

Remarques sur les transformations continues des espaces métriques.

Par

Casimir Kuratowski (Warszawa).

(Extrait d'une lettre adressée à M. F. Hausdorff).

Voici quelques remarques concernant les résultats contenus dans votre Note "Erweiterung einer stetigen Abbildung", parue dans ce volume.

1. Soit f une transformation continue d'un espace métrique \mathfrak{A} en un espace métrique \mathfrak{F} . Désignons par \mathfrak{L} un espace linéaire (vectoriel normé) contenant topologiquement \mathfrak{A} (p. ex. l'espace des fonctions continues à valeurs réelles définies sur \mathfrak{A} l')) et par \mathfrak{L} l'espace des nombres réels. A chaque sous-ensemble fermé F de \mathfrak{A} correspond alors une transformation continue g de \mathfrak{A} en un sous-ensemble du produit cartésien $\mathfrak{F} \times \mathfrak{E} \times \mathfrak{L}$ qui coıncide avec f sur F et qui est une homéomorphie sur $\mathfrak{A} \in \mathcal{F}$.

 ${\bf A}$ savoir, g est la fonction définie pour chaque $x \, \epsilon \, \mathfrak{R}$ par l'égalité

$$g(x) = [f(x), \delta(x), x \cdot \delta(x)],$$

 $\delta(x)$ désignant la distance du point x à l'ensemble F, \mathcal{Y} étant identifié avec l'"axe" $\mathcal{Y} \times 0 \times 0$ et \mathcal{E} étant considéré comme sousensemble de \mathcal{L} .

Démonstration. On a d'abord, pour $x \in F$, l'égalité $\delta(x) = 0$, d'où g(x) = [f(x), 0, 0]. Puis, la fonction g est biunivoque sur $\mathfrak{AE} - F$, car la condition g(x) = g(x') entraîne les égalités $\delta(x) = \delta(x')$ et $x \cdot \delta(x) = x' \cdot \delta(x')$ et, comme $\delta(x) \neq 0$ pour $x \in \mathfrak{AE} - F$, il vient x = x'.

Enfin, la fonction g est une homéomorphie sur \mathcal{E} -F. En effet, la condition $\lim g(x_n) = g(x)$ entraîne

$$\lim \delta(x_n) = \delta(x)$$
 et $\lim x_n \cdot \delta(x_n) = x \cdot \delta(x)$.

En supposant que $g(x) \in g(\mathfrak{SE} - F)$, on a $\delta(x) \neq 0$, d'où $\delta(x_n) \neq 0$ pour n suffisamment grand et par conséquent

$$\lim x_n = \lim \frac{x_n \cdot \delta(x_n)}{\delta(x_n)} = \frac{\lim x_n \cdot \delta(x_n)}{\lim \delta(x_n)} = x.$$

2. De là résulte facilement un cas particulier de votre théorème, à savoir:

Soit f_0 une transformation continue d'un sous-ensemble fermé F de l'espace métrique $\mathscr E$ en l'espace métrique séparable $\mathscr S=f_0(F)$. I désignant l'espace de Hilbert, il existe une transformation continue de l'espace $\mathscr E$ tout entier en un sous-ensemble du produit cartésien $\mathscr Y\times \mathscr E\times \mathscr E$ qui coı̈ncide avec f_0 sur F et qui est une homéomorphie sur $\mathscr E-F$.

En effet, en considérant S comme sous-ensemble de Y et en désignant par f une extension continue de la fonction f_0 (telle que $f(S) \subset Y$), on définit g comme auparavant.

Bien entendu, au lieu de supposer que l'espace S est séparable, on peut admettre qu'il en est ainsi de l'espace S, puisqu'une image continue d'un espace métrique séparable est toujours séparable.

3. Le cas particulier où la fonction f_0 est constante sur F se prête à des applications fréquentes. Il signifie que, étant donné dans un espace $\mathcal E$ un sous-ensemble fermé F, on peut réduire F en un seul point par une transformation continue qui est une homéomorphié sur $\mathcal E-F$. En supposant l'espace $\mathcal E$ séparable, on obtient directement ce théorème par la méthode des décompositions semi-continues: $\mathcal E$ étant supposé immergé dans l'espace compact $\mathcal G$ de Hilbert, la décomposition de $\mathcal G$ en points individuels de $\mathcal G-\overline F$ et en $\overline F$ (où $\overline F$ désigne la fermeture de F dans $\mathcal G$) est semi-continue; il existe par conséquent une fonction continue g définie sur $\mathcal G$, constante sur $\overline F$ et biunivoque sur $\mathcal G-\overline F$; comme $\overline F\cdot \mathcal E=F$, la fonction g transforme $\mathcal E$ de la façon demandée.

¹⁾ Voir ma note des Fund. Math. 25 (1935), p. 543.