+k+3 will depend on the class
to which the integer n belongs.
• Assume that n ∈ E1. By (15), there is i ≥ 0 such that 3n+ k = πi+1.

Therefore we have

a3n+k = (−1)i+1T + 1, a3n+k−1 = (−1)iT + 1

and
a3n+k+1 = a3n+k+2 = a3n+k+3 = (−1)i+1T.

Hence

λ3n+k+2,3n+k = λ3n+k+3,3n+k = 1, µ3n+k+3,3n+k = µ3n+k+2,3n+k = −1.
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Then, by (14), a simple calculation shows that


x3n+k+3 = (−1)i+1T 3 − 1,
y3n+k+3 = −1,
z3n+k+3 = 0.

Furthermore, as n = πi we have an = (−1)iT + 1, and so (13) becomes

(16) p3n+k+3 = −a3
np3n+k − p3n+k−3.

• Assume that n ∈ E2. By (15), there is i ≥ 1 such that 3n+k+3 = πi+1.
Therefore we have

a3n+k+3 = (−1)i+1T + 1, a3n+k+2 = (−1)iT + 1

and

a3n+k+1 = a3n+k = a3n+k−1 = (−1)iT.

Hence

λ3n+k+2,3n+k = 1, λ3n+k+3,3n+k = −1,

µ3n+k+3,3n+k = µ3n+k+2,3n+k = 1.

Then, by (14), a simple calculation shows that


x3n+k+3 = (−1)i+1T 3 + 1,
y3n+k+3 = −1,
z3n+k+3 = 0.

Furthermore, as n = πi−1 we have an = (−1)i−1T +1, and so (13) becomes

(17) p3n+k+3 = a3
np3n+k − p3n+k−3.

• Assume that n ∈ E3. By (15), there is i ≥ 1 such that πi < 3n + k <
πi+1− 3. Since πi− k is a multiple of 3 for i ≥ 1, we have πi + 3 ≤ 3n+ k ≤
πi+1 − 6. Therefore we have πi + 2 ≤ 3n+ k− 1 and 3n+ k+ 3 ≤ πi+1 − 3.
Thus

a3n+k+3 = a3n+k+2 = a3n+k+1 = a3n+k = a3n+k−1 = (−1)iT.

Hence

λ3n+k+2,3n+k = λ3n+k+3,3n+k = 1 and µ3n+k+3,3n+k = µ3n+k+2,3n+k = 0.

Then, by (14), a simple calculation shows that


x3n+k+3 = (−1)iT 3,
y3n+k+3 = 1,
z3n+k+3 = 0.

Furthermore, as πi−1 < n < πi − 1 we have an = (−1)i−1T , and so (13)
becomes

(18) p3n+k+3 = −a3
np3n+k + p3n+k−3.
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In conclusion we have shown that we can write

(19) p3n+k+3 = θna
3
np3n+k + θ′np3n+k−3

for n ≥ 1, where θn = ±1 and θ′n = ±1 are given in (16), (17) or (18). Of
course, for the reason given above, we also have the same relation with p
changed to q. Now taking n = 1, as 1 ∈ E1 by (16), we have

pk+6 = −a3
1pk+3 − pk and qk+6 = −a3

1qk+3 − qk.
Since p1 = 1 and q1 = a1, this shows that (10) holds for n = 1 with ε1 = −1.

We can now begin our proof by induction. Let n ≥ 2 be an integer. We
assume that An−1 = εn−1p3n+k and An−2 = εn−2p3n+k−3. Hence from (12)
we can write

An = a3
nεn−1p3n+k + εn−2p3n+k−3

and this becomes

(20) An = εn−2θ
′
n(εn−1εn−2θ

′
na

3
np3n+k + θ′np3n+k−3).

Recall that the same relation holds with B instead of A and q instead of p.
Comparing (19) and (20), if we prove that

(21) θn = εn−1εn−2θ
′
n

for n ≥ 2, then we will have An = εn−2θ
′
np3n+k+3 and Bn = εn−2θ

′
nq3n+k+3.

Thus (10) will hold for all n ≥ 2 with εn = εn−2θ
′
n. By (11), which is true

by induction for n− 1 and n− 2, we easily obtain

(22) εn−1εn−2 = ε(an−1)ε(a3n+k−2)ε(a3n+k−1)ε(a3n+k).

Once again we distinguish three cases:
• Assume that n ∈ E1. By (16), θn = −1 and θ′n = −1. Furthermore,

by (15), there is i ≥ 1 such that n = πi and 3n + k = πi+1. This implies
an−1 = (−1)i−1T + 1 and

a3n+k = (−1)i+1T + 1, a3n+k−1 = (−1)iT + 1, a3n+k−2 = (−1)iT.

Hence, by (22), we obtain

εn−1εn−2 = (−1)i−1(−1)i(−1)i(−1)i+1 = 1.

Thus we see that (21) is satisfied.
• Assume that n ∈ E2. By (17), θn = 1 and θ′n = −1. Furthermore, by

(15), there is i ≥ 1 such that n = πi− 1 and 3n+ k = πi+1− 3. This implies
an−1 = (−1)i−1T and

a3n+k = a3n+k−1 = a3n+k−2 = (−1)iT.

Hence, by (22), we obtain

εn−1εn−2 = (−1)i−1(−1)i(−1)i(−1)i = −1.

Thus we see that (21) is satisfied.
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• Assume that n ∈ E3. By (18), θn = −1 and θ′n = 1. Furthermore, by
(15), there is i ≥ 1 such that πi−1 < n < πi−1 and πi+3 ≤ 3n+k ≤ πi+1−6.
This implies ε(an−1) = (−1)i−1 and

a3n+k = a3n+k−1 = a3n+k−2 = (−1)iT.

Hence, by (22), we obtain

εn−1εn−2 = (−1)i−1(−1)i(−1)i(−1)i = −1.

Thus we see again that (21) is satisfied.
In conclusion (21) is satisfied for all n ≥ 2, and so the proof of the

Theorem is complete.

Before concluding, we make a last remark. While searching by computer
for promising examples with all partial quotients of degree one, we have
observed other types of continued fraction expansions than the one we have
described in the Theorem. These have a pattern which is not very far from
the previous one, but slightly more complicated. We want to describe here
one of these types.

Let k ≥ 0 and l ≥ 0 be two integers. Let (un)n≥0 and (vn)n≥0 be two
sequences of integers defined recursively by

u0 = k, un+1 = 3un + 4 and v0 = l, vn+1 = 3vn + 4.

Let Hn and Kn, for n ≥ 0, be two finite sequences of elements of F3[T ]
befined by

Hn = T + (−1)n, T [un], T + (−1)n+1

and

Kn = −T + (−1)n+1,−T [vn],−T + (−1)n+1.

Let H∞(k, l) be the infinite sequence defined by juxtaposition

H∞(k, l) = H0,K0,H1,K1,H2,K2,H3,K3, . . .

Let Ω(k, l) be the element of F3 defined by its continued fraction expansion

Ω(k, l) = [0,H∞(k, l)].

Then we conjecture that Ω(k, l) is an algebraic element of degree 4 over
F3(T ) and that it satisfies an equation of the form x = f(x3) where f is a
Möbius transformation with selected coefficients in F3[T ].

The case k = l = 1 corresponds to the example given by Mills and
Robbins [8].
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