On the derivative of the Lebesgue area of continuous
' surfaces,

By
Tibor Radé (Columbus, Ohio, U.S.A.).

§1. Let the continuous surface S be given by the equations

(1) s=a(u,v),  Yy=y(w,v),  2=2(u,0),

where z(u,v), y(u,v), 2(%,v) are continuous in the closed square
(2) Qo 0<<u<l, 0o,

If ¢ is a closed square comprised in @, then L(qg) will denote
the area, in the sense of Lebesguel), of the portion of § which
corresponds to ¢ by means of the equations (1). Thus IL(Q,) stands
for the area of § ifiself. We assume in the sequel that L(Q,)<-oco.

§2. The function of squares L(g) possesses the following pro-
perties:

1) L(g)=0;

2) For every square g comprised in @, and for every non-
overlapping system of squares 4y--,q; comprised in ¢, we have
the inequality IL(g,)+...+L(¢,) < L(q) 2.

§3. Let (u,v) be an interior point of @,. Take a sequence g,
of squares in ¢, which contain (u,v) and are such that mg.—0,
where mg, denotes the area of ¢,. Consider the quotient L(gu)/mgx.
If, for every such sequence ¢, this quotient converges to a finite
limit (which is then independent of the choice of the sequence),
then this limit is called the derivative of the function of squares
L(g) at the point (u,v), and is denoted by L'(u,v).

1) For the simple facts concerning the Lebesgue area, used in the sequel,
the reader may consult the author’s paper Uber das Flichenmass reltifizierbarer
Flichen, Math. Annalen 100 (1928), pp. 445-479.

%) See loc. cit. sub 1).
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§4. As a consequence of the properties 1) and 2), stated in
§ 2, the derivative L'(u,?) exists almost everywhere in @, is sum-
mable there and satisfies the inequality

| [ L) du @ < I(Q)-
Q

While this fact is not explicitly stated in the literature, it
was proved implicitly by Banach 3).

§5. We assume now that the functions =(u,v), y(u,v), 2(u,v}
in (1) have partial derivatives of the first order almost everywhere

in @,, and we put:
X=3(y,2)[d(u,v),  Y=3(z,)[(u,),

W:(X2+Y2—1-Z2)1‘2-'

Z=3(m,y)/9(u,fu),

§ 6. If, for every square g in @, we happen to have

(3) Lig)= [ [ W du av,
]

then it would follow, by a well-known theorem of Lebesgue, that
(4) W (u,v)=L"(u,2)

almost everywhere in @, But (4) might hold even if (3) does not
hold. Indeed, for the special case z=wu, y=nv (that is, for surfaces
which are given by an equation of the form z=f(zy)) Saks proved
that (4) is true under the only assumption that L(Q,) is finite 4).
Earlier results of Lampariello ) implied only that W(u,v)<L'(u,v).

§7. The facts referred to in §6 suggest various questions
which were not satisfactorily answered as yet, as far as the author
is aware. The following result might therefore be of some interest,
particularly on account of the light it throws upon certain recent
results in the theory of the Lebesgue area of surfaces (cf. §18).

3) 8. Banach, Sur une classe de fonctions d’ensemble, Fund. Math. 6 (1924),
pp. 170-188, in particular the proof of th. 7 on pp. 177-178.

4y 8.8aks, Sur Paire des surfaces 2= f(z,y), Acta Szeged 3 (1927), pp. 1'70.-176.

5) G. Lampariello, Sulle superficie continue che ammetiono area finita,
Rendiconti Lincei, Ser. 6, Vol. 8 (1926), pp. 294.208.
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§8. Theorem. Suppose that the surface S, givem by (1), has
u finite area L(Q,), and that the first partial derivatives of the fune-
tions w(u,v), y(u,v), 2(u,v) ewist almost everywhere in €, Then

(5) W(uw,v) < L'(u,v)
almost everywhere in Q,.

§9. The purpose of this paper is to give a simple proof of
this theorem. As is so often the case in the theory of the area,
the proof is based upon methods which are &imilar to those de-
veloped for the important class of rectifiable surfaces (surfaces
which admit of a representation (1) where the functions 2(u,9),
y(u,v), 2(u,v) satisfy a Lipschitz condition). In fact the theorem
represents, in a sense, part of what can be salvaged if the Lipschitz
condition is replaced: by the weaker assumptions of §8. XFor this
reason, we shall freely refer, for details of the proof, to hrguments
used in the theory of rectifiable surfaces ¢), whenever the Necessary
modifications are too obvious for explicit discussion.

§10. It will be convenient to use the following definition.
Let f(u,v) be continuous in Q,. Let (uy,v,) be an interior point of @,
where the partial derivatives f., f, exist. Let ¢ be a square con-
tained in ¢, and containing (u,,v,) in its interior. Put

2

o=[(u—to)"+ (v —v0)'T"",
A=f(u,v) —1 (%o, o) —/u(t0,%0) (% — o) —fu(t0,0) (¥ —p),

and denote by us(q,uo,v) the maximum of |4|/o on the perimeter
‘of ¢. Consider now a family (¥) of such squares g. If () contains
‘sequences ¢, such that mg —0, and if for every such sequence we
have the relation (q,,%,v,)—0, then we shall say that the family
(F) is admissible for the function f(u,) at the point (u,,v,)

§ 11. Consider now a transformation
(6) . z=p(u,v), k?/="/"(u7?)7

where @(u,v), y(u,v) are continuous in Qo- Take in @, a square g,
denote by b the boundary of ¢, and by b the image of b under the
transformation (6). Deﬁile Ox(g) as the set of points, in the =y
“plane, which are not on & and whoge topological index, with respect
"to the closed continuous curve b, is different from zero. The set

8) See, also for further literature, loc. cit. sub 1.
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Oxy(q) is clearly open. Let mO,y,(¢y) denote its measure. Consider now
8 point (ug,v,), interior to @,, such that the partial derivatives
Pay Poy Pu, Yo XIS at (ug,vp). If we assume, for a moment, that ¢
and y admit of complete differentials?) at the point (u,v,), then
it follows ®) that mO.y(qn)/mgn—-1d (14,0,)], Where J=@up,—@mpa, for
every sequence of squares ¢,, containing (uy,v,) as an interior point,
and such that mg,—0. The proof of this fact depends however
only upon the circumstance that, as a consequence of the existence
of the complete differentials, we have fuy(gn, Uy, 0o)—>0, py(qu, gy 0o)—>0-
The existence of the complete differentials is used only to secure
these last relations. Hence the same proof yields the following result:

§ 12. If the partial derivatives u,@o,ya,ps exist at the interior
Ppoint (ug,v,) of Qy, and if there exists a family (F) of squares which
18 admaissible for both @(u,v) and w(u,w) at (ug,v,), then

(7) i mo.ry(q") /’m/Q'n - IJ(U-(), ,DO)I ) .
where J = pp,—@upu, for every sequence ¢, of (F) such that mg,—0.

§ 13. Consider a function f(u,v) which is continuous in @,.
Suppose for a moment that f(u,v) satisfies a Lipschitz condition
in @, Then f(u,v) admits of a complete differential almost every-
where in @, ®). In our terminology, this fact implies that for almost
every point (ug,v,) in @, the family of all the squares ¢, comprised
in @, and containing (w,7,) as an interior point, is an admissible
family for f(u,v). Suppose now only that the approzimate partial
derivatives of f(u,v) exist almost everywhere in @,. Aeccording to
Stepanoff, f(u,v) admits then of an appromimate complete diffe-
rential almost everywhere in Qo *°). While this coneclusion would not
be sufficient for our purposes, we can obtain a sufficiently strong
statement if we make the stronger assumption that the partial
derivatives fu, f, exist almost everywhere in @, in the usual sense.
The reasoning which leads to the theorem of Stepanoff 1) yields
then, after modifications which are too trivial to be put down ex-
plicitly, the following corollary. _

7) See ©). )

8) See 8).

9) See H. Rademacher, Uber partiélle und totale Differenzierbarkeil von
Funktionen mehrerer Variablen, part. 1, Math. Annal. 79 (1919), pp. 340-359.

10) See the presentation in 8. Saks, Theory of the Integral, Monogr. Matem.
VII, Warszawa-Lwdw 1937, Chapter IX.

1y See loc. eit. sub 19), pp. 300-303.
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§14. If flu,v) is continuous in o, and if the partial derivatives
Fusfo exist almost everywhere in Qq, then at almost every point (g, Vo)
in Qo there ewists an admissible family (F) for f(u,v) such thai:
1) the squares of (F) have sides parallel to the axes and have
(g, 09) for cemier,
2) the sets of points in which the perimeters of all the squares
of (F) imtersect the limes wu=1,, V=7 respectively, are measurable
and have the (linear) density 1 at the point () Vo)-

§15. Obviously, it follows that if a finite number of functions
Fo(u,0), ..., f;(%,v) are given, such that every one satisfies the con-
ditions of §14, then at almost every point of @, there exists
a family (F') which possesses the properties stated in §14 with
respect to all these functions simultancously.

§16. The proof of the theorem of §8 is now immediate.
Consider the three transformations

(8) y=ylu,v), 2==2(u,); e=2(1,), B=0(U,v); B=2(1,0), Y=y(U,).

Under the assumptions of §8, it follows by §§15 and 12 that
for almost every point (u,v,) in @, there exists a sequence of
squares ¢, such that

1) ¢ is comprised in @,

2)  (ug,v,) i8 interior to g,

3) mg.—0,

4) we have the relations:

0 z\Yn) " v Ozx In v mo.‘c n
@) ™0y, o), POy, ), 2O

MGn MGn mq”

~—->-tZ(’M,0,’U0)|,

where the meaning of the symbols O, Oz Oy follows from §11,
while X(u,v), ¥Y(u,v), Z(u,v) are the Jacobians of the transforma-
tions (8). Since ([MmOy(q)]+[MmOx(q)T + MmO ()" <Llg) for every
square ¢ ), it follows from (9) that we have
.o L(gn)
(10) - lim inf 7;—1%—2117(u(,,'00).
~ On the other hand, by §4, the dervivative L'(u,v) exists at
almost every point (uy,v,) of @, Hence(10) implies that L'(wu,v) = W (u,0)
almost everywhere in @, and the theorem is proved.

12) See loc. cit. sub ).
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§ 17. We mention an immediate application. To the assum-
ptions of §8 let us add the following one: There exists a sequence

8, of continuous surfaces, such that S, converges to S in the sense
of Fréchet and

(11) Ly —>//W du dv,

0

where L, is the Lebesgue area of S,. Then we have

(12) Q)= [ W dudv.
@ '
Indeed, by the lower semi-continuity of the Lebesgue area,
we have liminfL,>IL(Q,), and hence (11) implies that

[ [Wauan=L(Qy),

Q
while the theorem of § 8 yields, with regard to §4, the comple-
mentary inequality '

(13) [[Wanar<I1(Qy).
Q

§ 18. Despite its trivial character, the preceding result
permits us to account for and to improve upon several recent
results 3) concerned with the formula (12) and the inequality (13)
respectively. Indeed, the various sets of assumptions used loe. cit. %)
are obviously more than sufficient to justify the application of
the result of §17. We leave it to the reader to formulate the
generalized theorems suggested by these remarks.

13y E. J. McShane, Integrals over surfaces in parametric form, Annals
of Math. 84 (1933), pp. 815-838; C. B. Morrey, A class of representations of
manifolds, part I, Amerie. Journ. of Math. 55 (1933), pp. 683-707; T. Radé,
A remark on the area of surfaces, ibid. 58 (1938), pp. 598-606.
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