

Remark on a paper by Spława-Neyman.

H. D. Ursell (Leeds, England).

In Fund. Math. 5, p. 330, J. Spława-Neyman refers to the following problem which W. Sierpiński suggested to him:

E étant un ensemble linéaire de mesure nulle et F une famille d'intervalles, telle qu'il existe pour tout point p de E et tout $\epsilon > 0$ un intervalle δ de F de longueur $<\epsilon$ contenant à son intérieur p, existe-t-il pour tout $\epsilon > 0$ une suite (finie ou infinie) d'intervalles de F recouvrant E et dont la somme de longueurs est $<\epsilon$?

I shall show by an example that the answer is in the negative.

Let $G_0 = I$ be the open interval 0 < x < 1. Introduce auxiliary variables

$$x_k=2^{2k}x-1, \quad x_{k,l}=2^{2l}x_k-1, \quad \dots$$

k,l,... being positive integers. Let $I_{k,l,...,p}$ be the set of values of x for which

$$0 < x_{k,l,...,p} < 1.$$

Thus

$$|I_{k,l,...,p}| = 2^{-2k-2l-...-2p}.$$

Write

$$G_1 = \sum I_k$$
, $G_2 = \sum \sum I_{k,l}$, ..., $E = \prod G_n$.

Then

$$|G_{n+1}|/|G_n| = |G_1|/|G_0| = \sum 2^{-2k} = 1/3, \qquad |E| = 0.$$

Each sequence $\{k,l,...\}$ of positive integers defines a point of E, namely

$$x=2^{-2k}+2^{-2k-2l}+...$$

Let f be the family of intervals

$$\delta_{k}$$
: $2^{-2k} < x < 1$

where k is a positive integer. They cover every point of G_0 . Let f_k be the family of intervals (of values of x)

$$\delta_{k,l}$$
: $2^{-2l} < x_k < 1$.

They cover every point of I_k , so that the intervals of Σf_k cover every point of G_1 . Define similarly $f_{k,l}, f_{k,l,m}, \ldots$ and take

$$\mathcal{F} = f + \sum f_k + \sum \sum f_{k,l} + \dots$$

Then each point of E is covered by an interval δ_k of f, an interval $\delta_{k,l}$ of f_k ,... and these intervals have lengths at most

$$1, 2^{-2k}, 2^{-2k-2l}, \dots$$

or at most

$$1, 2^{-2}, 2^{-4}, \dots$$

Thus every point of E is covered by arbitrarily small intervals of the family \mathcal{F} .

Now let $\{\Delta_n\}$ be a sequence of intervals of the family subject to the condition

$$\sum |\Delta_n| < \infty$$
.

We shall show that they do not cover all points of E.

Since $|\delta_k| > \frac{1}{2}$, only a finite number of intervals δ_k are included in the sequence $\{\Delta_n\}$. If any at all are included, let δ_{K-1} be the, largest which is included: if none are included, take K=1. Then no point of I_K is covered by any interval Δ_k belonging to f.

Since $|\delta_{K,l}| > 2^{-2K-1}$, only a finite number of intervals $\delta_{K,l}$ are included in the sequence $\{\Delta_n\}$. If any at all are included let $\delta_{K,L-1}$ be the largest which is included: if none are included, take L=1. Then no point of $I_{K,L}$ is covered by any interval Δ_n belonging to f_K .

Continuing in this way we construct a sequence

$$I_K$$
, $I_{K,L}$, $I_{K,L,M}$,...

which contract on to a point of E not covered by any Δ_n .

Thus any sequence of intervals of \mathcal{F} which cover E must necessarily have lengths adding up to infinity.