On Golab’s contribution to Simpson’s formula

by A. SHARMA (Lucknow, India)*

Recently S. Golab has raised certain interesting questions regar-

icm

ding Simpson’s formula of approximate quadrature and has used inge-

nious methods to solve them. Our object is to raise some more problems
in the same strain and to give their answers.

1. Let f(#) be a function having the expansion in the neighbour-
hood of # = a, given by

1)

where a,, a4, a,, ... 5= 0 and p, ¢, r, s are positive integers, 1 < p < ¢ <
<r<s, and g(h) is of order h**', Let us denote

fla+h) = f(a)+ap P +agh? 4. 1" 4. . +g(h)

ath

(2) = [ (@) da,

3) P(h) = h[Aof (@) +21}(a+O1h)+Asf (a-+O4h)]
where 6,, @, are numbers such that 0 < 0,
and 0, =1, we get Simpson’s formula.

We then propose the following problem:

Determine the values of Ay, Ay, A, 80 that for given 0, and 0, (0 < 0, <
< % < 0, < 1), the remainder R(h) = P(h)—P(h) is of the greatest order
of smallness with respect to h.

In order to do so, we put (1) in (2) and in (3) and then compare the
coefficients of the powers of % on both sides. We then have

1< 60,<1. When 0, = }

(4) lo+h+2y =1,
®) A(p+1)O+7(p+1)68 =1,
() (a+1)68 +7,(g+1)0 = 1.

* The author is grateful to J. Gérski for his valuable suggestions as a reviewer.
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From (5) and (6), we have

, (p+1)0 —(¢+1)6% A7
(7) o= — O
(0) (ﬁ) (p+1)(g+1)’
o, o,
®) 5, = DO (p 4165, L
(p+1)(g+1)

e - &
0, 0,
Obviously (0,/0,F —(0,/0,)% # 0 if 0, < 0, <
ved the following theorem:

If 6, and 0@, are given numbers (0 < 60, < 0y, <1) and A, A, are

given by (7) and (8) and 2y by (4), then R(h) is of the order of smallness of
B

1. We have thus pro-

2. Naturally the following problem now arises:

Oan we further raise the order of smallness of R(h)
of 0,

In order to do so, we must also ha.ve, with (4) (5) and (6), the follo-
wing relation:

(9)

by a proper choice

A (r+1) @+ Ay (r1) @5 =1.

The condition of consistency of (5), (6) and (9) then requires that

(p+1)67 (p+1)6° 1
40)=| (¢+1)6f (¢+1)07 1 |=0.
(r+1)6] (r+1)0" 1
Putting ¢—p ==a, r—¢ = 80 that « > 1, § >1, we have
(10)  4(0) = (r+1)0°**{(p+1)—(g+1)6%) —

—(g+1)@°(p+1)—(r+1) 85 +(p+1) Bf{(¢+1) —(r +1) Bf) = 0.
We shall now show that this equation has a unique root 6,, lying

in (6,,1). We have

(1) 4(0) = (p+1) B (g+1)—(r+1)6%} >0, A(6,) =0
Also
(12) A(1) = a(r4+1)05° —(q+1) (a+5) O3+ (p+1)8.
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The right side i a function of @, and has been studied in detail by Golgh
and Olech who have shown that there exists a value ®' in (0,1) such that
A(1) > 0 for @, < O', where 0' = }. Also
A(1) = 6*P[(r+1) (a+) (1[0 {(p-+1)(1/0)*—(g+1)} —
—a(g+D{(p+1)(1/01)F —(r+1)},
4'(6y) = 7P [(r+1) (a+A){(1/01)(p +1) —(g-+1)} —
—a(g+1){(1/6:)* (p+1) —(r +1)}1.
We ghall now show that
(13) 4'(1)>0 and 4'(0,) <0.
The proof of (13) depends on the following inequality:

r+1 at+f AP(p+1)—(r+1) 141 ap
14) =0T e e
e Y C7 Yy g R

for 4>=2,a>1.

In other words

(14")  APK(a) > K(a+B) > K(a)

where K(a) = (Aa“l— pj—l)/a(l i P‘(;‘l)'

Since # is a positive integer, it is sufficient to prove the result for f=1.
The right-hand side of the inequality (14') is true if

" 1 Aa L —_ a_+1
(169 A{A (1+p+1) (“+])(1+p+1)} ( p+1)( +p+1)'

If @ =1, we see that

S e A e e e =)

. p+3)’ p+3
f A - e
’ ( p+2) ” T prDprer

which is always true whatever A may be.
When o > 1, we see that the inequality (14”) is true if

. a+1
1+ —
a4 el
a a
1+

p+1
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The greatest value of the right hand-gide is 15/8, so that the inequality
is certainly true if 4 > 2.

In order to prove the left hand-side of the inequality (14'), we must
show that

wbl P e a—{—l)
4 "( - +1) (+p+1)(1+10+1

_ gadl a1} e a+1)
‘ < AT et (1+ +1) Afatd) (1+p+1)(1+p+1
7. €.

(A —(4—1)(a+1)— 1}( z°=+1)>a(a+1) [(4—1)(a+1)41]

(p+1)7
Now the left-hand side is certainly greater than
a(a+41) 2a+1)
2 p+1]°

(4—1) (1 +
But '

2a+1)> (Ad—1)(a+1)42

| S aniies A Sl B

,2a+1  (A—1)(2a+1) A+1
p+L T (pFIY (p+1)*

gince (A—1%> % (4-+1), 4 being greater than or equal to 2. We ha-
ve thus proved the inequality (14).

It may be remarked that for 4 > 2, a > 2 the right side .of the
inequality (14’) can be further improved, and we have

K(a+p)>(4/2)'K (a)

On examining the expressions for 4'(1) and 4'(6,), we at once get

(13). Also

\at+p 1\e
20 =e=or [r4@rn (o] fo+n (L] ~wrv}-

q+1){p+l (1)a+ﬁ—(r+1)}],

(A—1)"+(4~1)

which vanishes at & given by

a(g+1) {(p +1) (@1.;)"+ﬁ_(r+l)} ye

6=0 e
(d+ﬁ)(?”+1){(?’ +1) (5;) *(!H-l)}
and by (14), @, < 6 < 1.
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Hernce from (11), (12), (13) we see that there exists a unique value
6, > O for which A(®) vanishes and the order of R(h) is less than that
of »**! for this choice of 6.

3. We shall now show that the order of smallnes of R(h) is exactly
equal to s-+1. For if it is of order s+42, we must further have
M(s+1)@+73,(s+1)@) = 1. Combining this with (5) and (6), we must
have :

(p+1)6%

(¢+1)6f
(s-+1)64

(p+1)6° 1

(g+1)6* 1| =0

(s +1)6° 1

gimultaneously with (10). Putting y = s—¢, and simplyfying, we get

(15)  (s++1)@6r*{(p+1)67°—(g+1))
—(g+1)0%{(p+1) 67" —(s+ 1)} +(p+1){(¢+1) 67" —(3+1)} = 0.

‘We shall now show that (10) and (15) cannot have a common root
@, such that 6, < 0, < 1.
Put y = 2 in (15) and put

o =tesaen ] 2]

where

O\

{(5-) —1}<p+1)(q+1)
1=t i T T !

Gl e —r] M AT Gpre (g D)

Then the vanishing of ®(z) for ® = # and for 4 = y implies that (10)
and (15) have a common root 6,. But @#(0) = 0 = —@(—a). It is easy
to see that A > 0 and since ®(0) = 0, we have (¢-+1)(L—u) =21>0,
8o that u < 1. Also

0\ Go\? 2] 1\2 {1\
o . et} L o . el
@ = (g [irrarn(uegf <orsg 2 (oug) (3]

Then (D’_’ (#) will vanish at the points where the straight line

(p+1)—65(¢+1)

Op\2 o,
Y = (@ 1) {log - -+ -
Y = (x+g+ )(ngl) F 10;!@1

intersects the exponential curve

1\ [ 1\=
= A{log —| . | —
y (‘%) (@)

icm
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It is easy to see that these two cannot intersect in more than two
points so that & (x) cannot vanish at more than two points. Hence & (z)
cannot have more than four zeros. Now & () = (z-+¢-+1)¥(x), where

O0\®
-2 -

_A(1/0F
z+q+1’

Since @(x) = 0 at # = —g—1, it is enough to examine the nature
of the zeros of ¥(x). Further, we know that &(—a) = &(0) = () =0,
go that W(x) vanishes also at # = —a, 0 and 8, and hence by Rolle’s
theorem ¥'(x) must vanish at two points — one lying in (—a,0) and
the other in (0, 3). Now

Y,,(m)_(@o)m (w+q+1)B—1[ (o+a+1f4 ( i)]
e T @ty lerernB-1 N6,

where we have put, for the sake of brevity, 4 = log(0,/6,) and
B =1log(1/0,). Obviously B> A >0 and if 0 <@, <1l/e, B>1.
Since ¥’ (z) # 0 at ® = —g—1-+1/B, the zeros of ¥'(x) are the points
of intersection of the curves

w
- (16) y = A(@l—o) , doe. y=2 where (= logél;
and
(17) y = _(w_—f—gil_)“_f}__
~ (z4g¢+1)B~1

Now (17) represents a hyperbola shown in the figure:

]
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The asymptotes are
(#+q+1)B—1 =0
and
A
By—Al+q+1) =%

In the figure the abscissa of the point P where the upper branch
of the hyperbola turns upwards is —g—1--2/B. The only points of inter-
section of the curves (16) and (17) can lie to the right of the vertical asym-
ptote of the hyperbola and the number of such points can be at most
three. Indeed, one can easily prove the following lemma:

The tramscendental equation
o o (o8
y& -9

where 6 >1, v > 0 and ad—py % 0 can have af most three real different
70018,

We have already observed that ¥’ (v) must vanish at two points B
and § (say), R lying between the lines # = —a and # = 0 and § lying
between the lines ¢ = 0 and @ = §.

Bince « = g—p < ¢-+1—2/B, the point (—a, 0) lies to the right
of P and so at the point R the tangent to the curve (16) must be below
that of the hyperbola. For if it were otherwise, the curves being strictly
increasing to the right of P, the curve (16) would newer cut the curve
(17) again, which is contrary to what we have proved above. Hence at
the point § the curve (16) crosses the hyperbola (17) from below, and so
there is no other point of intersection of these curves after 8. We have
thus proved that (16) and (17) must intersect in 3 points of which one
is to the right of OY, one lies between O and P and the third to the
left of P.

Hence ¥’ (#) vanishes at 2 points to the left of 0¥ and one to the
right of 0Y. If ¥(y) = 0, we should be led to the impossible conclusion
that ¥’(2) vanishes at 2 points to the right of OY. Hence the only posi-
tive integral zeros of ¥(») and thus also of @(w) are 0 and B. We have
thus proved that (10) and (15) cannot have a common Toot 0,.
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Etude de la solution fondamentale de I'équation
elliptique et des problémes aux limites

par W. POGORZELSKEI (Warszawa)

1. Introduction. Soit 1’équation linéaire aux dérivées partielles du
second ordre de la forme générale

n ~2 X n a
\ Y o' U W
(:_l) Y(u) = %l%p(“'n --~yf”n)m +;ba(”&a cory W) ‘6‘5;'{-
+e(®yy .oy Bp)u =0
ot les coefficients a,p(a1, ..., #n)y Dal(@s, -y Ta)y 0(21, -0, xz,) sont des

fonctions “des n coordonnées rectangulaires (@, ..., %,), déterminées
dans un domaine borné et mesurable £ dans l'espace euclidien & » di-
mensions.

Une prémidre méthode d’étude de la solution fondamentale de 1é-
quation (1) dans le cas elliptique a été donnée par E. Levi [2] dans le cas
des coefficients admettants des dérivées secondes. Elle a été développée
par W. Sternberg [7] dans le cas n = 3, mais encore avec la méme hy-
pothése sur les dérivées, ensuite approfondie et généralisée par M. Gevrey
[1] pour les coefficients vérifiant la condition de Holder et »n quelcopque.
Les recherches de M. Gevrey sont basées sur la méthode des oylindres
de la dérivation des intégrales généralisées. Cette méthode est correcte
dans D’étude des dérivées premisres du potentiel, mais elle présente des
lacunes dans celle des dérivées secondes, bien que M. Gevrey ait obtenu
résultats positifs.

Dans le présent travail nous exposerons une autre méthode d’étude
des dérivées des intégrales généralisées et nous compléterons 1’étude de
la solution fondamentale. Ensnite nous étudierons deux problémes aux
limites.

2. Le cas des coefficients constants. Nous rappelons l'étude du cas
des coefficients a,; constants pour I'équation

N > 0w 0
2 Dy = g~ =
2) 2/ 4 0, Og

a,fi=1
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