
ACTA ARITHMETICA
XCV.1 (2000)

Exponential sums with rational function entries

by

Todd Cochrane (Manhattan, KS) and Zhiyong Zheng (Guangzhou)

1. Introduction. In this paper we extend the results of [6] to pure and
mixed exponential sums of the type

(1.1) S(f, pm) =
pm∑
x=1

epm(f(x)), S(χ, f, pm) =
pm∑
x=1

χ(x)epm(f(x)),

with rational function entries. Here pm is a prime power with m ≥ 2, χ is a
multiplicative character (mod pm), epm(·) is the additive character,

epm(x) = e(x/pm) = e2πix/pm ,

and f = f1/f2 is a rational function with f1, f2 ∈ Z[X], and (f1, f2) = 1
in Z[X]. It is understood that in the two sums x is to take on only values
with p - f2(x), p -xf2(x) respectively, and that f(x) means f1(x)f2(x), where
f2(x) denotes the multiplicative inverse of f2(x) (mod pm). Let d(f) and
d∗(f) denote the total and maximal degrees of f ,

d(f) := d(f1) + d(f2), d∗(f) := max{d(f1), d(f2)}.
Let f̃ denote the image of f in Fp(X), f̃ = f̃1/f̃2, and let

dp(f) = d(f̃), d∗p(f) = d∗(f̃),

the total and maximal degrees of f̃ (written in reduced form).
It was established by Bombieri [2], Theorem 5, that for the case m = 1

we have for any f with dp(f) ≥ 1,

(1.2) |S(f, p)| ≤ (n− 2 + deg(f̃)∞)p1/2 + 1,
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where n is the number of poles and (f̃)∞ is the divisor of the poles of f̃ over
the algebraic closure Fp of Fp: (f̃)∞ =

∑n
i=1 diPi. Here the Pi are the poles

(including∞ if necessary) and the di are their respective multiplicities. The
plus 1 on the right-hand side of (1.2) may be omitted if f̃ has a pole at ∞.
Perelmuter [23] extended Bombieri’s result to mixed exponential sums and
obtained for any multiplicative character χ and any rational function f over
Z with dp(f) ≥ 1,

(1.3) |S(χ, f, p)| ≤ (n− 1 + deg(f̃)∞)p1/2.

In particular, from (1.2) and (1.3) one obtains the uniform upper bounds

|S(f, p)| ≤
{

(dp(f)− 1)p1/2 if dp(f1) > dp(f2),
2(dp(f2)− 1)p1/2 + 1 if dp(f1) ≤ dp(f2),

(1.4)

|S(χ, f, p)| ≤
{
dp(f)p1/2 if dp(f1) > dp(f2),
(2dp(f2)− 1)p1/2 if dp(f1) ≤ dp(f2).

(1.5)

For values of m ≥ 2 little has been said about these sums for rational
functions in general, although the case of polynomials has been studied
extensively and is discussed at length in our work [6]; see Chalk [4], Chen
[5], Ding [8], [9], Hua [12]–[14], Konyagin and Shparlinski [17], Loh [18],
[19], Loxton and Smith [20], Loxton and Vaughan [21], Nechaev [22], Smith
[26] and Stechkin [27]. The first sums with rational function entries to be
studied were the Kloosterman sums with f(X) = AX +BX−1. Shparlinski
[25] treated the more general case of sparse Laurent polynomials. The basic
uniform upper bound for polynomials is the Hua upper bound,

(1.6) |S(f, pm)| ≤ Cpm(1−1/d),

for any polynomial f of degree d with dp(f) ≥ 1. The exponent m(1− 1/d)
is best possible for a uniform upper bound. The constant C in the original
work of Hua depended on d but it has been refined many times over the
years. Currently the best value is the absolute constant C = 4.41, proven
in our recent work [7]. For mixed exponential sums, and polynomial entries,
the analogue of (1.6) established in [6] is

(1.7) |S(χ, f, pm)| ≤ 4dpm(1−1/(d+1)).

The question arises what parameter plays the role of d in (1.6) and (1.7)
when f is a rational function, the total degree, the maximal degree, or some
other value. In this paper we show that the maximal degree suffices for pure
exponential sums, but for mixed exponential sums one needs a value closer
to the total degree.

To state our results, let ordp(x) denote the normal exponent valuation on
the p-adic field. In particular, for x 6= 0 ∈ Z, pordp(x) ‖x. Put ordp(0) =∞.
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For any nonzero polynomial f = f(X) = a0 + a1X + . . .+ adX
d ∈ Z[X] let

(1.8) ordp(f) := min
0≤i≤d

{ordp(ai)},

and extend the valuation to rational functions over Z by setting ordp(f1/f2)
= ordp(f1)− ordp(f2).

Pure exponential sums. We start by considering the case of pure exponen-
tial sums. Let f be a nonconstant rational function over Z. Set t = ordp(f ′)
and let A ⊂ Fp be the set of solutions of the congruence

(1.9) p−tf ′(x) ≡ 0 (mod p).

We denote by A the set of critical points associated with the sum S(f, pm),
and for any point α ∈ A we let να denote the multiplicity of α as a zero of
(1.9). If α 6∈ A put να = 0. For any integer α with p - f2(α), let

Sα = Sα(f, pm) :=
pm∑
x=1

x≡α (mod p)

epm(f(x)).

In Theorem 3.1 we obtain the upper bounds

|Sα(f, pm)| ≤ ναpt/(να+1)pm(1−1/(να+1)),(1.10)

|S(f, pm)| ≤
(∑

α∈A
να

)
pt/(M+1)pm(1−1/(M+1)),(1.11)

for any nonconstant rational function f over Z, any odd prime p and any
exponent m with m ≥ t+2, where M = maxα∈A{να}. In particular, Sα = 0
if α 6∈ A. For p = 2 we obtain the same bounds if m ≥ t + 3 or m = 2 and
t = 0.

The value M can be as large as d − 1, where d is the total degree of
f , as evidenced by a function such as f(X) = Xp/(1 + Xk), which has an
associated critical point at 0 of multiplicity p + k − 1. Thus, one can only
deduce from (1.11) a uniform upper bound with exponent m(1−1/d), where
d is the total degree of f . In Corollary 3.1 we establish the much stronger
upper bound

(1.12) |S(f, pm)| ≤ dpm(1−1/d∗),

where d∗ is the maximal degree of f . This upper bound is valid for any
rational function f over Z, any odd prime p with dp(f) ≥ 1, and any value
of m ≥ 2. When p = 2 we obtain the same upper bound with an extra factor
of
√

2 on the right-hand side.
The upper bound in (1.12) is obtained by establishing a new type of local

upper bound on exponential sums. For any integer α let

σα := ordp(f(pY + α)− f(α)).
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In Theorem 3.2 we show that if m ≥ t+ 2 and dp(f) ≥ 1 then

(1.13) |Sα(f, pm)| ≤ ναpm(1−1/σα).

Now σα ≤ να+t+1, as shown in Lemma 2.2(ii), and thus for t = 0 the upper
bound in (1.13) is always sharper than (1.10). For t > 0, (1.10) is sometimes
better. The parameter σα has appeared in many papers on exponential sums
but we are not aware of an upper bound of the type (1.13) ever appearing
before, even for the case of polynomials.

Mixed exponential sums. We now turn our attention to the case of mixed
exponential sums. Suppose that p is an odd prime. Let a denote a fixed
primitive root (mod p) chosen so that a > 0 and

(1.14) ap−1 = 1 + rp with p - r.
In particular a is a primitive root (mod pm) for any exponent m. Let χ be a
multiplicative character (mod pm) and let c = c(χ, a) be the unique integer
with 0 < c ≤ pm−1(p− 1) and

(1.15) χ(ak) = e

(
ck

pm−1(p− 1)

)
,

for every integer k. Thus for instance, if χ = χ0, the principal character, then
c = pm−1(p−1) and if χ is the quadratic character, then c = pm−1(p−1)/2.
A character χ is primitive if and only if p - c.

For any rational function f over Z we define

(1.16) t1 = t1(f) := ordp(rXf ′(X) + c).

If p > d∗p(f) ≥ 1 then t = t1 = 0. In Lemma 4.1 it is shown that t1 =
min{t, ordp(c)} ≤ m − 1. The set of critical points A ⊂ Fp associated with
the sum S(χ, f, pm) is defined to be the set of nonzero residues (mod p)
satisfying the congruence

(1.17) p−t1(rxf ′(x) + c) ≡ 0 (mod p).

It is easy to check that this congruence does not depend on the choice of
the primitive root a. For any α ∈ A we again let να denote the multiplicity
of α as a zero of the congruence (1.17) and for α 6∈ A, let να = 0. Let

(1.18) Sα = Sα(χ, f, pm) :=
pm∑
x=1

x≡α (mod p)

χ(x)epm(f(x)).

In Theorem 4.1 we establish the upper bounds

|Sα(χ, f, pm)| ≤ ναpt/(να+1)pm(1−1/(να+1)),(1.19)

|S(χ, f, pm)| ≤
(∑

α∈A
να

)
pt/(M+1)pm(1−1/(M+1)),(1.20)
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for any rational function f and any value m ≥ t+2. Here M = maxα∈A{να}.
If να = 1 then we obtain an explicit formula for Sα and show that we have
equality in (1.19). Similar estimates are obtained when p = 2 in Theorem 4.2.

Now, since

rXf ′(X) + c = (rX[f2f
′
1 − f1f

′
2] + cf2

2 )/f2
2 ,

it is apparent that the value M can be no larger than

D = D(f, χ) := max{d(f1) + d(f2), 2d(f2)}.
Thus we are able to deduce in Corollary 4.1 the upper bound

(1.21) |S(χ, f, pm)| ≤ 4Dpm(1−1/(D+1)),

for any rational function f over Z, any prime p with dp(f) ≥ 1, any m ≥ 2
and any multiplicative character χ (mod pm). If χ is a primitive character
and p ≤ D then a sharper exponent is available using the inequality M < p,
which is proven in a remark at the end of Section 4.

One would hope to be able to obtain a sharper upper bound, say of the
type (1.12), for mixed exponential sums, but no such sharpening is available.
In Example 6.1 we show that for any positive integer d1, there is a rational
function f = f1/f2 with d(f1) = d(f2) = d1 such that for infinitely many
pairs χ,m we have |S(χ, f, pm)| = pm(1−1/(D+1)). In a similar manner one
can show that for the rational function f(X) = 1/(X−b) with p - b, and any
value of m ≥ 2, there exist multiplicative characters χ (mod pm) with

|S(χ, f, pm)| = pm(1−1/3) = pm(1−1/(D+1)).

There is still room for improvement in (1.21) when d1 6= d2. The basic
question that must be answered is: for given values of d1, d2, what is the
maximum possible value of M?

Kloosterman and Salié sums. In Section 5 we apply our results to the
particular case of Kloosterman and Salié type sums, where f(X) = AX +
BX−1, p -AB. We obtain for p odd and m ≥ 2,

(1.22)
∣∣∣
pm∑
x=1

χ(x)epm(Ax+Bx−1)
∣∣∣

≤





2pm/2 if χ2(4ABr2 + c2) = 1,
0 if χ2(4ABr2 + c2) = −1,
0 if p ‖ (4ABR2 + c2), m ≥ 3,
2p2m/3 if p2 | (4ABR2 + c2),

where r is as in (1.14), and R is the p-adic integer R := p−1 log(1 + rp) ≡ r
(mod p). In the first case the sum can be explicitly evaluated (see (5.2), (5.3),
(5.7)). Similar bounds are given when p = 2 (see (5.8)). For the Kloosterman
and Salié sums one takes χ to be the principal character and Jacobi symbol
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respectively. In these cases the upper bound 2pm/2 is well known, and has
found many applications, such as in the study of automorphic forms (see
Iwaniec [15]) and in the work of Duke, Friedlander and Iwaniec [10] on
bilinear forms with Kloosterman fractions. In Example 5.1 we show that
the exponent 2m/3 in the last case of (1.22) is best possible by exhibiting
an infinite class of such sums for which |S(χ, f, pm)| = p2m/3.

2. Preliminary lemmas. Let p be a prime, Zp, Qp denote the p-
adic integers and p-adic rationals respectively and let Ωp be a complete
algebraically closed field containing Qp (see for example Koblitz [16]). Let
f = f1/f2 be a rational function over Z with (f1, f2) = 1 in Z[X], and
ordp(f2) = 0. Thus ordp(f) = ordp(f1). In this section we shall view f in
two ways, first as an analytic function f = f(x) defined on Ωp, and second
as a formal rational function f = f(X) in the indeterminate X.

Let α be a fixed integer with p - f2(α). Then, over Qp, f admits a Taylor
series expansion about α,

(2.1) f(x) =
∞∑

i=0

ai(x− α)i,

with p-adic integer coefficients ai, i ≥ 0, given by ai = f (i)(α)/i!, and with
the series converging pointwise to f(x) at any value of x with ordp(x−α) > 0.
We also find that for any x with ordp(x− α) > 0,

(2.2) f ′(x) =
∞∑

i=0

iai(x− α)i−1.

Define t = ordp(f ′), as before. The integer α is called a zero of f (mod p)
of multiplicity ν if, letting f̃1 be the image of f1 in Fp[X], we can write
f̃1(X) = (X − α̃)ν g̃(X) for some polynomial g̃(X) ∈ Fp[X] with g̃(α̃) 6= 0.
(Note that in this definition we have assumed p - f2(α), so that X − α̃ is not
a factor of f̃2(X).)

Lemma 2.1. For any rational function f over Z as given above and any
integer α with p - f2(α) we have:

(i) The coefficients {ai}∞i=1 in (2.1) satisfy

ordp(f) = min
i≥0
{ordp(ai)}.

(ii) If α is a zero of f (mod p) of multiplicity ν then p | ai, 1 ≤ i < ν,
p - aν and pt | ν.

(iii) If d∗p(f) ≥ 1 then

(2.3) pt ≤ d∗p(f) := max{dp(f1), dp(f2)}.
If , in addition, f is a polynomial , then pt | dp(f).
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P r o o f. Suppose first that f = f(X) is a polynomial. Then viewing p as
a prime in the unique factorization domain Z[X] we see that the condition
pk ‖ f(X) is equivalent to saying k = ordp(f). Now pk ‖ f(X) if and only if
pk ‖ f(X + α), and thus since the latter polynomial is just

∑d
i=1 aiX

i we
obtain the result of part (i).

Suppose now that f = f1/f2 is a rational function over Z. Let f1, f2

have Taylor expansions about α given by

f1(x) =
d1∑

i=0

bi(x− α)i, f2(x) =
d2∑

i=0

ci(x− α)i.

We work now in the ring of formal power series Zp[[T ]], and define

F (T ) =
∞∑

i=0

aiT
i, F1(T ) =

d1∑

i=0

biT
i, F2(T ) =

d2∑

i=0

ciT
i.

Then F1(T ) = F (T )F2(T ). Since p - f2(α) we have p -F2(T ) in Zp[[T ]], and
thus pk ‖F1(T ) if and only if pk ‖F (T ) or in other words,

min
0≤i≤d1

{ordp(bi)} = min
i≥0
{ordp(ai)}.

But we have already established (in the case of polynomials) that the left-
hand side is just ordp(f1) = ordp(f). This completes the proof of part (i).

Now let F̃ (T ), F̃1(T ), F̃2(T ) be the images of F, F1, F2 in Fp[[T ]]. Then,
if α is a zero of f(x) (mod p) of multiplicity ν it follows that

F̃ (T ) =
∞∑

i=0

ãiT
i, F̃1(T ) =

d1∑

i=ν

b̃iT
i, F̃2(T ) =

d2∑

i=0

c̃iT
i.

Therefore, from the relationship F̃1(T ) = F̃ (T )F̃2(T ) and the fact that
c̃0 6= 0 we obtain the first part of (ii). Applying part (i) of the lemma to the
function f ′(x) we have t = mini≥1{ordp(iai)}. In particular, pt | νaν . Since
p - aν it follows that pt | ν.

Suppose now that dp(f) ≥ 1. The inequality pt ≤ d∗p(f) in part (iii) is
now immediate if f has at least one zero (mod p) of multiplicity ν ≥ 1, for
then by part (ii), pt ≤ ν ≤ dp(f1) ≤ d∗p(f). If f has no zero (mod p) then
we let α be any integer where f is defined and replace f with the function
f(X)−f(α) to obtain a new rational function vanishing at α and satisfying
t(f(X)− f(α)) = t(f). Now since

f(X)− f(α) = (f1(X)− f(α)f2(X))/f2(X),

we also have d∗p(f(X) − f(α)) = d∗p(f), and the result of part (iii) follows.
Finally, if f is a polynomial of degree dp then we also have pt | dpadp with
p - adp , and so pt | dp.
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Suppose now that α is a zero of the critical point congruence

(2.4) p−tf ′(x) ≡ 0 (mod p)

of multiplicity ν ≥ 1. Then it follows from Lemma 2.1(ii) that

(2.5) ordp(iai)

{≥ t+ 1 if 1 ≤ i ≤ ν,
= t if i = ν + 1,
≥ t if i > ν + 1,

and consequently for i ≥ 1,

(2.6) ordp(aipi) = ordp(iai) + i− ordp(i) ≥
{
t+ 2 if p is odd or ν > 1,
t+ 1 if p = 2, ν = 1.

Let σ, g(Y ) be defined by

σ := ordp(f(pY + α)− f(α)), g(Y ) := p−σ(f(pY + α)− f(α)),

and τ , g1(Y ) be defined by

τ := ordp(g′(Y )), g1(Y ) := p−τg′(Y ).

Now, by the Taylor expansion for f in (2.1) we have

g(Y ) =
∞∑

i=1

aip
i−σY i and g1(Y ) =

∞∑

i=1

aiip
i−σ−τY i−1.

Thus, read (mod p), both g(Y ) and g1(Y ) are polynomials in Y of respective
degrees dp(g), dp(g1), and we obtain the same relations as in Lemma 3.1 of
[6], which was stated for the case of polynomials.

Lemma 2.2. For any prime p and zero α of (2.4) of multiplicity ν we
have:

σ ≥
{
t+ 2 if p is odd or ν > 1,
t+ 1 if p = 2 and ν = 1.

(i)

σ ≤ ν + 1 + t− τ.(ii)

dp(g) ≤
{
σ − t+ ordp(dp(g)) ≤ ν + 1 + ordp(dp(g)),
σ ≤ ν + 1 + t− τ.(iii)

dp(g1) ≤ σ + τ − t− 1 ≤ ν.(iv)

pτ ≤ dp(g).(v)

If dp(f) ≥ 1 then σ ≤ d∗p(f).(vi)

P r o o f. From (2.1) we obtain

f(pY + α)− f(α) =
∞∑

i=1

aip
iY i,
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and thus by Lemma 2.1(i), σ = mini≥1{ordp(aipi)}. The result of part (i)
follows from (2.6). Now for the term i = dp(g) we must have

σ = ordp(aipi) = ordp(iai) + i− ordp(i).

It follows from (2.5) that

i = σ + ordp(i)− ordp(iai) ≤ σ + ordp(i)− t,
from which the first inequalities in (iii) follow. The second inequalities in
(iii) follow immediately from (ii).

Now since the coefficients of g1(Y ) are p-adic integers, we see upon ex-
amining the i = ν + 1 coefficient that

ordp(aν+1(ν + 1)pν+1−σ−τ ) ≥ 0.

Thus by (2.5) we obtain (ii). Similarly, upon examining the i = dp(g1) + 1
coefficient and using (2.5) we obtain (iv). The second inequality in (iv)
follows immediately from (ii). Part (v) follows from Lemma 2.1(iii) applied
to g.

To prove (vi) we note that the rational function

f(X)− f(α) =
∞∑

i=1

ai(X − α)i

has a zero (mod p) at α of multiplicity say ω with 1 ≤ ω ≤ d∗p(f). Thus
p - aω and σ ≤ ordp(aωpω) = ω ≤ d∗p(f).

Lemma 2.3. Let p be a prime, f = f1/f2 be a rational function over Z
with (f1, f2) = 1 and t = ordp(f ′) and let t1 be an integer with 0 ≤ t1 ≤ t.
Suppose that p is odd and m ≥ t1 + 2, or p = 2 and m ≥ t1 + 3, or p = 2,
t1 = 0 and m = 2. Then for any integers z, y with p - f2(y) we have (in Zp)

f(y + pm−t1−1z) ≡ f(y) + f ′(y)pm−t1−1z (mod pm).

P r o o f. Since p - f2(y), f admits a p-adic Taylor expansion about y of
the type f(y + x) =

∑∞
i=0 aix

i with p-adic integer coefficients ai, and with
the series converging to the function at any value of x with ordp(x) > 0.
Thus if m ≥ t1 + 2 then for any integer z,

(2.7) f(y + pm−t1−1z) =
∞∑

i=0

ai(pm−t1−1z)i.

Now by (2.6), ordp(iai) ≥ t for i ≥ 1. Thus for any i ≥ 1,

ordp(aip(m−t1−1)i) ≥ i(m− t1 − 1) + t− ordp(i)(2.8)

≥ i(m− t1 − 1) + t1 − ordp(i),
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and for i ≥ 2 the quantity on the right side is ≥ m if and only if

m ≥ t1 +
i+ ordp(i)
i− 1

.

It is easy to check that the latter inequality holds for all i ≥ 2 if p is odd
and m ≥ t1 + 2 or if p = 2 and m ≥ t1 + 3. If p = 2, m = 2 and t1 = 0 then
we return to (2.8) and replace the right side with i(m− t1−1) = i to obtain
the result.

In the application of Lemma 2.3 to exponential sums it is convenient for
us to extend the domain of the additive character epm(·) to Zp by setting,
for any x ∈ Zp,
(2.9) epm(x) := epm(x̃),

where x̃ is the residue class of x in Zp/(pm) ' Z/(pm). With this under-
standing, for any rational function f = f1/f2 over Z and any integer x with
p - f2(x) we have f(x) ∈ Zp, and

(2.10) epm(f(x)) = epm(f1(x)f2(x)),

where f2(x) denotes the multiplicative inverse of f2(x) (mod pm).

3. Pure exponential sums. Let f = f1/f2 be a rational function over
Z with (f1, f2) = 1, and A be the set of critical points associated with the
exponential sum S(f, pm) as defined in the introduction (see (1.9)). For any
integer α with p - f2(α) let

(3.1) Sα = Sα(f, pm) =
∑
x=1

x≡α (mod p)

epm(f(x)).

Theorem 3.1. Let p be a prime, f be a nonconstant rational function
defined over Z, and α be any integer with p - f2(α). Set t = ordp(f ′).

(a) If p is odd and m ≥ t+ 2 then
(i) If α 6∈ A then Sα(f, pm) = 0.

(ii) If α is a critical point of multiplicity ν then

(3.2) |Sα(f, pm)| ≤ νpt/(ν+1)pm(1−1/(ν+1)),

with equality if ν = 1.
(iii) If α is a critical point of multiplicity one then

Sα(f, pm) =
{
epm(f(α∗))p(m+t)/2 if m− t is even,
χ2(Aα)epm(f(α∗))Gpp(m+t−1)/2 if m− t is odd ,

where α∗ is the unique lifting of α to a solution of the congruence
p−tf ′(x) ≡ 0 (mod p[(m−t+1)/2]), and Aα ≡ 2p−tf ′′(α∗) (mod p).
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(b) Let p = 2 and suppose that either m ≥ t+ 3, or m = 2 and t = 0. If
α 6∈ A then Sα = 0, and if α ∈ A then

(3.3) |Sα(f, 2m)| ≤ ν2t/(ν+1)2m(1−1/(ν+1)),

with equality if ν = 1.

P r o o f. The proof is identical to the proof of Theorem 2.1 in [6]. One
starts by showing that under the hypotheses of Lemma 2.3 with t1 = t, we
have

(3.4) Sα = pt+1
∑

y≡α (mod p)
pt+1|f ′(y)

epm(f(y)),

and thus Sα = 0 unless α ∈ A, proving part (a)(i) and the first part of (b).
Suppose now that α ∈ A. Then defining

(3.5)
σ = σα := ordp(f(pY + α)− f(α)),

gα(Y ) := p−σ(f(pY + α)− f(α)),

one obtains the following recursion relationship: If p is odd and m ≥ t+ 2,
or p = 2 and m ≥ t+ 3 then

(3.6) Sα(f, pm) = epm(f(α))pσ−1S(gα, pm−σ),

where the latter sum S(gα, pm−σ) is taken to be pm−σ, in case m < σ. The
inequalities in (3.2) and (3.3) can then be proven by induction on m. The
proof is identical to that in [6] since the relations given in Lemma 2.2 of the
present paper are identical to those of Lemma 3.1 of [6]. We note that when
m − σ = 1 (leaving the sum S(gα, p)), we need only appeal to the upper
bound of Weil [28] for the case of polynomials, since gα is a polynomial
when read (mod p). The identity in part (a)(iii) and the equality in (3.2)
and (3.3), when ν = 1, are also proven identically as in Section 5 of [6].

A particular consequence of this theorem is that if there are no critical
points associated with the sum S(f, pm) then the sum is zero. As an example
we state

Corollary 3.1. Let f(X) = (aX + b)/(cX + d) be a rational function
over Z with d∗ = 1, that is, ad−bc 6= 0. Let p be any prime with p - (ad−bc).
Then if m ≥ 2 or m = 1 and p | c then S(f, pm) = 0. If m = 1 and p - c then
S(f, p) = −ep(ac).

P r o o f. If p is a prime with p - (ad− bc) then t = t(f) = 0 and there are
no critical points associated with the sum S(f, pm). Thus if m ≥ 2 it follows
from parts (i) and (iv) of Theorem 3.1 that S(f, pm) = 0. The case m = 1
can be dealt with in an elementary manner.
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Next we give a variant of the inequality in (3.2) in terms of the param-
eter σ.

Theorem 3.2. Let p be a prime, f be a nonconstant rational function de-
fined over Z, and t = ordp(f ′). Suppose that α is critical point of multiplicity
ν with σ as defined in (3.5).

(a) If p is odd and m ≥ t+ 2 then

(3.7) |Sα(f, pm)| ≤ νpm(1−1/σ).

(b) If p = 2 and m ≥ t+ 3 then

(3.8) |Sα(f, 2m)| ≤
√

2ν2m(1−1/σ).

Corollary 3.2. Let p be a prime and f be a rational function over Z
of total degree d and maximal degree d∗ with dp(f) ≥ 1. If p is odd then for
any m ≥ 2 we have

(3.9) |S(f, pm)| ≤ dpm(1−1/d∗).

If p = 2 then we obtain the same inequality with an extra factor of
√

2 on
the right-hand side.

P r o o f. From the inequality σα ≤ d∗p(f) of Lemma 2.2(vi) we obtain,
under the hypotheses of Theorem 3.2,

(3.10) |S(f, pm)| ≤
(∑

α∈A
να

)
pm(1−1/d∗p(f)) ≤ dp(f1)pm(1−1/d∗p(f)),

with an extra factor of
√

2 on the right-hand side in case p = 2. Here,
f1 = p−tf ′. Since dp(f1) ≤ d − 1 and d∗p(f) ≤ d∗(f) we deduce the upper
bound in (3.9).

Suppose now that p is odd and m ≤ t + 1. By (2.3) we have pt ≤ d∗.
In particular, since m ≥ 2 we have d∗ ≥ p ≥ 3. Thus we obtain the trivial
upper bound

|S(f, pm)| ≤ pm ≤ ptp ≤ dp ≤ dpm(1−1/d∗).

Suppose next that p = 2 and m ≤ t + 2. If d∗ = 1 then the inequality in
(3.9) follows from Corollary 3.1. If d∗ ≥ 2 then since 2t ≤ d∗ we have

2m ≤ 4d∗ ≤ (
√

2d∗)d
∗ ≤ (

√
2d)d

∗
,

and so 2m/d
∗ ≤ √2d. It follows that

|S(f, 2m)| ≤ 2m ≤
√

2d2m(1−1/d∗).

Proof of Theorem 3.2. The proof is by induction on m. Suppose first that
p is odd. We shall prove the inequality in (3.7) together with the inequality
in (3.10), which is always an immediate consequence of (3.7). If m = 2, then
since σ ≥ 2 we have trivially that |Sα| ≤ p ≤ νpm(1−1/σ), establishing (3.7).
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Suppose now that m is an arbitrary positive integer with m ≥ t + 2
and that the theorem has been proven for all smaller values of m. Let f
be a rational function over Z, and let α be an associated critical point
of multiplicity ν. We first dispense with the case ν = 1. In this case, by
Theorem 3.1(iii), we have |Sα| = p(m+t)/2. Now, using the assumption m ≥
t+ 2 and then the inequality σ ≥ t+ 2 of Lemma 2.2(i), we have

t ≤ m
(

1− 2
t+ 2

)
≤ m

(
1− 2

σ

)
,

whence it follows that

(m+ t)/2 ≤ m(1− 1/σ),

which establishes (3.7). Henceforth we shall assume that ν ≥ 2. We consider
four cases.

Case (i). If σ ≥ m then we have trivially,

|Sα| ≤ pm−1 = pm(1−1/m) ≤ pm(1−1/σ).

Case (ii). Suppose next that σ = m − 1. The trivial estimate |Sα| ≤
pm−1 ≤ νpm(1−1/σ) holds provided that p ≤ νσ. Suppose now that p >
νσ. Let dp = dp(gα) where gα is as defined in (3.5). If p = dp, then by
Lemma 2.2(iii), p ≤ ν+2, and thus νσ < ν+2, contradicting our assumption
that ν ≥ 2. If dp ≥ 2p then since ordp(dp) ≤ dp/2 we have

p ≤ 1
2dp ≤ dp − ordp(dp) ≤ ν + 1,

which again leads to a contradiction. Thus we must have ordp(dp) = 0 and
so by Lemma 2.2(iii), dp − 1 ≤ ν. Then by the recursion relationship (3.6)
and upper bound of Weil, we have

|Sα| = pσ−1S(gα, p) ≤ (dp(gα)− 1)pσ−1/2 ≤ νpm(1−1/σ).

Case (iii). Define τ and g1 as in Section 2,

τ = ordp(g′α), g1(Y ) := p−τg′α(Y ).

Suppose that m − 1 − τ ≤ σ ≤ m − 2. In particular, τ ≥ 1. Then we have
the trivial upper bound

|Sα| ≤ pm−1 ≤ νpm(1−1/σ)

if and only if pm−σ ≤ νσ. Now m − σ ≤ τ + 1, and so the trivial bound
holds if pτ+1 ≤ νσ. By Lemma 2.2(v) and (iii), pτ ≤ dp(g) ≤ σ and so
pτ+1 ≤ p2τ ≤ σ2. Thus it suffices to have σ2 ≤ νσ which is always the case
unless σ = 3 and ν = 2.

Suppose now that σ = 3, ν = 2. Then since pτ ≤ σ we must have
p = 3, τ = 1 and m = 5. Suppose that f has Taylor expansion f(x) =∑∞
i=0 ai(x−α)i about α, with p-adic integer coefficients ai. By Lemma 2.2(i)

we obtain t ≤ σ − 2 = 1. Since ν = 2 it follows from (2.5) that t =
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ordp(3a3) = 1 + ordp(a3). Thus we must have t = 1 and ordp(a3) = 0. From
the recursion relationship (3.6) we have

|Sα| = p2|S(gα, p2)|,
where

gα(Y ) = p−3
∞∑

i=1

ai(pY )i.

Since τ = 1 it follows that p3 | a1 and p2 | a2, and thus we can write

gα(Y ) = a3Y
3 + p(a4Y

4 + b2Y
2 + b1Y ) + p2(stuff),

for some p-adic integers b1, b2. It is clear that the value of gα(y) (mod 9)
depends only on the residue class of y (mod 3), and so

|S(gα, p2)| = 3
1∑

y=−1

e9(gα(y)).

Now since gα(0) = 0 and 3 - a3, the latter sum is bounded above by

|1 + e9(1) + e9(−1)| = 2.532 . . . < 2.884 . . . = 2 · 31/3.

Altogether, we obtain

|Sα| = 32|S(gα, 32)| ≤ 33 · 2 · 31/3 = ν35(1−1/σ).

Case (iv). Suppose finally that σ ≤ m − 2 − τ . In this case we can
apply the induction assumption to the sum S(gα, pm−σ) and deduce from
the recursion relationship (3.6) and (3.10) that

|S(f, pm)| ≤ pσ−1dp(g1)p(m−σ)(1−1/dp(gα)).

Now by Lemma 2.2(iv), dp(g1) ≤ ν and by Lemma 2.2(iii), dp(gα) ≤ σ. Thus

|S(f, pm)| ≤ pσ−1νp(m−σ)(1−1/σ) = νpm(1−1/σ).

Next we consider the prime p = 2. Again, first consider the case ν = 1.
Suppose that α is a critical point of multiplicity one. Since f ′ cannot have a
zero of multiplicity one (mod 2), we must have t ≥ 1. Now by Lemma 2.2(i),
σ ≥ t + 1. Using in turn the inequality t ≥ 1 and then the inequalities
σ ≥ t+ 1, m ≥ t+ 3, we have

t

2
≤ (t+ 3)

(
1
2
− 1
t+ 1

)
+

1
2
≤ m

(
1
2
− 1
σ

)
+

1
2
.

Thus, by the equality in (3.3), we have

|Sα(f, 2m)| = 2(m+t)/2 ≤
√

22m(1−1/σ).

Henceforth we shall assume that ν ≥ 2. In particular, by Lemma 2.2(i),
it follows that σ ≥ 2. We start the induction proof with m = 3. In this case
we have the trivial bound |Sα(f, 23)| ≤ 4 ≤ √223(1−1/σ). Suppose now that
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m ≥ t+3 and that the inequality in (3.8) has been established for all smaller
values of m. If m− σ ≤ τ + 2 then we have the trivial bound

|Sα(f, 2m)| ≤ 2m−1 ≤
√

2ν2m(1−1/σ),

since

2m−σ ≤ 2τ+2 ≤ 4σ ≤ (2
√

2)σ ≤ (
√

2ν)σ.

Here, we have used the facts that σ ≥ 2 and 2τ ≤ dp(gα) ≤ σ. If m−σ ≥ t+3
then we can apply the induction assumption as in Case (iv) above to obtain
the result.

4. Mixed exponential sums. We begin by stating the generalization
of Theorem 1.1 in [6] which was stated for the case of polynomials. Let
S(χ, f, pm), Sα = Sα(χ, f, pm), the values a, r, c = c(χ, a), and the set of
critical points A be as defined in the introduction.

Theorem 4.1. Let p be an odd prime, f be any rational function over Z,
χ be a multiplicative character (mod pm), α an integer with p -αf2(α) and
t, t1 be as defined in (1.9) and (1.16). Then if m ≥ t1 + 2 we have:

(i) If α 6∈ A, then Sα(χ, f, pm) = 0.
(ii) If α is a critical point of multiplicity ν ≥ 1 then t = t1 and

(4.1) |Sα(χ, f, pm)| ≤ νpt/(ν+1)pm(1−1/(ν+1)).

(iii) If α is a critical point of multiplicity one then

Sα(χ, f, pm) =
{
χ(α∗)epm(f(α∗))p(m+t)/2 if m− t is even,
χ(α∗)epm(f(α∗))χ2(Aα)Gpp(m+t−1)/2 if m− t is odd ,

where α∗ is the unique lifting of α to a solution of the congruence

p−t(Rxf ′(x) + c) ≡ 0 (mod p[(m−t+1)/2])

and

Aα ≡ 2αp−t(f ′(α) + αf ′′(α)) (mod p).

In particular , we have equality in (4.1).

Here Gp is the classical Gauss sum,

Gp :=
p−1∑
x=0

ep(x2) =
p−1∑
x=1

χ2(x)ep(x) =
{√

p if p ≡ 1 (mod 4),
i
√
p if p ≡ 3 (mod 4),

χ2 is the quadratic character (mod p), and R is the p-adic integer

(4.2) R := p−1 log(1 + rp) = p−1
∞∑

i=1

(−1)i+1(rp)i

i
≡ r (mod p).
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It follows immediately that under the hypotheses of the theorem

(4.3) |S(χ, f, pm)| ≤
(∑

α∈A
να

)
pt/(M+1)pm(1−1/(M+1)),

where M is the maximum multiplicity of the critical points. Also, if all of
the critical points are of multiplicity one then we obtain an explicit formula
for the sum S(χ, f, pm).

For the prime p = 2 the critical point congruence associated with the
sum S(χ, f, 2m) is just

2−t1(xf ′(x) + c) ≡ 0 (mod 2),

where c = c(χ) is defined by the relations χ(5) = e2m−2(c), 1 ≤ c ≤ 2m−2,
and t1 = ord2(Xf ′(X) + c) (see [6], Section 8). The only allowable critical
point is the residue class 1 and it is a critical point if and only if t = t1 and
f ′(1) ≡ c (mod 2t+1). We have

Theorem 4.2. Suppose that f is a rational function over Z, χ is a mul-
tiplicative character (mod 2m), and m ≥ t1 + 3. Then

(i) If 1 is not a critical point then S(χ, f, 2m) = 0.
(ii) If 1 is a critical point of multiplicity ν ≥ 1 then t = t1 and

(4.4) |S(χ, f, 2m)| ≤ 2ν2t/(ν+1)2m(1−1/(ν+1)).

The proofs of Theorems 4.1 and 4.2 follow the same line of argument
given in [6] for the case of polynomials. We shall include here a complete
proof of Theorem 4.1 in order to highlight the modifications required for
the case of rational functions, but for the sake of brevity we shall omit the
proof of Theorem 4.2. It follows identically as the proof of Theorem 8.1 of
[6], taking into account these modifications.

In the course of the proof of Theorem 4.1 we need the fact that if the sum
S(χ, f, pm) has an associated critical point then t1 = t. This was a trivial
observation for the case of polynomials but appears to be a nontrivial fact
for rational functions. It is plain from the definition that t1 ≥ t in this case.
Equality will follow from Lemma 4.1 below. We also use this lemma to prove

Corollary 4.1. Let f = f1/f2 be a rational function over Z with
(f1, f2) = 1 and let D = max{d(f1) + d(f2), 2d(f2)}. Then for any prime p
with dp(f) ≥ 1, any positive integer m ≥ 2 and any multiplicative character
χ (mod pm) we have

(4.5) |S(χ, f, pm)| ≤ 4Dpm(1−1/(D+1)).

P r o o f. Suppose first that p is odd and m < t1 +2. Then, by Lemma 4.1
below, m ≤ t+ 1. Now, by Lemma 2.1(iii), pt ≤ d∗(f) ≤ D, and so we have
the trivial upper bound

|S(χ, f, pm)| ≤ pm ≤ ptp ≤ Dpm(1−1/(D+1)).
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Suppose now that m ≥ t1 +2. If A is empty then the upper bound is trivial.
Otherwise we must have t = t1, as noted above, and m ≥ t + 2. Then it
follows from (4.3) and the facts that

∑
α∈A να ≤ D and M ≤ D that

|S(χ, f, pm)| ≤ Dpt/(D+1)pm(1−1/(D+1)) ≤ D1/(D+1)Dpm(1−1/(D+1)),

which is sharper than (4.5).
For p = 2 we see that trivially, if m ≤ t1 + 2, the |S(χ, f, 2m)| ≤ 2m−1 ≤

2t+1 ≤ 2D. Otherwise, by (4.4) we obtain the upper bound in (4.5).

Lemma 4.1. Let p be a prime, f a rational function over Z with ordp(f)
≥ 0, c, r any integers with p - r and let t, t1 be defined by

t = ordp(f ′), t1 = ordp(rXf ′(X) + c).

Then t1 = min{t, ordp(c)}.
This lemma follows readily from

Lemma 4.2. Let p be a prime and f be a rational function over Z with
ordp(f) ≥ 0. Then for any positive integer k, there exists a nonnegative
integer l, rational numbers ai, i ≥ −l, and a rational function h over Z such
that in the field of formal Laurent series over Q, we have

(4.6) f(X) =
∞∑

i=−l
aiX

i + pkh(X),

with ordp(ai) ≥ 0, for i ≥ −l, and ordp(h) ≥ 0.

P r o o f. The proof is by induction on k. Suppose first that k = 1. Write
f = f1/f2 with f1, f2 ∈ Z[X], (f1, f2) = 1 in Z[X], and ordp(f2) = 0.
Suppose that when read (mod p), f2 has a zero at x = 0 of multiplicity
l ≥ 0. Then we can write

f2(X) = aX lg1(X) + pg2(X)

for some integer a with p - a, and polynomials g1, g2 ∈ Z[X], with g1(0) = 1.
Thus,

(4.7) f(X) =
f1(X)
f2(X)

=
f1(X)

aX lg1(X)
+ ph(X)

for some rational function h(X) over Z with ordp(h)≥0. Now, since g1(0)=1,
f1/g1 admits a power series expansion f1/g1 =

∑∞
i=0 biX

i with integer co-
efficients bi, i ≥ 0. But then by (4.7) we obtain the result of the lemma.
The induction step now follows easily by applying the result of the lemma
in succession to the function h(X).

Proof of Lemma 4.1. It is sufficient to prove that for any nonnegative
integer k,

ordp(rXf ′(X) + c) ≥ k



84 T. Cochrane and Z. Y. Zheng

if and only if ordp(f ′) ≥ k and ordp(c) ≥ k. One direction is trivial: If
ordp(f ′) ≥ k and ordp(c) ≥ k then ordp(rXf ′(X) + c) ≥ k. Suppose now
that ordp(rXf ′(X) + c) ≥ k. It suffices to show that ordp(c) ≥ k. This is
trivial if k = 0. Suppose now that k ≥ 1 and write f as in (4.6). Then

rXf ′(X) + c = rX

∞∑

i=−l
aiiX

i−1 + c+ pkrXh′(X),

that is

(4.8) H(X) := X l(rXf ′(X) + c− pkrXh′(X)) =
∞∑

i=−l
raiiX

l+i + cX l.

The function H(X) is a rational function over Z with ordp(H) ≥ k and
admitting a power series expansion with p-adic integer coefficients. Now the
coefficient of X l in this expansion is just c and so by Lemma 2.2(i) we must
have ordp(c) ≥ ordp(H) ≥ k.

Proof of Theorem 4.1. For the sake of clarity we repeat here the argument
given in [6] together with the necessary modifications. Let p be an odd prime,
m ≥ 2 a positive integer, f a polynomial over Z, χ a multiplicative character
(mod pm) with c = c(χ, a) as defined in (1.15). Let t, t1 be as defined in
(1.9) and (1.16) and A be the set of critical points associated with the sum
S(χ, f, pm). Suppose that m ≥ t1 + 2. Write k = jpm−t1−2(p− 1) + l, with
j running from 0 to pt1+1 − 1, l running from 0 to pm−t1−2(p− 1)− 1, and
consequently k running from 0 to pm−1(p − 1) − 1. Let α be an integer of
the type α = alα with 0 ≤ lα < p− 1. Then we have

Sα = Sα(χ, f, pm) :=
pm∑

x≡α (mod p)

χ(x)epm(f(x))

=
pm−1(p−1)−1∑

k≡lα (mod p−1)

χ(ak)epm(f(ak))

=
pm−t1−2(p−1)−1∑

l=0
l≡lα (mod p−1)

pt1+1−1∑

j=0

e

(
c(jpm−t1−2(p− 1) + l)

pm−1(p− 1)

)
e

(
f(ak)
pm

)
.

Now for any choice of j and l we see from (1.14) that

ak ≡ al(1 + rp)p
m−t1−2j ≡ al(1 + jrpm−t1−1) (mod pm−t1),

and thus since m ≥ t1 + 2, it follows from Lemma 2.3 and the fact that
pt | f ′(X), that

f(ak) ≡ f(al + aljrpm−t1−1) ≡ f(al) + f ′(al)aljrpm−t1−1 (mod pm).
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We obtain

Sα =
pm−t1−2(p−1)−1∑

l=0
l≡lα (mod p−1)

e

(
cl

pm−1(p− 1)
+
f(al)
pm

)
(4.9)

×
pt1+1−1∑

j=0

e

(
cj

p
+
f ′(al)aljr

p

)

= pt1+1
pm−t1−2(p−1)−1∑

l≡lα (mod p−1)
c+rf ′(al)al≡0 (mod pt1+1)

e

(
cl

pm−1(p− 1)
+
f(al)
pm

)
.

Thus Sα = 0 unless α∈A in which case, by the remark before Lemma 4.1,
we must have t = t1 and we can proceed by writing l = lα + (p − 1)y with
y running from 0 to pm−t−2 − 1, to obtain

Sα = pt+1
pm−t−2−1∑

y=0

e

(
c(lα + (p− 1)y)
pm−1(p− 1)

+
f(α(1 + rp)y)

pm

)
(4.10)

= pt+1χ(α)epm(f(α))
pm−t−2−1∑

y=0

epm(F1(y)),

where

(4.11) F1(y) = f(α(1 + rp)y)− f(α) + pcy.

Let log(1 + pu) denote the p-adic logarithm

log(1 + pu) =
∞∑

i=1

(−1)i+1(pu)i

i
,

R be as defined in (4.2) and set

(4.12) y =
1
Rp

log(1 + pu).

Then as u runs through a complete set of residues modulo any given power
of p, so does y (in Zp).

Set F2(u) = F1(y), and let f have Taylor expansion about α given by

f(X) =
∞∑

i=0

ai(X − α)i,

with p-adic integer coefficients ai. Then for any u ∈ Zp we have

F2(u) = f(α(1 + pu))− f(α) + cR−1 log(1 + pu)(4.13)
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=
∞∑

i=1

aiα
ipiui + cR−1

∞∑

i=1

(−1)i+1(pu)i

i

=
∞∑

i=1

(Riaiαi + (−1)i+1c)
pi

Ri
ui.

Define
G(X) := p−t(RXf ′(X) + c),

and let G(X) have Taylor expansion about α,

G(X) =
∞∑

i=0

bi(X − α)i,

with p-adic integer coefficients bi. Then we have

ptG(X) = R(X − α)
∞∑

i=0

aii(X − α)i−1 +Rα

∞∑

i=0

aii(X − α)i−1 + c

= R

∞∑

i=1

(aii+ αai+1(i+ 1))(X − α)i +Rαa1 + c,

and so we see that b0 = p−t(Rαa1 + c), and that for i ≥ 1,

(4.14) bi = p−tR(iai + α(i+ 1)ai+1).

It follows that for i ≥ 1,

(4.15) ai = (−1)i+1(Riαi)−1
( i−1∑

j=0

(−1)jptbjαj − c
)
.

Inserting this expression for ai into (4.13) yields

(4.16) F2(u) =
∞∑

i=1

(−1)i+1
( i−1∑

j=0

(−1)jbjαj
)pi+t
Ri

ui.

Let F2(U) be the formal power series over Zp obtained by replacing u with
the indeterminate U in (4.13) or (4.16) and let Fα(U) be a polynomial with
rational integer coefficients chosen so that in Zp[[U ]],

(4.17) Fα(U) ≡ F2(U) (mod pm+t+d),

that is, the corresponding coefficients are congruent (mod pm+t+d). Since the
coefficients of F2(U) are all eventually zero (mod pm+t+d) such a polynomial
Fα(U) exists. The absolute degree of Fα(U) is of no particular concern since
we are only interested in local information regarding Fα(U).

Set

(4.18)
σ := ordp(Fα(U)), gα(U) := p−σFα(U),

τ := ordp(g′α(U)), g1(U) := p−τg′α(U).
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Lemma 4.3. We have the same relationships as in Lemma 2.2.

σ ≥ t+ 2.(i)

σ ≤ ν + 1 + t− τ.(ii)

dp(gα) ≤ σ − t+ ordp(dp(gα)) ≤ ν + 1 + ordp(dp(gα)).(iii)

dp(g1) ≤ σ + τ − t− 1 ≤ ν.(iv)

pτ | dp(gα).(v)

P r o o f. Part (i) follows immediately from (4.16) and the fact that p | b0,
since α is a critical point. From (4.16) we also obtain

F ′2(U) = ptR−1
d∑

i=1

(−1)i+1
( i−1∑

j=0

(−1)jbjαj
)
piU i−1(4.19)

+ cR−1
∞∑

i=d+1

(−1)i+1piU i.

Since α is a critical point of multiplicity ν ≥ 1 we have p | bi for i < ν,
and p - bν . By definition, pσ+τ divides every coefficient of F ′2(U) and thus
examining the i = ν + 1 coefficient in (4.19) we obtain (ii). Part (iii) comes
from the fact that pσ is the maximum power of p dividing the i = dp(gα)
coefficient in (4.16) and part (iv) from the fact that pσ+τ is the maximum
power of p dividing the i = dp(g1) + 1 coefficient in (4.19). Part (v) follows
from Lemma 2.1(iii).

Now, since σ ≥ t+ 2 it follows from (4.10) that

(4.20) Sα = pt+1χ(α)epm(f(α))
pm−t−2−1∑

u=0

epm(F2(u)).

Thus, if α is a critical point of the type α = alα with 0 ≤ lα < p − 1 then
we have

(4.21) Sα = pσ−1χ(α)epm(f(α))S(gα, pm−σ).

The inequality in (4.1) can now be established by considering four cases:
σ ≥ m, σ = m − 1, m − 1 − τ ≤ σ ≤ m − 2 and σ ≤ m − 2 − τ . The
trivial estimate |Sα| ≤ pm−1 suffices for the first and third cases. For the
other two cases we appeal to (4.21), and use the upper bound of Weil for
case m − σ = 1 and the upper bound in (3.10) for pure exponential sums
for the last case. The details are identical to those given in [6] for the cases
of polynomials, since the inequalities in Lemma 4.3 are the same as in [6].

The proof of part (iii) of Theorem 4.1 is identical to the proof given in
Section 7 of [6] for the case of polynomials.
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Remark. If χ is primitive it follows from the above argument that the
maximum multiplicity M of any critical point satisfies M ≤ p − 1. Indeed,
by (4.15) we have

papRα
p = −

p−1∑

j=0

ptbjα
j + c.

If p | bj for 0 ≤ j ≤ p− 1 then it follows that p | c.

5. Kloosterman and Salié sums. We start by considering the case
of odd p and deal with p = 2 at the end of the section. Let p be an odd
prime and f(X) = AX + BX−1, with p -AB. Then for any multiplicative
character χ (mod pm), t1 = t = 0 and the critical point congruence (1.17) is

(5.1) RAx2 + cx−BR ≡ 0 (mod p),

where R := p−1 log(1 + rp) ≡ r(mod p). We have written the critical point
congruence with the parameter R rather than r because this is the value
one must use in lifting the critical points to solutions modulo prime powers.
There are three cases to consider.

Case (i). Suppose first that p - (4ABr2 + c2), and that χ2(4ABr2 + c2)
= −1. Then there are no critical points and so S(χ, f, pm) = 0 for all values
of m ≥ 2.

Case (ii). Suppose next that p - (4ABr2 + c2) and that χ2(4ABr2 + c2)
= 1. Then there are two distinct critical points

(5.2) α1 = 2RA(−c+
√

4ABR2 + c2), α2 = 2RA(−c−
√

4ABR2 + c2),

each of multiplicity one. By the formula in Theorem 4.1(iii), we see that if
m is even then

(5.3) S(χ,AX +BX−1, pm) = pm/2
2∑

i=1

χ(αi)epm(f(αi)),

where the square root and inverse in (5.2) are taken (mod pm/2). If m is odd
then

(5.4) S(χ,AX+BX−1, pm) = p(m−1)/2Gp
2∑

i=1

χ(αi)χ2(2f(αi))epm(f(αi)),

where the square root and inverse are interpreted (mod p(m+1)/2).
Case (iii). Suppose now that p | (4ABr2 + c2). Then there is a single

critical point, α ≡ −2RAc (mod p), of multiplicity two, and the series F2(u)
in (4.13) is given by

F2(u) = (RAα2 + cα−RB)
p

Rα
u+ p3(higher order terms).
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If p2 - (RAα2+cα−RB), that is p2 - (4ABR2+c2), then σ = 2, the polynomial
gα(u) ≡ p−σF2(u) (mod pm) is linear (mod p) and thus the sum S(gα, pm−2)
is zero for m ≥ 3. If p2 - (4ABR2 + c2) then we settle for the upper bound
of (1.19),

(5.5) |S(χ,AX +BX−1, pm)| = |Sα| ≤ 2p2m/3,

for m ≥ 2. This completes the proof of (1.22). The following example shows
that the exponent 2m/3 in (5.5) is best possible in general.

Example 5.1. Let p be a prime with p > 3, m a positive integer divisible
by 3, f = AX − AX−1 with p -A, and χ be a multiplicative character
(mod pm) such that c ≡ −2RA (mod pm−1), where R = p−1 log(1 + rp).
Then

S(χ,AX −AX−1, pm) = p2m/3.

P r o o f. In this example there is a single critical point of multiplicity two
at α ≡ 1 (mod p). Since 1 is of the form alα with 0 ≤ lα < p − 1, we can
take α = 1 in the proof of Theorem 4.1. Now f admits a Taylor expansion
about 1 of the form

f(X) = A
(X − 1)2 + 2(X − 1)

1 + (X − 1)
= A

(
2(X − 1) +

∞∑

i=2

(−1)i+1(X − 1)i
)
.

Thus by (4.13) we have (working in Zp),

F2(U) =
∞∑

i=1

(Riai + (−1)i+1c)
pi

Ri
U i

= (2RA+ c)
p

R
U +

∞∑

i=2

(RiA(−1)i+1 + (−1)i+1c)
pi

Ri
U i,

and thus

(5.6) F2(U) ≡
∞∑

i=3

(RiA+ c)
(−1)i+1pi

Ri
U i (mod pm).

Now, since p > 3, p3 is the maximum power of p dividing the U3 coefficient
in (5.6), and the coefficients of all higher powers are divisible by p4. Thus
σ = 3 and the polynomial gα in (4.18) is of the type

gα ≡ kU3 + pU3G(U) (mod pm),

for some integer k, not divisible by p, and polynomial G with integer coeffi-
cients. Now, by Example 9.1 of [6], if 3 |m then S(gα, pm) = p2m/3, and so
by (4.21) we see that if 3 |m then

Sα = pσ−1S(gα, pm−σ) = p2m/3.
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Example 5.2. Let χ be a multiplicative character (mod pm) with ordp(c)
≥ [(m + 1)/2]. The Kloosterman sum and Salié sums, obtained by taking
χ to be the principal character and quadratic character respectively, are
special cases. For any such character, the sum S(χ,AX + BX−1, pm) has
two distinct critical points α1 =

√
BA, and α2 = −

√
BA, provided AB is

a square (mod p). Moreover, these two values are also the solutions of the
critical point congruence modulo p[(m+1)/2], provided the square roots and
multiplicative inverse are taken modulo that power of p. If we interpret the
square roots as square roots (mod pm) then, with S = S(χ,AX+BX−1, pm),
the formulae in (5.3) and (5.4) simplify to

(5.7) S =





0,
pm/2

∑2
i=1 χ(αi)epm(2(−1)i+1

√
AB),

p(m−1)/2Gp
∑2
i=1 χ2((−1)i+1

√
AB)χ(αi)epm((−1)i+12

√
AB),

for the three cases, χ2(AB) = −1; χ2(AB) = 1, m is even; χ2(AB) = 1, m is
odd, respectively. For the case of the Kloosterman sum the formula in (5.7)
has already been obtained by Salié [24], Whiteman [29], Estermann [11],
Carlitz [3], and Williams [30].

The case p = 2. Let f = AX + BX−1 with 2 -AB. When p = 2 the
critical point congruence is

x2 + cx− 1 ≡ 0 (mod 2),

where c is defined by χ(5) = e2m(c), 1 ≤ c ≤ 2m−2. If c is odd then there is
no critical point and so S(χ, f, 2m) = 0 for m ≥ 3. If c is even then α = 1
is a critical point of multiplicity two. In this case we untwist the sum, using
the method of [6], to obtain the following upper bound. If A + B + c ≡ 0
(mod 4) and m ≥ 4 then S(χ, f, 2m) = 0, otherwise for m ≥ 1 we have
(5.8)

|S(χ, f, 2m)| ≤
{

2(m+3)/2 if c ≡ 0 (mod 4) and A ≡ B (mod 4),
6 · 22m/3 if c ≡ 2 (mod 4) and A ≡ −B (mod 4).

To prove this inequality we start with the identity (8.3) of [6]: For m ≥ 3,

S(χ, f, 2m) = 2e2m(f(1))
2m−3∑
y=1

e2m(F1(y))(5.9)

+ 2χ(−1)e2m(f(−1))
2m−3∑
y=1

e2m(F2(y))

= S1 + S2,

say, where

F1(y) = 5cy + f(5y)− f(1), F2(y) = 5cy + f(−5y)− f(−1).
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We focus our attention on estimating S1; the case of S2 is analogous. Set
R = (log 5)/4, y = log(1 + 4u)/(4R), and let f(X) =

∑∞
i=0 ai(X − 1)i be

the Taylor expansion of f about 1. Then F1(y) = H1(u) where

H1(u) =
(

4
c

R
+ 4(A−B)

)
u+

(
− 8

c

R
+ 16B

)
u2 + 43(higher order terms).

Let σ be the largest power of 2 dividing all of the coefficients of H1 and put
g = 2−σH1. Then

(5.10) |S1| = 2σ−2|S(g, 2m−σ)|.
Case (i). Suppose first that 4 | c and that A ≡ B (mod 4). It follows that

σ = 4, ordp(g′) ≤ 1 and that the sum S(g, 2m−σ) has either no critical point
or a single critical point of multiplicity one. Thus for m ≥ 8 it follows from
Theorem 3.1(b) that |S1| ≤ 222(m−4+1)/2. If m ≤ 5 then we have trivially
|S1| ≤ 2m−2 ≤ 2(m+1)/2. For the cases m = 6, 7 the inequality in (5.8) can
be checked numerically.

Case (ii). Suppose next that 4 | c and A ≡ −B (mod 4), or that c ≡ 2
(mod 4) and A ≡ B (mod 4). Then σ = 3, and for m ≥ σ + 2 the sum
S(g, 2m−σ) has no associated critical point and therefore is equal to zero. If
m = 4 then g is linear and so the sum is again zero.

Case (iii). Suppose finally that c ≡ 2 (mod 4) and that A ≡ −B
(mod 4). Then σ can be as large as 6. In this case we are content to settle
for the upper bound of Theorem 4.2, |S(χ, f, 2m)| ≤ 6 · 22m/3, and observe
that examples can be constructed where |S(χ, f, 2m)| = 22m/3 in the same
manner as in Example 5.1. A more detailed case study may be done here to
obtain sharper bounds in general.

6. Extremal examples

Lemma 6.1. Let d be a positive integer and P (X) ∈ Q[X] the polynomial
of degree D = 2d obtained by truncating the series for − log(1 +X),

P (X) =
D∑

i=1

(−1)i

i
Xi.

Then there exist polynomials f1, f2 ∈ Z[X], each of degree d, such that
p - f2(0) for any prime p > D and

(6.1)
f1(X)
f2(X)

= P (X) +XD+1Q(X)

for some rational function Q(X) over Z, defined at the origin. In other
words, the first D coefficients of the Taylor expansion of f1/f2 coincide
with the coefficients of − log(1 +X).
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P r o o f. Say

P (X) =
D∑

i=1

aiX
i, f1(X) =

d∑

j=1

bjX
j , f2(X) =

d∑

k=0

ckX
k,

where ai = (−1)i/i, 1 ≤ i ≤ D and the values bj , ck are unknowns. We may
assume that c0 = 1. In order to satisfy (6.1) we must have

(6.2)
∑

i+k=j

aick = bj for 1 ≤ j ≤ d,

and

(6.3)
d∑

i=1

aj−ici = −aj for d+ 1 ≤ j ≤ D.

The latter system is a nonhomogeneous system of d equations in d unknowns
c1, . . . , cd. After a permutation of columns we see that the coefficient matrix
is [(−1)i+j+1/(i + j − 1)], which up to signs is just the well known Hilbert
matrix [1/(i + j − 1)] that arises in numerical analysis (see e.g. [1]). The
Hilbert matrix is known to be nonsingular with inverse [αij ] given explicitly
by

αij = (−1)i+j(i+ j − 1)
(
d+ j − 1
d− i

)(
d+ i− 1
d− j

)(
i+ j − 2
i− 1

)(
i+ j − 2
j − 1

)
.

In particular the entries αij are integers and consequently so are the en-
tries of the inverse of the coefficient matrix for (6.3), which is given by
[(−1)i+j+1αij ]. Thus (6.3) has a unique solution in rational numbers ck,
1 ≤ k ≤ d2. Moreover since the values ck are integral linear combinations
of the values 1/(d+ 1), 1/(d+ 2), . . . , 1/D, it is clear that the denominators
of the fractions ck, written in reduced form, are comprised of prime factors
p < D. Having solved for the ci, (6.2) then uniquely determines the values
bj , 1 ≤ j ≤ d. Clearing the denominators in the fraction f1/f2 we obtain
polynomials f1 and f2 with integer coefficients satisfying (6.1), and having
the property that f2(0) is comprised of primes p ≤ D. It follows from the
next example that the degrees of f1, f2 are exactly d.

As examples we have for d = 1, f1/f2 = −X/(X + 2), and for d = 2,
f1/f2 = (−3X2 − 6X)/(X2 + 6X + 6).

Example 6.1. We show that the exponent m(1 − 1/(D + 1)) in (1.21)
is best possible when d1 = d2. Let d1 be a given positive integer and set
D = 2d1. Let L be the least common multiple of the integers from 1 toD, and
P (X) be the polynomial in Lemma 6.1 with d = d1. Let f1(X), f2(X) ∈ Z[X]
be polynomials of degrees at most d1, satisfying (6.1) and put f(X) =
Lf1(X − 1)/f2(X − 1). Let p be a prime with p > D + 2, m a positive
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integer with (D+ 1) |m, and χ be a multiplicative character (mod pm) such
that c=c(χ, a)≡RL (mod pm−1), where R=p−1 log(1+rp). Then we claim
that

(6.4) S(χ, f, pm) = epm(f(1))pm(1−1/(D+1)).

P r o o f. We have

G(X) := RXf ′(X) + c = (LRXP ′(X − 1) + c) + LRX(X − 1)Dq(X)

≡ c(1−X)D + cX(X − 1)Dq(X) (mod pm),

where q(X) is a rational function over Z given by

q(X) = (X − 1)Q′(X − 1) + (D + 1)Q(X − 1).

Now, since p > D, it follows from the condition p - f2(0) of Lemma 6.1, that
Q(X) does not have a pole at x = 0 when read (mod p) and consequently
q(X) does not have a pole at x = 1 when read (mod p). Thus, there is a single
critical point α = 1 of multiplicity D. Now since the first D coefficients of
the Taylor expansion of f about α = 1 are just the coefficients of LP (X),
we deduce for 1 ≤ i ≤ D that the coefficient of U i in (4.13) is

(R(−1)iL+ (−1)i+1c)pi(Ri)−1 ≡ 0 (mod pm).

Thus

F2(U) ≡
∞∑

i=D+1

(Riai + (−1)i+1c)
pi

Ri
U i (mod pm).

Since p > D+2 we see that σ := ordp(Fα(U)) ≥ D+1, but by Lemma 4.3(ii)
we also know that σ ≤ D + 1. Therefore σ = D + 1. If m = D + 1 then by
(4.21), Sα = pD = pm(1−1/(D+1)). Otherwise m ≥ 2(D + 1) and the maxi-
mum power of p dividing the (D+ 1)st coefficient of F2(U) is pσ. Therefore,

gα(U) := p−σFα(U) ≡ cdUD+1 + pUD+1hα(U) (mod pm−σ),

for some polynomial hα(U) with integer coefficients. We observe that g(U)
is a polynomial of the type considered in Example 9.1 of [6], and thus from
(4.20) we conclude that if (D + 1) |m, then

S(χ, f, pm) = χ(1)epm(f(1))pD
pm−D−1∑
u=0

epm−D−1(gα(u))

= epm(f(1))pDp(m−D−1)(1−1/(D+1))

= epm(f(1))pm(1−1/(D+1)).

We note that in order to construct an example of this type it is necessary
for p to be larger than D, because for p ≤ D the maximum multiplicity of
a critical point is at most M ≤ p− 1 < D, as we noted in the remark at the
end of Section 4.
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