

Superposition of functions on monotonic functions.

 $\mathbf{B}\mathbf{y}$

E. M. Torrance (Providence, R.I., U.S.A).

In this note the domain and range of functions is the interval $I=\langle 0,1\rangle$. A function f is said to have the Baire property (Baire property in the restricted sense) if $f^{-1}(F)$ has the Baire property (Baire property in the restricted sense) for each closed set F^{-1}). Let B_r denote the class of sets having the Baire property in the restricted sense.

Our principal result is contained in the following

Theorem. Let g(x) be a general monotonic function. Then if f(y) has the Baire property in the restricted sense, f[g(x)] has the Baire property in the restricted sense.

A monotonic function g(x) is continuous except at a denumerable set of points $A = \{a_i\}$. Let Y denote the set g(I). Except over a denumerable set of closed intervals $\{I_n\}$ on the x-axis, the function g(x) has a single-valued inverse.

Let $K=A+I_1+I_2+...$; H=I-K; h=g/H (i.e. the partial function defined over H); $K^*=g(K)$; $H^*=g(H)=h(H)$.

The sets H and H^* are G_{δ} sets and h is a homeomorphism between H and H^* . The set K^* is denumerable.

Suppose that f(y) has the Baire property in the restricted sense and let $\varphi(x) = f[g(x)]$. Then $\varphi^{-1}(F) = g^{-1}[f^{-1}(F)] = g^{-1}(B)$ where $B \in B_r$, and $g^{-1}(B) = g^{-1}(BH^* + BK^*) = g^{-1}(BH^*) + g^{-1}(BK^*) = h^{-1}(BH^*) + g^{-1}(BK^*)$.

Since h is a homeomorphism and $BH^*\epsilon B_r$, hence $h^{-1}(BH^*)\epsilon B_r^{-1}$, since BK^* is denumerable and g monotonic then $g^{-1}(BK^*)$ is an F_a . Thus $\varphi^{-1}(F) = g^{-1}(B)\epsilon B_r$.

Remarks. Let g(x) be a general monotonic function. Consider now two cases: 1) f(y) fails to have the Baire property, 2) f(y) has the Baire property only in the large sense. In both cases f[g(x)] can: a) have the Baire property in the restricted sense, or b) have the Baire property only in the large sense, or c) fail to have the Baire property.

 1^0 For instance, let f(y) be a function which has the Baire property in the restricted sense on the interval 0 < y < 1/3, which has the Baire property on 1/3 < y < 2/3, and which does not have the Baire property on 2/3 < y < 1. Then if g(x) = x, f[g(x)] does not have the Baire property. If g(x) = (1/3)(1+x), f[g(x)] has the Baire property in the restricted sense.

 2^0 Consider an f(y) which has the Baire property. For instance, let f(y) be a function which has the Baire property only in the large sense on the interval 0 < y < 1/2 and the Baire property in the restricted sense on the interval 1/2 < y < 1. Then if g(x) = x, f[g(x)] has the Baire property only in the large sense. If g(x) = (1/2)(1+x), f[g(x)] has the Baire property in the restricted sense.

Consider a monotonic function which transforms the set (0,1) into some subset of Cantor's non-dense set. Consider any set A on the x-axis not having the Baire property. This set is transformed into a set A' on the y-axis, which is a non-dense set since it is a subset of Cantor's non-dense set. For f(y) take the characteristic function of A', then f(y) has the Baire property and f[g(x)] has not the Baire property.

¹) C. Kuratowski, *Topologie I*, Monogr. Matem., Warszawa-Lwów 1933, pp. 191, 194.

¹⁾ C. Kuratowski, l.c., top of pg. 56.