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Polylogarithms and arithmetic function spaces

by

Lutz G. Lucht and Anke Schmalmack (Clausthal)

1. Introduction. The polylogarithm function, defined for s ∈ C and
z ∈ U := {z ∈ C : |z| < 1} by

Ls(z) =
∞∑

n=1

n−szn,

represents a distribution of weight s− 1 in the sense of Kubert [3] (see also
Milnor [8]). It is well known (see Jonquière [2]) that Ls(z) is an entire
function of s, which holomorphically extends to the cut plane C \ [1,∞)
with respect to z. This property carries over to all s-derivatives

Ls,k(z) := (−1)k ∂k

∂sk
Ls(z) =

∞∑
n=1

n−s logkn zn

with k ∈ N0, and for d ∈ N it follows that Ls,k(zd) represents a holomorphic
function of z in the d-fold cut plane C \

⋃
{tζ : t ∈ [1,∞), ζd = 1}.

The purpose of this paper is to investigate the set

B = {Ls,k(zd) : s ∈ C, k ∈ N0, d ∈ N}

and the complex vector space V generated by B. In Section 2 we show that
B is a basis of V. The proof is based on the study of the associated space G
of arithmetic functions f : N → C such that the power series

P (f, z) :=
∞∑

n=1

f(n)zn

belongs to V. Current interest concentrates on linear relations over Q
among polylogarithm values at algebraic arguments (see the monograph of
Lewin [4]). Our result shows that such relations cannot be explained by lin-
ear homogeneous functional differential equations with constant coefficients
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for the polylogarithm functions z 7→ Ls,k(zd) as these are linearly indepen-
dent over C. The arithmetic significance consists in establishing the method
of comparing coefficients in G. In Section 3 we introduce the notion of weakly
reducible arithmetic functions and develop an operator method, by which
we determine the shape of weakly reducible functions f ∈ G. In Section 4 we
investigate reducible functions, subsuming multiplicative and additive func-
tions, and their mean behaviour. As an application, based on asymptotic
estimates of sums over the values of reducible functions with exponential
weights, we characterize in Sections 5 and 6 the boundary behaviour of
power series by arithmetical properties of their coefficient functions.

2. The linear independence of B over C. Let F and H respectively
denote the class of all arithmetic functions f : N → C and of all h ∈ F such
that |supp h| < ∞. Then F is a C-algebra under the usual linear operations
and the Dirichlet convolution ∗, defined by

(f ∗ g)(n) =
∑

dm=n

f(d)g(m) (n ∈ N),

and H is a subalgebra with identity ε, ε(1) = 1 and ε(n) = 0 for n 6= 1.
Further we define Is logk ∈ F for s ∈ C and k ∈ N0 by

Is logk(n) = ns logk n (n ∈ N)

and write 1 for the constant function I0.

Lemma 1. P (f, z) ∈ V if and only if

(1) f =
∑
s∈S

∑
k∈K

hs,k ∗ (Is logk)

with finite sets S ⊂ C, K ⊂ N0, and arithmetic functions hs,k ∈ H for all
s ∈ S, k ∈ K.

P r o o f. By definition, P (f, z) ∈ V if and only if

P (f, z) =
∑
s∈S

∑
k∈K

∞∑
d=1

hs,k(d)L−s,k(zd)

with finite sets S ⊂ C, K ⊂ N0, and hs,k ∈ H for all s ∈ S, k ∈ K. For
z ∈ U this means

P (f, z) =
∑
s∈S

∑
k∈K

∞∑
d=1

∞∑
m=1

hs,k(d)ms logk m zdm

=
∞∑

n=1

( ∑
s∈S

∑
k∈K

(hs,k ∗ Is logk)(n)
)
zn,

from which the assertion follows.
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Lemma 2. For distinct s, s′ ∈ C there exists a number n0 = n0(s, s′) ∈ N
such that all solutions n ∈ N of the equation

(2) ns = ns′

are the powers nν
0 with ν ∈ N0.

P r o o f. Clearly n = 1 solves the equation (2). If there is no other
solution n ∈ N then n0 = 1. Otherwise there exists a minimal solution
n0 ∈ N, n0 6= 1. It is obvious that the powers nν

0 with ν ∈ N0 also solve (2).
Conversely let n > 1 be an arbitrary integer solution of (2). We obtain

n = exp
(

2τπi

s− s′

)
, n0 = exp

(
2σπi

s− s′

)
with certain integers τ, σ ∈ Z×. Hence nσ = nτ

0 and τ ≥ σ > 0, say,
by the minimality of n0. It follows that τ = νσ + % with ν ∈ N and
0 ≤ % < σ. We claim that % = 0, which gives n = nν

0 as stated above.
Suppose, on the contrary, that 0 < % < σ. Then 1 < (nn−ν

0 )σ = n%
0 ∈ N,

and nν
0 |n, 1 < n1 := nn−ν

0 < n0. But n1 also solves (2), which contradicts
the minimality of n0.

Lemma 3. Let S ⊂ C, K ⊂ N0 be finite sets, N ≥ |S|(1 + max K) and
IN = {1, . . . , N}. Let further T = {aν : ν ∈ IN} be a geometric progression
with any fixed a ∈ N such that ns 6= ns′ for all n ∈ T and distinct s, s′ ∈ S.
Then the set

{Is logκ|T : s ∈ S, κ = 0, . . . ,max K}
of arithmetic functions Is logκ restricted to T is linearly independent over C.

P r o o f. The existence of infinitely many numbers a (e.g. sufficiently
large primes) follows from Lemma 2. We have to show that∑

s∈S

∑
0≤κ≤max K

cs,κIs logκ(n) = 0 (n ∈ T )

with coefficients cs,κ ∈ C implies cs,κ = 0 for all s ∈ S and 0 ≤ κ ≤ max K.
The above equation is equivalent to

(3)
∑
s∈S

∑
0≤κ≤max K

cs,κ logκ a νκeνs log a = 0 (ν ∈ IN ).

The left-hand side of (3) is an exponential polynomial, i.e. a linear combi-
nation of the distinct functions

(4) ν 7→ νκeαν (ν ∈ IN )

with α = s log a, s ∈ S, and 0 ≤ κ ≤ max K, which is annihilated by a linear
homogeneous recurrence equation with constant coefficients of order N =
|S|(1+max K). It is uniquely determined by its values on IN and therefore
vanishes on N. As is well known (see, for instance, van der Poorten [9], Lucht
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and Methfessel [6]) the functions (4) with ν ∈ N are linearly independent
over C. Hence all coefficients cs,κ vanish.

According to the definition V is spanned by B, but it is not obvious
that B is linearly independent over C. We deduce this from the preceding
lemmas.

Theorem 1. B is a basis of V.

P r o o f. By Lemma 1 we have to show that

(5) 0 =
∑
s∈S

∑
k∈K

hs,k ∗ Is logk

with finite sets S ⊂ C, K ⊂ N0 and functions hs,k ∈ H implies hs,k = 0 for
all s ∈ S, k ∈ K. Suppose that

(6) D :=
⋃
{supphs,k : s ∈ S, k ∈ K} 6= ∅,

and let d∗ ∈ D be minimal. Let further a ∈ N, a > 1, be prime to

(7) Q :=
∏
d∈D

d ·
∏

s,s′∈S
s 6=s′

n0(s, s′).

Lemma 2 shows that aνs 6= aνs′ for all ν ∈ N and distinct s, s′ ∈ S, and it
follows from (5) that

0 =
∑
s∈S

∑
k∈K

(hs,k ∗ Is logk)(d∗aν) =
∑
s∈S

∑
k∈K

hs,k(d∗)Is logk(aν)

for all ν ∈ N. Lemma 3 yields hs,k(d∗) = 0 for all s ∈ S and k ∈ K, which
implies d∗ 6∈ D. This contradiction proves the theorem.

The following theorem is a reformulation of Lemma 1 and Theorem 1 in
terms of arithmetic functions.

Theorem 2. The space G = {f ∈ F : P (f, z) ∈ V} is a unitary mod-
ule over H with basis B = {Is logk : s ∈ C, k ∈ N0} and the Dirichlet
convolution as exterior multiplication.

In other words, every f ∈ G has a unique basis representation of the
form

(8) f =
∑
s∈S

∑
0≤k≤ks

hs,k ∗ Is logk

with a finite set S = Sf ⊂ C, numbers ks ∈ N0 and functions hs,k ∈ H for
0 ≤ k ≤ ks such that supp hs,ks

6= ∅ for s ∈ S. The finite set D = Df ⊂ N
from (6) and the number Q = Qf ∈ N from (7) are uniquely determined by
f ∈ G.
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3. Weakly reducible functions. We call an arithmetic function f ∈ F
weakly reducible if for every N ∈ N there exists an integer q > 1 prime to N
such that f satisfies an equation of the form

(9) f(qn) = αqf(n) + βq

for all n ≤ N with certain coefficients αq, βq ∈ C. Every multiplicative and
every additive function f ∈ F is weakly reducible, which is easily seen by
taking any prime q > N and respectively coefficients αq = f(q), βq = 0,
and αq = 1, βq = f(q). We denote the sets of multiplicative and additive
functions f ∈ F by M and by A, respectively.

In order to explicitly determine all weakly reducible functions f ∈ G we
define a module endomorphism θ on G by

Is logk 7→ θIs logk =
{

sIs if k = 0,
sIs logk + kIs logk−1 if k ∈ N.

By writing the composition of endomorphisms as multiplication the elements
of the polynomial ring C[θ] represent endomorphisms of G.

Lemma 4. For every f ∈ G there exists a uniquely determined normalized
polynomial π(θ) = πf (θ) ∈ C[θ] of minimal degree which annihilates f ,
namely

π(θ) =
∏
s∈S

(θ − s)1+ks ,

where ks = max{k ∈ K : hs,k 6= 0} and f has the representation (8).

P r o o f. It follows from the definition of θ by induction that for k,m ∈ N0

and s, s′ ∈ C

(10) (θ − s)mIs′ logk =
∑

0≤κ≤k

κ!
(

m

κ

)(
k

κ

)
(s′ − s)m−κIs′ logk−κ .

This vanishes if and only if s = s′ and m ≥ k + 1. Since every f ∈ G has
a unique basis representation (8) the uniqueness of π(θ) follows from the
definition of ks for s ∈ S.

Equation (10) specializes to the following useful technical remark.

Remark 1. For s ∈ C and k, m ∈ N0 we have

(θ − s)mIs logk = m!
(

k

m

)
Is logk−m .

For q ∈ N we introduce the endomorphism µq of F by f 7→ µqf with
µqf(n) = f(qn) for all n ∈ N. Then equation (9) takes the form µqf =
αqf + βq on IN .
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Lemma 5. Let f ∈ G. If q ∈ N is prime to Qf then θµqf = µqθf .

P r o o f. By Theorem 2 we only need to consider functions f ∈ G of the
form h ∗ Is logk. It follows from the definition of µq that

µqI
s logk(n) = Is logk(qn) = qsns(log q + log n)k

=
∑

0≤κ≤k

(
k

κ

)
qs logk−κ q ns logκ n,

which gives

µqI
s logk =

∑
0≤κ≤k

(
k

κ

)
qs logk−κ q Is logκ .

Next we obtain, for k ∈ N,

θµqI
s logk

=
∑

0≤κ≤k

(
k

κ

)
qs logk−κ q θIs logκ

= s
∑

0≤κ≤k

(
k

κ

)
qs logk−κ q Is logκ +

∑
0<κ≤k

κ

(
k

κ

)
qs logk−κ q Is logκ−1

= s
∑

0≤κ≤k

(
k

κ

)
qs logk−κ q Is logκ + k

∑
0<κ≤k

(
k − 1
κ− 1

)
qs logk−κ q Is logκ−1

= sµq Is logk + kµqI
s logk−1 = µqθI

s logk,

and θµqI
s = µqθI

s is trivial. Therefore θ and µq commute on B. Since q is
prime to Qf , we see that µqh ∗ Is logk = h ∗ µqI

s logk and hence

θµqh ∗ Is logk = θh ∗ µqI
s logk = h ∗ θµqI

s logk

= h ∗ µqθI
s logk = µqθh ∗ Is logk,

as stated.

Theorem 3. For weakly reducible functions f ∈ F the following asser-
tions are equivalent :

(a) P (f, z) ∈ V,
(b) there exist constants s ∈ C×, c ∈ C and a function h ∈ H such that

either f = h ∗ Is + c or f = h ∗ 1 + c log.

P r o o f. Since every arithmetic function f with (b) belongs to G it follows
from Lemma 1 without any further assumption that P (f, z) ∈ V as claimed
in (a).

For the converse let f ∈ G be weakly reducible. We may assume that f
is non-constant. It follows from (8) and the definition of µq that for every
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N ∈ N satisfying Qf |N there exists some q > 1 prime to N and hence
prime to Qf such that the equation 0 = (µq − αq)f − βq on IN takes the
form

(11) 0 =
∑
s∈S

∑
0≤k≤ks

hs,k ∗ (µq − αq)Is logk −βq.

Assume first that 0 6∈ S. Then, by applying the endomorphism∏
u∈S

(θ − u)1+ku

to (11), it follows that
0 = βq

∏
u∈S

(−u)1+ku

with non-vanishing product, so that βq = 0. By applying the endomorphism

(12) (θ − s)ks

∏
u∈S\{s}

(θ − u)1+ku

with s ∈ S to (11) we deduce from Lemma 5 and Remark 1 that

0 = ks!
∏

u∈S\{s}

(s− u)1+kuhs,ks ∗ (µq − αq)Is

= (qs − αq)ks!
∏

u∈S\{s}

(s− u)1+kuhs,ks ∗ Is

on IN . Again the product does not vanish, so that

(13) αq = qs.

According to Lemma 2 and the definition of Qf the number s is uniquely
determined by (13), so that S = {s} with some s 6= 0.

Assume next that 0 ∈ S. By applying the operator (12) to (11) we
obtain

0 = (qs − αq)ks!
∏

u∈S\{s}

(s− u)1+kuhs,ks
∗ Is − βq(−s)ks

∏
u∈S\{s}

(−u)1+ku .

For s = 0 and k0 = 0 it follows that βq = (1−αq)h0,0 ∗ 1 on IN , and we see
that h0,0 is a constant multiple of ε. For s = 0 and k0 ∈ N equation (13)
results, and we obtain S = {0}. If 0, s ∈ S with some s 6= 0 then necessarily
(13) holds, and we have S = {0, s}.

Hence, with some s 6= 0, either (i) S = {s}, or (ii) S = {0} and k0 ∈ N,
or (iii) S = {0, s} and k0 = 0.

In the case (i) equation (11) takes the form

0 =
∑

0≤k≤ks

hs,k ∗ (µq − αq)Is logk .
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We claim that ks = 0. Conversely, suppose that ks ∈ N and apply the
endomorphism (θ − s)ks−1. As before we find from Lemma 5, Remark 1,
and equation (13) that

0 = qs log q ks!hs,ks ∗ Is

and consequently hs,ks
= 0, contradicting the definition of ks. We conclude

that f = h ∗ Is with some s ∈ C× and some function h ∈ H.
In the case (ii) we have αq = 1, and equation (11) takes the form

(14) 0 =
∑

0≤k≤k0

h0,k ∗ (µq − 1) logk −βq

with some k0 ∈ N. We claim that k0 ≤ 1. Conversely, suppose that k0 ≥ 2
and apply the endomorphism θk0−1. As before, Lemma 5, Remark 1, and
equation (13) yield

0 = log q k0!h0,k0 ∗ 1

and consequently h0,k0 = 0, contradicting the definition of k0. Hence f =
h0,0 ∗ 1 + h0,1 ∗ log with some functions h0,0, h0,1 ∈ H. It follows from (14)
that h0,1 = βq

log q ε and βq 6= 0. This gives f = h∗1+c log with some function
h ∈ H and some constant c ∈ C×.

The case (iii) is treated similarly. We obtain f = hs,0 ∗ Is + h0,0 ∗ 1,
αq = qs and h0,0 = βq

1−αq
ε, which gives f = h ∗ Is + c with some constants

c, s ∈ C× and some function h ∈ H.
This finishes the proof.

We write P for the set of primes and P∗ for the set of prime powers pk

with p ∈ P, k ∈ N.

Corollary 1. A function f ∈ G is multiplicative if and only if
f = h∗Is with some constant s ∈ C and some multiplicative function h ∈ H.
A function f ∈ G is additive if and only if f = h∗1+c log with some constant
c ∈ C and some function h ∈ H with supp h ⊆ P∗.

P r o o f. By definition, f ∈ M if and only if f(1) = 1 and f(qn) =
f(q)f(n) for all coprime q, n ∈ N. We see that βq = 0, in which case
f = h ∗ Is with some s ∈ C and some h ∈ H. Since M forms a group
under the Dirichlet convolution, h is multiplicative. The converse statement
is trivial.

By definition, f ∈ A if and only if f(qn) = f(n) + f(q) for all coprime
q, n ∈ N. We see that αq = 1, in which case f = h ∗ 1 + c log with some
c ∈ C and some h ∈ H. Since both f and c log are additive, h ∗ 1 is also
additive. This is equivalent to supph ⊆ P∗. Again the converse statement
is trivial.
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4. Definition and mean properties of reducible functions. We
strengthen the notion of weak reducibility by calling a function f ∈ F
reducible if and only if f satisfies an equation of the form

f(qn) = α(q)f(n) + β(q)

for all coprime q, n ∈ N with certain coefficient functions α ∈ M and β ∈
F . Evidently reducibility implies weak reducibility. The requirement that
α be multiplicative results from evaluating f(qq′n) for pairwise coprime
q, q′, n ∈ N, namely

α(qq′)f(n) + β(qq′) = f(qq′n) = α(q)α(q′)f(n) + α(q)β(q′) + β(q).

This shows that for all pairs of coprime q, q′ ∈ N the functions f and 1
restricted to the set Mqq′ = {n ∈ N : (n, qq′) = 1} satisfy the equation

(α(qq′)− α(q)α(q′))f |Mqq′ + (β(qq′)− α(q)β(q′)− β(q))1|Mqq′ = 0

and suggests assuming α ∈M, which gives

(15) α(qq′) = α(q)α(q′), β(qq′) = α(q)β(q′) + β(q)

for all coprime q, q′ ∈ N. Notice that α(1) = 1 implies β(1) = 0, and vice
versa. It is obvious from (15) that α and β are also reducible. Hence we
have already proved the first part of the following theorem.

Theorem 4. Let f ∈ F be reducible with generating functions α ∈ M
and β ∈ F . Then f = f(1)α + β. In particular , α and β are also reducible
with (15). Conversely , every pair of functions α, β : P∗ → C satisfying

(16) α(1) = 1, β(1) = 0, (1− α(q))β(q′) = (1− α(q′))β(q)

for all coprime q, q′ ∈ P∗ determines unique extensions α, β : N → C
with (15).

P r o o f. It remains to show the second statement. Here α : P∗ → C
unconditionally extends to a unique multiplicative function α ∈ F . It re-
mains to show that the function β ∈ F is well defined by its values on P∗
if (16) holds. This means that condition (16) guarantees the invariance of
β(q1 . . . qr) for coprime q1, . . . , qr ∈ P∗ under index permutations. We pro-
ceed by induction on r. For r = 0, 1 there is nothing to prove. For r = 2
we obtain β(q1q2) = α(q2)β(q1) + β(q2) and β(q2q1) = α(q1)β(q2) + β(q1)
from (16), so that β(q1q2) = β(q2q1). Assume that β(q) is well defined for
ω(q) ≤ r with some r ≥ 2. We have to show that the value of β(q1 . . . qrqr+1)
is invariant under index permutations. It suffices to consider the transposi-
tion interchanging the indices r and r + 1. In fact, equations (15), (16) and
the induction hypothesis yield
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β(q1 . . . qr−1qr+1qr)
= α(qr)β(q1 . . . qr−1qr+1) + β(qr)

= α(qr)(α(qr+1)β(q1 . . . qr−1) + β(qr+1)) + β(qr)

= α(qr)α(qr+1)β(q1 . . . qr−1) + (α(qr)β(qr+1) + β(qr))

= α(qr+1)α(qr)β(q1 . . . qr−1) + (α(qr+1)β(qr) + β(qr+1))

= α(qr+1)(α(qr)β(q1 . . . qr−1) + β(qr)) + β(qr+1)

= α(qr+1)β(q1 . . . qr−1qr) + β(qr+1)

= β(q1 . . . qr−1qrqr+1).

This completes the proof.

For arbitrary functions f ∈ F we set

f̃p,k(s) =
∞∑

%=k

f(p%)p−%s (p ∈ P, k ∈ N0),

if the Dirichlet series f̃p,0(s) converges absolutely at s ∈ C. We write G(q)
for the multiplicative group of reduced residue classes modulo q ∈ N and
Ĝ(q) for its dual, the Dirichlet character group modulo q. As is well known,
Ĝ(q) ' G(q) and |G(q)| = ϕ(q) where ϕ ∈ F is the Euler function. Let
〈q〉 ⊂ N denote the multiplicative semigroup generated by the prime divisors
of q. It is convenient to associate with reducible functions f the arithmetic
coefficients

(17) f̂q(s) =
∑
t | q

µ(q/t)
ϕ(q/t)

∑
m∈〈t〉

(m,q/t)=1

f(tm)
(tm)s

(q ∈ N)

defined for complex s such that f̃p,0(s) converges absolutely for all p ∈ P.
The following technical lemma transfers the reducibility equation f(qn) =
α(q)f(n) + β(q)1(n) for coprime q, n ∈ N to the function f̂·(s) ∈ F with
q 7→ f̂q(s).

Lemma 6. Let f be reducible with generating functions α, β ∈ F accord-
ing to Theorem 4, and let f̃p,0(s) be absolutely convergent at s ∈ C for all
p ∈ P. Then the transform f 7→ f̂·(s) is well defined and has the properties

(18) f̂1(s) = f(1), f̂pk(s) = f̃p,k(s)− 1
ϕ(p)

· f(pk−1)
p(k−1)s

(pk ∈ P∗)

and

(19) f̂qq′(s) = α̂q(s)f̂q′(s) + β̂q(s)1̂q′(s) (q, q′ ∈ N, (q, q′) = 1).
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Moreover , if f ∈ M then f̂·(s) ∈ M, and f̂q(s) = 0 for almost all q ∈ P∗

implies f = h ∗ Is−1 with some function h ∈ H. In particular , 1̂q(1) = ε(q)
for all q ∈ N. If f ∈ A then f̂q(1) = 0 for all q 6∈ P∗, and f̂q(1) = 0
for almost all q ∈ P∗ implies f = h′ ∗ 1 with some function h′ ∈ H. In
particular , for λ = log ∈ A,

(20) λ̂pk(1) =
(

p

ϕ(p)

)2 log p

pk
(pk ∈ P∗).

P r o o f. The straightforward verification is left to the reader.

For functions f ∈ F we define the summatory function

M(f, x) =
∑
n≤x

f(n) (x ∈ R+)

and introduce the class K consisting of all reducible functions f ∈ F having
the following properties (compare [5]):

(A) There exists a constant s ∈ C with σ := Re s ≥ 0 and a slowly
oscillating function ` : R+ → C such that for every q ∈ N and every χ ∈ Ĝ(q)
the asymptotic estimate

M(fχ, x) =
{

cqx
s`(x) + O(xσ|`(x)|) if χ = χ0,

O(xσ|`(x)|) if χ 6= χ0
(x →∞)

holds.
(B) cq 6= 0 for some q ∈ N.
(C) The limit limx→∞ xs`(x) does not exist.
(D) For every p ∈ P there is some ε > 0 such that the series α̃p,0(σ − ε)

and β̃p,0(σ − ε) converge absolutely, where α, β ∈ F are the generating
functions of f .

Concerning slowly oscillating functions, compare Seneta [13]. Condition
(C) is clearly fulfilled if σ > 0. The constant s = sf is uniquely determined
by f ∈ K.

Remark 2. If the limit limx→∞ `(x) 6= 0 exists then `(x) may and will
be replaced by 1.

For f ∈ K and s = sf we introduce the set

Tα = {p ∈ P : α̃p,0(s) = 0}
and abbreviate

Λf := lim
x→∞

xs−1`(x),

whether the limit exists or not. According to the convention of Remark 2,
the existence of Λf 6= 0 means Λf = 1. The next lemma deals with the
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coefficients cq. Let κ(q) denote the square-free kernel of q ∈ N, i.e. the
product of the prime divisors of q.

Lemma 7. Let f ∈ K, s = sf , and q ∈ N. Then cq = cκ(q), and the
following alternative holds:

(a) If the limit Λf does not exist or vanishes then

cq = cpqα̃p,0(s) (p↖ q).

Moreover , |Tα| < ∞, and cq 6= 0 if and only if q∗ | q, where q∗ =
∏

p∈Tα
p.

(b) If Λf = 1 then

cq = cpqα̃p,0(1) +
ϕ(pq)

pq
β̃p,0(1) (p↖ q).

There are infinitely many square-free numbers q ∈ N such that cq 6= 0. If
β̃p,0(1) = 0 for all p ∈ P then the stronger statements as of case (a) are
valid.

P r o o f. It is obvious that cq = cκ(q) for all q ∈ N. For primes p↖ q we
conclude (compare [5], Section 3) from (A) and (D) that for x →∞

cqx
s`(x) + O(xσ|`(x)|) =

∑
n≤x

(q,n)=1

f(n) =
∑
%≥0

∑
m≤xp−%

(pq,m)=1

f(p%m)

=
∑
%≥0

α(p%)
∑

m≤xp−%

(pq,m)=1

f(m) +
∑
%≥0

β(p%)
∑

m≤xp−%

(pq,m)=1

1

= cpqα̃p,0(s)xs`(x) +
ϕ(pq)

pq
x

∑
%≥0
p%≤x

β(p%)p−%

+ O(xσ|`(x)|).
This gives

(21) (cq − cpqα̃p,0(s) + O(1))xs−1`(x) =


ϕ(pq)

pq
β̃p,0(1) for σ ≤ 1,

0 for σ > 1,
from which the recursion formulas given in (a) and (b) follow.

Particularly, in case (a) we deduce from cq 6= 0 for some specific q that
0 6= cq = cqpα̃p,0(s) for all p↖ q. Hence α̃p,0(s) = 0 at most for primes p | q,
so that Tα is finite. Moreover, if cq 6= 0 for some q then p | q for all p ∈ Tα,
which shows q∗ | q and

cq∗ = cq

∏
p | q

p6∈Tα

α̃p,0(s) 6= 0.

Conversely, it follows from q∗ | q that cq 6= 0.
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Finally, assume that there are at most finitely many non-zero coefficients
cq, and let q∗ ∈ N be the largest square-free number such that cq∗ 6= 0. Then
cpq∗ = cp′q∗ = cpp′q∗ = 0 for all distinct p, p′ ∈ P prime to q∗ and

cq∗ = cpq∗ α̃p,0(1) +
ϕ(pq∗)

pq∗
β̃p,0(1) =

ϕ(pq∗)
pq∗

β̃p,0(1),

0 = cp′q∗ = cpp′q∗ α̃p,0(1) +
ϕ(pp′q∗)

pp′q∗
β̃p,0(1) =

ϕ(pp′q∗)
pp′q∗

β̃p,0(1).

Hence β̃p,0(1) = 0 and cq∗ = 0, a contradiction. If β̃p,0(1) vanishes for all
p ∈ P then the recursion formula (b) takes the form (a).

We set et(x) := e2πitx and evaluate M(fea/q, x) for f ∈ K and coprime
a, q ∈ N.

Theorem 5. Let α, β be the generating functions of f ∈ K and s = sf ,
σ = Re s. Then for coprime a, q ∈ N we have the asymptotic equation
(x →∞)

(22) M(fea/q, x) =


(cqα̂q(s) + O(1))xs`(x) for σ > 1,

(cqα̂q(s) + O(1))xs`(x) +
ϕ(q)

q
β̂q(1)x for σ ≤ 1.

P r o o f. We consider only the case σ ≤ 1, from which the case σ > 1
results by omitting the β-terms. For fixed q and t | q we abbreviate

At(s) =
∑

m∈〈t〉
(m,q/t)=1

α(tm)
(tm)s

, Bt(1) =
∑

m∈〈t〉
(m,q/t)=1

β(tm)
tm

and claim that for χ ∈ Ĝ(q/t)

(23)
∑
n≤y

f(tn)χ(n)

=

 (cqt
sAt(s) + O(1))ys`(y) +

ϕ(q)
q

tBt(1)y if χ = χ0,

O(yσ|`(y)|) if χ 6= χ0

as y →∞. Namely,∑
n≤y

f(tn)χ(n) =
∑

mn≤y
m∈〈t〉, (n,t)=1

f(tmn)χ(mn)

=
∑

mn≤y
m∈〈t〉

(α(tm)f(n) + β(tm))χ(m)χ(n)χ′0(n)
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with the principal character χ′0 ∈ Ĝ(t). It follows that∑
n≤y

f(tn)χ(n) =
∑
m≤y
m∈〈t〉

α(tm)χ(m)
∑

n≤y/m

f(n)χ′0(n)χ(n)

+
∑
m≤y
m∈〈t〉

β(tm)χ(m)
∑

n≤y/m

χ′0(n)χ(n).

For χ 6= χ0 ∈ Ĝ(q/t) the properties (A) and (D) lead to∑
n≤y

f(tn)χ(n) =
∑
m≤y
m∈〈t〉

α(tm)O((y/m)σ|`(y/m)|) +
∑
m≤y
m∈〈t〉

β(tm)O(1)

= O(yσ|`(y)|),

whereas for χ = χ0,∑
n≤y

f(tn)χ0(n) = cqy
s`(y)

∑
m≤y
m∈〈t〉

α(tm)
ms

χ0(m)

+
ϕ(q)

q
y

∑
m≤y
m∈〈t〉

β(tm)
m

χ0(m) + O(yσ|`(y)|)

= cqt
sAt(s)ys`(y) +

ϕ(q)
q

tBt(1)y + O(yσ|`(y)|),

which proves (23). Next we decompose

M(fea/q, x) =
∑

1≤b≤q

eb/q(1)
∑
n≤x

an≡b mod q

f(n)

=
∑
t | q

∑
1≤b≤q
(b,q)=t

eb/q(1)
1

ϕ(q/t)

∑
χ∈Ĝ(q/t)

χ

(
ab

t

) ∑
tn≤x

f(tn)χ(n).

By inserting (23) and observing that∑
1≤b≤q
(b,q)=t

eb/q(1) = µ

(
q

t

)

with µ the Möbius function, we obtain via Lemma 6

M(fea/q, x) = cqx
s`(x)

∑
t | q

µ(q/t)
ϕ(q/t)

At(s) + O(xσ|`(x)|)
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+
ϕ(q)

q
x

∑
t | q

µ(q/t)
ϕ(q/t)

Bt(1)

= cqα̂q(s)xs`(x) +
ϕ(q)

q
β̂q(1)x + O(xσ|`(x)|),

which is the desired conclusion.

Remark 3. Let f ∈ K, s = sf , and let a, q ∈ N be coprime. If f ∈ M
then α = f , β = 0, and (compare [5])

M(fea/q, x) = (cq f̂q(s) + O(1))xs`(x).

If f ∈ A then α = 1, β = f , and (compare [10])

M(fea/q, x) =

 (cq1̂q(s) + O(1))xs`(x) for σ > 1,

(cq1̂q(s) + O(1))xs`(x) +
ϕ(q)

q
f̂q(1)x for σ ≤ 1,

in particular, for s = 1 and q > 1,

(24) M(fea/q, x) =
ϕ(q)

q
f̂q(1)x + O(x|`(x)|) (x →∞).

Notice that equation (24) only provides O-estimates if |`(x)| 6= O(1). We
will investigate this case in Section 6.

5. Holomorphic continuation of power series with reducible
coefficients. The interrelation between the boundary behaviour of power
series and the properties of its coefficient functions is a classical topic of
complex analysis (see, for instance, Bieberbach [1]). In their monograph,
Schwarz and Spilker [12] (see also Schwarz [11]) emphasize arithmetical as-
pects and show that for almost-even functions f the unit circle in the com-
plex plane is the natural boundary of P (f, z) if and only if f has infinitely
many non-vanishing Ramanujan coefficients. This result includes a ratio-
nality test for power series based on almost-evenness. On the other hand,
almost-evenness is a rather strong limitation which only offers the alternative
between rationality with simple poles and holomorphic non-continuability.
In particular, almost-evenness excludes arithmetic functions without mean-
value, for instance the divisor function d and the number of prime divisors
function ω. A different approach based on asymptotic mean properties of
multiplicative functions f was given in [5] (see also Lucht and Tuttas [7]). In
what follows we characterize reducible functions f ∈ K such that P (f, z) has
non-singular points on ∂U . The interesting new point is that these power
series are closely connected with polylogarithm functions.

First we provide an abelian theorem, which yields the transition from
the asymptotic behaviour of the sum M(fea/q, x) as x →∞ to that of the
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power series P (f, z) as z → ζ ∈ ∂U where ζ = ea/q(1) is any primitive qth
root of unity.

Lemma 8. Assume that for f ∈ F there exist some constants c ∈ C×,
s ∈ C with Re s ≥ 0, and a slowly oscillating function ` such that

M(f, x) ∼ cxs`(x) (x →∞).

Then

P (f, z) ∼ cΓ (s + 1)M(f, (1− z)−1) (z ∈ R, z → 1−).

P r o o f. [5], Theorem 1.

Remark 4. If, under the conditions of Lemma 8, the limit

lim
x→∞

M(fea/q, x)

does not exist for a set of points a/q ∈ Q dense in [0, 1] then P (f, z) has ∂U
as natural boundary. Observe that for f ∈ K the main term occurring in
Theorem 5 does not depend on a. Hence, if there are infinitely many q ∈ N
such that the above limit with a = 1 does not exist then P (f, z) has ∂U as
natural boundary.

Theorem 6. Let α, β ∈ F be generating functions of f ∈ K. Then f ∈ G
if and only if P (f, z) has non-singular points on ∂U , except for either

(a) Λf = 1 and α 6∈ K, or
(b) Λf does not exist , sf = 1, α = 1 and β 6= 0.

In the exceptional case (a), f is an additively shifted function α ∈ M such
that the mean value of αχ vanishes for any character χ. In the exceptional
case (b), f is a possibly additively shifted function β ∈ A∩K with Λβ = Λf .

P r o o f. Obviously every f ∈ G has non-singular points on ∂U . For the
converse we have to determine, according to Remark 4 and Theorem 5, the
solutions α and β of the equations cqα̂q(s) = 0 with s = sf or β̂q(1) = 0 or
cqα̂q(1) + ϕ(q)

q β̂q(1) = 0 valid for almost all q ∈ N. In view of Lemma 7 we
distinguish the following cases:

(i) β = 0. Since β̃p,0(1) = 0 for all p ∈ P, Lemma 7(a) applies, so that
α̂q(s) must vanish for almost all q. Lemma 6 yields α = h ∗ Is−1 with some
multiplicative function h ∈ H. Hence α ∈ G and f = f(1)α ∈ G.

(ii) s 6= 1, Λf does not exist, and β 6= 0. Lemma 7(a) applies again, and
we find as in (i) that α = h ∗ Is−1 ∈ G with some multiplicative function
h ∈ H. From s 6= 1 we see that α(q′) 6= 1 for some q′ ∈ P∗. Theorem 4 shows
that β = c(1−α) with some constant c = β(q′)/(1−α(q′)) 6= 0 independent
of q′. Hence β ∈ G and f = f(1)α + β ∈ G.
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(iii) Λf = 0 and β 6= 0. By Theorem 5 and Lemma 7(a), α̂q(s) =
β̂q(1) = 0 for almost all q. It follows again that α = h ∗ Is−1 ∈ G with
some multiplicative function h ∈ H. If there exists some q′ ∈ P∗ such that
α(q′) 6= 1 then we deduce as in (ii) that β = c(1 − α) with some constant
c 6= 0. Hence β ∈ G and f = f(1)α + β ∈ G. Otherwise (i.e. α = 1)
Theorem 4 implies β(qq′) = α(q)β(q′) + β(q) = β(q′) + β(q) for all coprime
q, q′ ∈ N. Therefore β is additive. We utilize Lemma 6 again to conclude
from β̂q(1) = 0 for almost all q ∈ P∗ that β = h′ ∗ 1 with some function
h′ ∈ H. Consequently, β ∈ G and f = f(1)α + β ∈ G.

(iv) Λf = 1 and β 6= 0. Here Lemma 7(b) applies, and cqα̂q(1)+ϕ(q)
q β̂q(1)

vanishes for almost all q. If α̂q(1) = 0 for almost all q then also β̂q(1) = 0
for almost all q. It follows that α = h ∗ 1 ∈ G with some multiplicative
function h ∈ H and, similarly to (iii), that β ∈ G. Hence f = f(1)α + β ∈
G. If α̂q(1) 6= 0 for infinitely many q then α(q′) 6= 1 for infinitely many
q′ ∈ P∗. As in (ii) we obtain β = c(1 − α) with some constant c 6= 0 and
f = f(1)α + β = (f(1)− c)α + c. If c = f(1) then f is constant and hence
belongs to G. Let therefore c 6= f(1). Then f ∈ G if and only if α ∈ G,
and P (f, z) has non-singular points on ∂U if and only if P (α, z) has this
property. Observe that

cqx + O(x) =
∑
n≤x

(n,q)=1

f(n) = (f(1)− c)
∑
n≤x

(n,q)=1

α(n) + c
ϕ(q)

q
x + O(x)

as x →∞. Therefore∑
n≤x

(n,q)=1

α(n) =
cq − cϕ(q)

q

f(1)− c
x + O(x) (x →∞),

and, moreover, the mean value of αχ vanishes for any non-principal charac-
ter χ. Assume that the multiplicative function α belongs to K. In this case
we see from (i) that α ∈ G and thus f ∈ G. But if α 6∈ K then necessarily
cq = cϕ(q)

q for all q, so that M(αea/q, x) = O(x) for all a, q ∈ N, which
implies M(fea/q, x) = O(x) for all coprime a, q ∈ N, q 6= 1. Therefore the
lack of sufficiently many proper asymptotic estimates makes it impossible to
draw the conclusion α ∈ G and respectively f ∈ G. This is the exceptional
case (a).

(v) s = 1, Λf does not exist, and β 6= 0. It follows as in (ii) that
α = h ∗ 1 ∈ G with some multiplicative function h ∈ H. If α 6= 1 then again
β = c(1 − α) ∈ G with some constant c 6= 0 so that f = f(1)α + β ∈ G. If
α = 1 then β = f − f(1) ∈ A, Λβ = Λf , and as in Remark 3 nothing better
than the estimate M(βea/q, x) = O(x|`(x)|) is available, in general. This is
the exceptional case (b).
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In particular, for power series with multiplicative coefficient functions
Theorem 6 combined with Corollary 1 establishes a simple arithmetical cri-
terion for holomorphic continuation.

Corollary 2. For multiplicative f ∈ K the following assertions are
equivalent :

(a) P (f, z) has a holomorphic continuation beyond ∂U ,
(b) P (f, z) ∈ V,
(c) f = h ∗ Is with some constant s ∈ C and some function h ∈ H.

It is easy to see that, for example, the divisor function d ∈ M belongs
to K. Since d fails to have the shape (c) of Corollary 2, P (d, z) has the unit
circle as natural boundary. For further examples compare [5].

The exceptional case (a) of Theorem 6 results from superposing a dom-
inating nicely distributed (i.e. non-zero and constant) function to a multi-
plicative function α 6∈ K of inferior average growth. Based on our approach
it is therefore impossible to decide upon whether α belongs to G or not.

In contrast, the exceptional case (b) of Theorem 6 essentially concerns
nicely distributed additive functions β ∈ K without mean value, and the
deficient knowledge of more precise estimates concerning the asymptotic
mean behaviour of the sums M(βχ, x) prevents from deciding upon whether
β belongs to G or not. Compare Remark 3.

Notice that both exceptional cases in Theorem 6 are excluded by restrict-
ing the considerations to the class K∗ of all f ∈ K such that α ∈ K and Λf

exists if sf = 1. Since several prominent arithmetic functions, for example
the number of prime divisors function ω, are excluded by Theorem 6(b) it
seems worth to refine the defining property (A) of the class K.

6. Linear approximation of slowly oscillating functions at in-
finity. A function ` : R+ → C is differentiable on R+ if and only if

`(xy) = `(x) + log y `1(x)(1 + O(1)) (y → 1)

for all x ∈ R+ with some function `1 : R+ → C, and in this case `1(x) =
x`′(x). The following lemma provides the linear approximation of slowly
oscillating functions ` at infinity.

Lemma 9. Let `, `1 : R+ → C× be measurable functions and let
η : R+ → C be continuous such that η(y) 6= 0 for y 6= 1 and

(25) `(xy) = `(x) + η(y)`1(x)(1 + O(1)) (x →∞)

for every y ∈ R+. Then the following assertions hold.

(a) ` is slowly oscillating if and only if `1(x) = O(|`(x)|) as x →∞.
(b) `1 is slowly oscillating if and only if η = a log with some constant

a ∈ C×.
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(c) x`′(x) ∼ a`1(x) as x → ∞ if ` is differentiable and `, `1 are slowly
oscillating.

P r o o f. Rewrite (25) as

`(xy)− `(x) = η(y)`1(x)(1 + O(1)) (x →∞).

Hence, if ` is slowly oscillating then `1(x) = O(|`(x)|) as x → ∞. Con-
versely, observe that `1(x) = O(|`(x)|) yields `(xy) ∼ `(x) as x → ∞. This
proves (a).

It follows from (25) that for all positive x, y, y′,

η(y)(`1(xy′)(1 + O(1))− `1(x)(1 + O(1)))
= (`(xyy′)− `(xy′))− (`(xy)− `(x))

= (`(xyy′)− `(x))− (`(xy)− `(x))− (`(xy′)− `(x))

= (η(yy′)− η(y)− η(y′))`1(x) + O(|`1(x)|).
Evidently `1 is slowly oscillating if and only if the equation η(yy′) = η(y) +
η(y′) holds for all y, y′ ∈ R+. Since the non-trivial continuous solutions
η : R+ → C are given by η = a log with some a ∈ C×, (b) follows.

Finally, (c) results from∣∣∣∣`(xy)− `(x)
y − 1

− a`1(x)
∣∣∣∣ < δ

with any δ > 0 for sufficiently large x, and y sufficiently close to 1.

It is easily seen that the slowly oscillating function ` associated with
f = f(1) + β ∈ K in Theorem 6(b) is unbounded. Otherwise Theorem 5
would imply that β̃q(1) = 0 for almost all q and thus β = h ∗ 1 with some
function h ∈ H, leading to the existence of the mean value of fχ for every
character χ, a contradiction.

Let now K′ denote the class of all functions f ∈ K with generating
functions α = 1, β 6= 0, and sf = 1, `(x) 6= O(1) satisfying the following
condition (A′) instead of the previous condition (A) in the definition of K:

(A′) There exist slowly oscillating functions `, `1 : R+ → C with

`(xy) = `(x) + log y `1(x) + O(|`1(x)|) (x →∞)

for every y > 0, such that for every q ∈ N and every χ ∈ Ĝ(q),

M(fχ, x) =
{

cqx`(x) + c′qx`1(x) + c′′q x + O(x|`1(x)|) if χ = χ0,
O(x|`1(x)|) if χ 6= χ0

holds as x →∞, with certain constants cq, c
′
q, c

′′
q ∈ C.

To settle the exceptional case (b) of Theorem 6 for f ∈ K′ along the
lines of Section 5 requires a thorough asymptotic evaluation of M(fea/q, x)
for coprime a, q ∈ N with q > 1. This is given in the next theorem.
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Theorem 7. Let f ∈ K′. Then, for coprime a, q ∈ N with q > 1 and
with λ = log, we have the asymptotic equation (x →∞)

M(fea/q, x) =
ϕ(q)

q
(f̂q(1)x− c1λ̂q(1)x`1(x)) + O(x) + O(x|`1(x)|).

P r o o f. We may assume that the additive shift f(1) in the representation
f = f(1) + β vanishes, since f ∈ G if and only if β ∈ G, and M(ea,q, x) =
O(1) for coprime a, q ∈ N, q > 1. The evaluation of M(fea/q, x) for f ∈ A
is similar to that in the proof of Theorem 5. Observe that α = 1 ∈ M and
f = β ∈ A. Since α̃p,0(1) = p/ϕ(p) for every p ∈ P, the definition of K′
and Lemma 7(a) lead to cq = c1ϕ(q)/q 6= 0. With the notations used in the
proof of Theorem 5 we obtain for characters χ, χ0 ∈ Ĝ(q/t), χ 6= χ0, t | q,∑

n≤y

f(tn)χ0(n)

= (cqty`(y) + c′qty`1(y) + c′′q ty)
∑
m≤y
m∈〈t〉

χ0(m)
tm

− cqty`1(y)
∑
m≤y
m∈〈t〉

χ0(m) log m

tm
+

ϕ(q)
q

ty
∑
m≤y
m∈〈t〉

f(tm)χ0(m)
tm

+ O(y|`1(y)|) + O(y)

and ∑
n≤y

f(tn)χ(n) = O(y|`1(y)|) + O(y) (y →∞).

We conclude that (x →∞)

M(fea/q, x) =
∑
t | q

µ(q/t)
ϕ(q/t)

∑
n≤x/t

f(tn)χ0(n) + O(x|`1(x)|) + O(x),

from which we derive
M(fea/q, x) = (cqx`(x) + c′qx`1(x) + c′′q x)1̂q(1)

− cqx`1(x)λ̂q(1) +
ϕ(q)

q
xf̂q(1) + O(x|`1(x)|) + O(x).

Since 1̂q(1) = 0 for q > 1 by Lemma 6, the proof is complete.

Based on Remark 4 and Theorem 7, the next theorem settles the bound-
ary behaviour of the power series P (f, z) for f ∈ K′.

Theorem 8. Let f ∈ K′. Then P (f, z) has non-singular points on ∂U
if and only if f ∈ G.
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P r o o f. The non-trivial part of the assertion presumes the existence of
non-singular points of P (f, z) on ∂U . As before, we may assume that f ∈ A.
Analogously to the proof of Theorem 6 we distinguish three cases depending
on the limit

Λ′ = lim
x→∞

`1(x),

which either (i) does not exist, or (ii) vanishes, or (iii) has a non-zero finite
value 1, say. Consider again the asymptotic behaviour of M(fea/q, x) for
coprime a, q ∈ N, q > 1, and x →∞.

(i) The non-existence of Λ′ implies that

M(fea/q, x) = −ϕ(q)
q

(cλ̂q(1) + O(1))x`1(x)

with some non-zero constant c, so that λ̂q(1) = 0 for almost all q, contra-
dicting Lemma 6. Consequently, K′ does not contain additive functions f
of this kind.

(ii) If Λ′ = 0 then

M(fea/q, x) =
ϕ(q)

q
(f̂q(1) + O(1))x,

so that f̂q(1) = 0 for almost all q. Since f ∈ A, Lemma 6 yields f = h ∗ 1
with some function h ∈ H. Hence f ∈ G.

(iii) If Λ′ = 1 then

M(fea/q, x) =
ϕ(q)

q
(f̂q(1)− cλ̂q(1) + O(1))x

with some non-zero constant c. It follows that f̂q(1)− cλ̂q(1) = 0 for almost
all q. Set g = f−c log. Then g ∈ A, ĝq(1) = 0 for almost all q, and Lemma 6
gives g = h∗1 with some function h ∈ H. Hence g ∈ G and f = g+c log ∈ G.

Collating finishes the proof.

In particular, for power series with additive coefficient functions Theo-
rems 6 and 8 combined with Corollary 1 establish an arithmetical criterion
for holomorphic continuation (compare [10]).

Corollary 3. For additive f ∈ K∗ ∪ K′ the following assertions are
equivalent :

(a) P (f, z) has a holomorphic continuation beyond ∂U ,
(b) P (f, z) ∈ V,
(c) f = h ∗ 1+ c log with some constant s ∈ C and some function h ∈ H.

It is easy to see that, for example, the number of prime divisors function
ω belongs to K′, in particular,
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M(ωχ, x) =


ϕ(q)

q
x(log log x + a + O(1)) if χ = χ0 ∈ Ĝ(q),

O(x) if χ0 6= χ ∈ Ĝ(q)
as x →∞, where the constant a comes from∑

p≤x

1
p

= log log x + a + O(1).

Since ω fails to have the shape (c) of Corollary 3, P (ω, z) has the unit circle
as natural boundary. In the same way this conclusion can be drawn for
P (Ω, z), where Ω is the number of prime factors function.
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