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1. Introduction. For a set A ⊆ N, let A(n) = |A ∩ {1, . . . , n}| and

P(A) =
{ ∑

a∈B

a : B ⊆ A, 1 ≤ |B| < ∞
}

.

It is well known that if for some ε > 0 for all sufficiently large n we have
A(n) ≥ n1/2+ε, then the set P(A) contains an infinite arithmetic progres-
sion, i.e. the following holds.

Theorem 1. Let ε > 0 and suppose that for a set A ⊆ N we have A(n) ≥
n1/2+ε whenever n is large enough. Then there exist b and d such that
P(A) contains all terms of the infinite arithmetic progression b, b+d, b+2d,
b + 3d, . . .

Theorem 1 is due to Folkman [4], who also asked whether its assertion
remains true if ε > 0 is replaced by a function which tends to 0 as n →∞.
Theorem 2 below states that this is indeed the case and, furthermore, for
every set A dense enough, one can take b = 0. It should be mentioned that
recently a similar result has been independently proved by Hegyvári [5],
who showed that the assertion of Theorem 1 holds for all A ⊆ N with
A(n) > 300

√
n log n for n large enough.

Theorem 2. Let A be a set of natural numbers such that A(n) >
402

√
n log n for n large enough. Then there exists d′ such that

{d′, 2d′, 3d′, . . .} ⊆ P(A).

We use Theorem 2 to estimate the maximal density of sum-free sets of
natural numbers. Recall that a set A ⊆ N is sum-free if A ∩ P ′(A) = ∅,
where

P ′(A) =
{ ∑

a∈B

a : B ⊆ A, 2 ≤ |B| < ∞
}

.
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Erdős [3] (see also Deshoulliers, Erdős and Melfi [1]) proved that the density
of every sum-free set A is zero, and that for such a set A we have

lim inf
n→∞

A(n)
nc

= 0

provided c > (
√

5 − 1)/2. As an immediate consequence of Theorem 2 we
obtain the following strengthening of this result.

Theorem 3. If A ⊆ N is sum-free, then for each n0 there exists n ≥ n0

such that A(n) ≤ 403
√

n log n.

In the last part of the note for every ε > 0 we construct a sum-free set
Aε such that Aε(n) ≥ n1/2 log−1/2−ε n for all n large enough. Thus, the
upper bound for the upper density of a sum-free set given by Theorem 3 is
close to best possible.

2. Proofs of Theorems 2 and 3. Throughout the note by the (d, k,m)-
set we mean the set of terms of the arithmetic progression {kd, (k + 1)d, . . .
. . . , (k + m)d}. Our argument relies on the following remarkable result of
Sárközy [6, 7], which states that if a finite set A is dense enough, then P(A)
contains large (d, k,m)-sets.

Theorem 4. Let n ≥ 2500 and let A be a subset of {1, . . . , n} with
|A| > 200

√
n log n elements. Then P(A) contains a (d, k,m)-set , where

1 ≤ d ≤ 10000n/|A|, k ≤ n and m ≥ 7−110−4|A|2 − n.

We shall also need the following simple observation.

Fact 5. For i = 1, 2, let Ai be a (di, ki,mi)-set , and let mi/2 ≥ d2 ≥
d1. Then there exists an integer k3 such that the set A1 + A2 contains a
(d1, k3,m3)-set A3 with m3 ≥ m1 + m2 − 2d1.

P r o o f. Note that A2 contains a (d1d2, k4,m4)-set B with k4 = dk2/d1e
and m4 ≥ (m2−2d1)/d1. Hence, A1+B contains a (d1, k1+k4d2,m1+m4d2)-
set.

Lemma 6. Let A be a set of natural numbers such that for each n large
enough, A(n) > 201

√
n log n. Then there exists d such that for each m ∈ N

the set P(A) contains a (d, k,m)-set for some k.

P r o o f. For i ≥ 1 set n1 = 2 and ni+1 = n2
i = 22i

and let

Ii = {n ∈ N : ni−1 < n ≤ ni}.
Since for large enough n we have A(n) > 201

√
n log n, there exists i0 ≥ 30

such that for i ≥ i0 the set A ∩ Ii has more than 200
√

ni log ni elements.
Hence, by Theorem 4, for i ≥ i0, the set P(Ai) contains a (di, ki,mi)-set
Bi with 1 ≤ di ≤ 50

√
ni/log ni and mi ≥ 10−3ni log ni. Let i′ be the value

of index which minimizes di for all i ≥ i0 (note that di′ ≤
√

ni0). We shall
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show that the set P(Ai′)+P(Ai′+1)+ . . .+P(Al) contains a (di′ , k
′
l,m

′
l)-set

for some k′l and m′
l ≥ 0.001nl.

We use induction on l. For l = i′ we have

m′
i′ = mi′ ≥ 10−3ni′ log ni′ ≥ 10−3ni′ .

Thus, assume that the assertion holds for l0 ≥ i′. By the choice of i′ we
have dl0+1 ≥ di′ , and

dl0+1 ≤ 50
√

nl0+1

log nl0+1
=

50nl0√
log 22l0

<
nl0

2000
=

m′
l0

2
.

Hence, from Fact 5 and the induction hypothesis we infer that P(Ai′) +
P(Ai′+1) + . . . + P(Al0+1) contains a (di′ , k

′
l0+1,m

′
l0+1)-set for some k′l0+1

and
m′

l0+1 ≥ ml0+1 + 0.001nl0 − 2di′

≥ 0.001nl0+1 log nl0+1 − 2
√

ni0 ≥ 0.001nl0+1.

In the proof of Theorem 2 we shall also need the following fact (see, for
instance, Folkman [4]).

Fact 7. For every natural d there exists a constant C such that for
every set A of natural numbers with A(n) ≥ C

√
n for n large enough, there

exist r = r(d,A) and k0 = k0(d, A) such that for each k ≥ k0,

{kd, (k + 1)d, . . . , (k + r)d} ∩ P(A) 6= ∅.
Proof of Theorem 2. Let A = {a1 < a2 < . . .} and A1 = {a2n−1 : n ∈ N},

A2 = A \ A1. Then, for n large enough, we have A1(n) ≥ 201
√

n log n.
Hence, by Lemma 6, there exists d such that P(A1) contains (d, k,m)-sets
with arbitrarily large m. Furthermore, Fact 7 applied to A2 implies that
on the set of multiplicities of d, the set P(A2) has only bounded gaps.
Consequently, P(A1) +P(A2) contains an infinite arithmetic progression of
the form {k′d, (k′ + 1)d, . . .} and thus the assertion holds with d′ = k′d.

Proof of Theorem 3. Let A be a set of natural numbers such that for
some n0 we have A(n) > 403

√
n log n for n ≥ n0. We shall show that A is

not sum-free. Indeed, choose an infinite subset A1 ⊆ A such that for the set
A2 = A \ A1 we have A2(n) > 402

√
n log n whenever n ≥ n0. Theorem 3

implies that for some d and k we have

{d, 2d, 3d, . . .} ⊆ P(A2).

Let a1, a2 ∈ A1 be such that a1 ≥ a2 + d and a1 ≡ a2 (mod d). Then
a2 ∈ {a1 + d, a1 + 2d, a1 + 3d, . . .} ⊆ P ′(A).

3. Dense sum-free sets. We conclude the note with an example
of a sum-free set A such that for each n large enough we have A(n) ≥
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n1/2 log−1/2−ε n, where ε > 0 can be chosen arbitrarily small. In our con-
struction we use a method of Deshoulliers, Erdős and Melfi [1] who showed
that one can slightly “perturb” the set of all cubes to get a sum-free set. We
remark that the fact that this approach can be used to build dense sum-free
sets has been independently observed by Ruzsa (private communication).

Let α be an irrational number such that all terms of its continued fraction
expansion are bounded, e.g. let

α =
√

5− 1
2

= [0; 1, 1, 1, . . .],

and let {αn} = αn− bαnc. Then the set {{αn} : 1 ≤ n ≤ M} is uniformly
distributed in the interval (0, 1), i.e. the following holds (see, for instance,
[2], Corollary 1.65).

Theorem 8. For some absolute constant C and all M

sup
0<x<y<1

| |{{αn} : 1 ≤ n ≤ M} ∩ (x, y)| −M(y − x)| ≤ C log M.

Now let ε > 0 and ni = i3 for i ≥ 1. Furthermore, set

Ai =
{

ni ≤ n < ni+1 : {αn} ∈
(

1

2i3/2 log1/2+ε i
,

1

i3/2 log1/2+ε i

)}
,

and
A =

⋃
i≥i0

Ai,

where i0 is a large natural number which will be chosen later. Using Theo-
rem 8 we infer that for i large enough

|Ai| =
3i1/2

2 log1/2+ε i
+ O(log i),

and thus, for large m,
m∑

i=i0

|Ai| =
3
2

m∑
i=i0

i1/2

log1/2+ε i
+ O(m log m) =

m3/2

log1/2+ε m
+ O(m log m).

Let nm ≤ n < nm+1. Then n1/3 − 1 < m ≤ n1/3 and
m−1∑
i=i0

|Ai| ≤ A(n) ≤
m∑

i=i0

|Ai|.

Hence,

A(n) =
n1/2

log1/2+ε n1/3
+ O(n1/3 log n).

Now suppose that for some a1, . . . , al, b ∈ A we have

(∗) b = a1 + . . . + al.
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Then also
{αb} ≡ {αa1}+ . . . + {αal} (mod 1).

But for i0 large enough we have
l∑

i=1

{αai} ≤
∑
n∈A

{αn} ≤
∞∑

i=i0

(
3i1/2

2 log1/2+ε i
+ O(log i)

)
1

i3/2 log1/2+ε i

≤
∞∑

i=i0

2
i log1+2ε i

< 1,

so that
{αb} = {αa1}+ . . . + {αal}.

But this is impossible, since b is larger than any of a1, . . . , al, and, conse-
quently, from the definition of A,

{αb} < {αa1}+ {αa2}.
Hence the equation (∗) has no solutions in A, i.e. A is sum-free.
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[3] P. Erd ő s, Remarks on number theory , III , Math. Lapok 13 (1962), 28–38 (in Hun-
garian).

[4] J. Fo lkman, On the representation of integers as sums of distinct terms from a
fixed sequence, Canad. J. Math. 18 (1966), 643–655.
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