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On the maximal density of sum-free sets
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Tomasz Luczak (Poznan) and Tomasz SCHOEN (Kiel and Poznan)

1. Introduction. For a set A C N, let A(n) =|AN{l,...,n}| and
P(A):{ZQ:BQA, 1§|B\<oo}.

a€B
It is well known that if for some € > 0 for all sufficiently large n we have
A(n) > n'/?*¢ then the set P(A) contains an infinite arithmetic progres-
sion, i.e. the following holds.

THEOREM 1. Lete > 0 and suppose that for a set A C N we have A(n) >
n'/2te whenever n is large enough. Then there exist b and d such that
P(A) contains all terms of the infinite arithmetic progression b,b+d, b+ 2d,
b+3d,... m

Theorem 1 is due to Folkman [4], who also asked whether its assertion
remains true if € > 0 is replaced by a function which tends to 0 as n — oo.
Theorem 2 below states that this is indeed the case and, furthermore, for
every set A dense enough, one can take b = 0. It should be mentioned that
recently a similar result has been independently proved by Hegyvari [5],
who showed that the assertion of Theorem 1 holds for all A C N with
A(n) > 300y/nlogn for n large enough.

THEOREM 2. Let A be a set of natural numbers such that A(n) >
402v/nlogn for n large enough. Then there exists d' such that

(d,2d,3d,...} C P(A).

We use Theorem 2 to estimate the maximal density of sum-free sets of
natural numbers. Recall that a set A C N is sum-free if AN P/(A) = 0,
where

P’(A):{Za:BgA,zng!<oo}-
a€EB
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Erdés [3] (see also Deshoulliers, Erdés and Melfi [1]) proved that the density
of every sum-free set A is zero, and that for such a set A we have

A
lim inf ()

n— o0 n¢

=0

provided ¢ > (v/5 — 1)/2. As an immediate consequence of Theorem 2 we
obtain the following strengthening of this result.

THEOREM 3. If A C N is sum-free, then for each ng there exists n > ng
such that A(n) < 403v/nlogn.

In the last part of the note for every € > 0 we construct a sum-free set
A® such that A®(n) > n'/? log~"/?27%p for all n large enough. Thus, the
upper bound for the upper density of a sum-free set given by Theorem 3 is
close to best possible.

2. Proofs of Theorems 2 and 3. Throughout the note by the (d, k, m)-
set we mean the set of terms of the arithmetic progression {kd, (k+1)d,...
..., (k+m)d}. Our argument relies on the following remarkable result of
Sérkozy [6, 7], which states that if a finite set A is dense enough, then P(A)
contains large (d, k, m)-sets.

THEOREM 4. Let n > 2500 and let A be a subset of {1,...,n} with
|A| > 200y/nlogn elements. Then P(A) contains a (d,k,m)-set, where
1 <d<10000n/|Al, k <n and m > 7711074 A? —n. =

We shall also need the following simple observation.

FacT 5. Fori = 1,2, let A; be a (d;, k;,m;)-set, and let m;/2 > dy >
di. Then there exists an integer ks such that the set Ay + Ay contains a
(dl, k‘g, ’I?’Lg)-Set A3 with ms >mi + mg — le.

Proof. Note that As contains a (dyda, kg, my4)-set B with ky = [ka/d; |
and my > (mg—2d;)/d;. Hence, A1+ B contains a (dy, k1+kyda, m1+myds)-
set. m

LEMMA 6. Let A be a set of natural numbers such that for each n large
enough, A(n) > 201y/nlogn. Then there exists d such that for each m € N
the set P(A) contains a (d,k,m)-set for some k.

Proof. Fori>1set ny =2 and n;11 :n? — 22" and let
Ii={neN:n;_; <n<n;}.

Since for large enough n we have A(n) > 201y/nlogn, there exists ig > 30
such that for ¢ > iy the set A N I; has more than 200+/n; logn; elements.
Hence, by Theorem 4, for i > iy, the set P(A;) contains a (d;, k;, m;)-set
B; with 1 < d; < 504/n;/logn; and m; > 1073n; logn,. Let i’ be the value
of index which minimizes d; for all i > iy (note that d;y < ,/n;,). We shall
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show that the set P(A;/) +P(Ai41)+...+P(A;) contains a (di, k;, m;)-set
for some k] and mj > 0.001n;.
We use induction on [. For [ =i’ we have
mi = my > 10 3n; logn; > 10 3n,.
Thus, assume that the assertion holds for Iy > ¢’. By the choice of i’ we
have dj,+1 > dy/, and

Npg+1 50my, N, lo

= < = :
logni,+1 /log22 2000 2

Hence, from Fact 5 and the induction hypothesis we infer that P(A;) +
P(Airg1) + ...+ P(Ay41) contains a (di, ky | 1,m) ,1)-set for some k; .,
and

diy+1 < 50

> 0.001n10+1 log Niy+1 — 21/711'0 > 0'001nl0+1- u

My, 41 = Mig41 + 0.001ng, — 2d;

In the proof of Theorem 2 we shall also need the following fact (see, for
instance, Folkman [4]).

Fact 7. For every natural d there exists a constant C such that for
every set A of natural numbers with A(n) > C\/n for n large enough, there
exist r = r(d, A) and ko = ko(d, A) such that for each k > ko,

{kd,(k+1)d,...,(k+7r)d}NPA) #0. m

Proof of Theorem 2. Let A = {a; < az < ...} and A; = {az,—1 : n € N},
Ay = A\ A;. Then, for n large enough, we have A;(n) > 201y/nlogn.
Hence, by Lemma 6, there exists d such that P(A;) contains (d, k, m)-sets
with arbitrarily large m. Furthermore, Fact 7 applied to As implies that
on the set of multiplicities of d, the set P(As) has only bounded gaps.
Consequently, P(A;) + P(Az) contains an infinite arithmetic progression of
the form {k'd, (k' 4+ 1)d,...} and thus the assertion holds with d' = k'd. =

Proof of Theorem 3. Let A be a set of natural numbers such that for
some ngy we have A(n) > 403y/nlogn for n > ng. We shall show that A is
not sum-free. Indeed, choose an infinite subset A; C A such that for the set
Ay = A\ A1 we have As(n) > 402y/nlogn whenever n > ng. Theorem 3
implies that for some d and k we have

{d,2d,3d, ...} C P(As).

Let ai,as € A; be such that a; > as + d and a1 = a2 (mod d). Then
as € {a1 +d,a1 +2d,a1 +3d,...} CP'(A). m

3. Dense sum-free sets. We conclude the note with an example
of a sum-free set A such that for each n large enough we have A(n) >
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nt/? log_l/ 2=¢pn, where € > 0 can be chosen arbitrarily small. In our con-
struction we use a method of Deshoulliers, Erdés and Melfi [1] who showed
that one can slightly “perturb” the set of all cubes to get a sum-free set. We
remark that the fact that this approach can be used to build dense sum-free
sets has been independently observed by Ruzsa (private communication).

Let o be an irrational number such that all terms of its continued fraction
expansion are bounded, e.g. let

V5 -1

2
and let {an} = an — |an]. Then the set {{an} : 1 < n < M} is uniformly
distributed in the interval (0,1), i.e. the following holds (see, for instance,

[2], Corollary 1.65).
THEOREM 8. For some absolute constant C and all M

sup |[[{{an}:1<n<M}n(z,y)|—M(y—=x)| <ClogM. m
0<zr<y<1

=10;1,1,1,.. ],

o=

Now let € > 0 and n; = > for i > 1. Furthermore, set

A; = < : 1 L
PSS e tan) € 2i3/210g' /2t i i3/210g" /¢ ) |

A= 4,

i>io

and

where 7 is a large natural number which will be chosen later. Using Theo-
rem 8 we infer that for ¢ large enough

3i1/2

Ai| = — 75— + O(log1),
| A 210g1/2+52. (log i)
and thus, for large m,

- 3w il/? m3/2

g@: Al = 2 ; logt/?+e + O(mlogm) = 1o P m + O(mlogm).

Let 1, <1 < Nypgr. Then n'/3 — 1 < m < n'/3 and

m—1 m
S Al < Am) < 3 144l
i=ig i=ig
Hence,
nl/2 s
A(n) = W + O(n/°logn).
Now suppose that for some aq,...,a;,b € A we have

() b=ay+...4+ay.
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Then also
{ab} ={aa1} + ...+ {aq;} (mod 1).

But for ig large enough we have

I 0 -
3il/2 ; 1
Z{aai} < Z{om} < Z (210g1/2+52 + O(log l)) W

i=1 neA i=io
d 2
< — <1
Z.:ZZ% z'logHQEi ’

so that
{ab} = {aa1} + ... + {aa}.

But this is impossible, since b is larger than any of ay,...,a;, and, conse-
quently, from the definition of A,

{ab} < {aai} + {aas}.

Hence the equation (*) has no solutions in A, i.e. A is sum-free.
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