ON THE WEIERSTRASS APPROXIMATION THEOREM

BY

S. PASZKOWSKI (WROCŁAW)

This paper*) deals with several problems concerning the Weierstrass theorem for approximation with nodes 1).

1. We introduce several notions and symbols. A closed interval I on the straight line is given. O denotes the class of continuous real-valued functions defined on I with the usual metric.

$$\|\xi-\eta\|=\max_{t\in I}|\xi(t)-\eta(t)|,$$

for any ξ , $\eta \in C$. A sequence of functions $\mu_0, \mu_1, \ldots, \dot{\mu_n}, \ldots \in C$ is called a *Markoff sequence* if for any n the function

$$\sum_{k=1}^{n} a_k \mu_k$$

with

$$|a_0| + |a_1| + \ldots + |a_n| > 0$$

has at most n different roots in the interval I (see [1], p. 94). Functions of the size (1) without the condition (2) are called *polynomials* of the degree n. The set of all polynomials of this degree is denoted by W_n . The distance of a function $\xi \in C$ from the class W_n is defined by

$$\varepsilon_n(\xi) = \inf_{\psi \in W_n} \|\xi - \psi\|.$$

In the interval I a system T is given, consisting of m different numbers t_1, t_2, \ldots, t_m , called nodes. $W_n(\xi; T)$ denotes a subclass of W_n , consisting of all polynomials ω satisfying the conditions $\omega(t_i) = \xi(t_i)$ $(i = 1, 2, \ldots, m)$. For $n \ge m$ this class is not empty (see [2], p. 120, proof of theorem 1) and we shall suppose in the sequel that this inequal-

ity holds. The distance of the function $\xi \in C$ from the class $W_n(\xi; T)$ is defined by

$$\varepsilon_{n}(\xi,T) = \inf_{\omega \in \mathcal{W}_{n}(\xi;T)} \lVert \xi - \omega \rVert.$$

2. THEOREM 1. There exists a number s>1, depending only on the sets I and T, such that for any function $\xi \in C$ the following inequality holds: $\varepsilon_n(\xi;T) \leqslant s\varepsilon_n(\xi)$.

Proof. Let ψ_n be a polynomial of the class W_n , which is nearest to ξ , i. e. such that $\|\xi - \psi_n\| = e_n(\xi)^2$.

The polynomials $\varphi_1,\,\varphi_2,\,\dots,\,\varphi_m\,\epsilon\,W_{m-1}\subset W_n$ will be determined by the conditions

(3)
$$\varphi_i(t_j) = \delta_{ij} \quad (i, j = 1, 2, \ldots, m).$$

where $t_1, t_2, ..., t_m$ are nodes. It is known that such a polynomial exists (see [1], p. 85-86, proof of the lemma). Let

(4)
$$\varphi = \sum_{i=1}^{m} (\xi(t_i) - \psi_n(t_i)) \varphi_i.$$

By (3) it follows that $\varphi(t_j) = \xi(t_j) - \psi_n(t_j)$ (j = 1, 2, ..., m) and $\varphi + \psi_n \in W_n(\xi; T)$. Then by the definition of the number $\varepsilon_n(\xi; T)$ we have

$$e_n(\xi;T)\leqslant \|\xi-(\varphi+\psi_n)\|\leqslant \|\xi-\psi_n\|+\|\varphi\|=e_n(\xi)+\Big\|\sum_{i=1}^m\big(\xi(t_i)-\psi_n(t_i)\big)\varphi_i\Big\|$$

$$\leqslant \varepsilon_n(\xi) + \max_i |\xi(t_i) - \psi_n(t_i)| \cdot \left\| \sum_{i=1}^m |\varphi_i| \right\| \leqslant \left(1 + \left\| \sum_{i=1}^m |\varphi_i| \right\| \right) \varepsilon_n(\xi).$$

Thus putting

$$s = 1 + \left\| \sum_{i=1}^{m} |\varphi_i| \right\|$$

we obtain theorem 1.

3. By theorem 1 the following inequalities hold:

$$\varepsilon_n(\xi) \leqslant \varepsilon_n(\xi; T) \leqslant s\varepsilon_n(\xi)$$
.

It shows that the relations

(6)
$$\lim_{n\to\infty} \varepsilon_n(\xi) = 0,$$

(7)
$$\lim_{n \to \infty} \varepsilon_n(\xi; T) = 0$$

are equivalent. In the special case of

$$\mu_n = t^n \quad (n = 0, 1, \ldots)$$

^{*)} Presented to the Polish Mathematical Society, Wroelaw Section, on December 10th, 1954.

¹⁾ On other theorems concerning such approximation with nodes see my paper [2].

²⁾ It is known that such a polynomial exists; see [1], p. 79.

relation (6) is the Weierstrass theorem; relation (7) follows also from the results of Yamabe [3]. But theorem 1 is stronger than (7). It is interesting to find such estimations for $\varepsilon_n(\xi;T)$ as are known for $\varepsilon_n(\xi)$ (for example if ξ is an analytic function). Theorem 1 enables us to obtain all those estimations and then gives a great deal of information on approximation with nodes.

4. Moreover, theorem 1 leads to other facts. Let us consider a modified approximation with nodes: with the increasing degree n of the polynomial, m_n , i. e. the number of nodes in T_n , increases. We confine ourselves to the Markoff sequence (8) generating algebraic polynomials. We assume of course that $m_n \leq n$. Furthermore, we assume that the smallest distance d_n between the points of T_n $(n=1,2,\ldots)$ satisfies the inequality $d_n \geq d|I|/m_n$, where d is a positive constant. Having made these assumptions we can prove the following theorem:

THEOREM 2. If the sequence $\{m_n\}$ tends to infinity in such a way that

$$m_n = o\left(\frac{|\log \varepsilon_n(\xi)|}{\log|\log \varepsilon_n(\xi)|}\right)^3),$$

then

$$\lim \varepsilon_n(\xi; T_n) = 0.$$

Proof. We note that if $\varepsilon_n(\xi) = 0$ for some n, then also $\varepsilon_n(\xi; T_n) = 0$ and the theorem is true for any $m_n \leqslant n$. In the sequel we assume that $\varepsilon_n(\xi) > 0$ for n = 1, 2, ...

In the case (8) expression (4) takes the form of the Lagrange interpolation formula

$$\varphi^{(n)}(t) = \sum_{i=1}^{m_n} \Big(\prod_{j=1}^{m_n} \frac{t - t_j^{(n)}}{t_i^{(n)} - t_j^{(n)}} \Big) \cdot \left(\xi(t_i^{(n)}) - \psi_n(t_i^{(n)}) \right),$$

where $\{t_1^{(n)}, t_2^{(n)}, \dots, t_{m_n}^{(n)}\} = T_n$. Then by (5)

$$s-1 = \max_{t \in I} \sum_{i=1}^{m_n} \prod_{\substack{j=1 \ j \neq i}}^{m_n} \left| \frac{t - t_j^{(n)}}{t_i^{(n)} - t_j^{(n)}} \right| \leqslant m_n \frac{|I|^{m_n - 1}}{\left(\frac{d|I|}{m_n}\right)^{m_n - 1}} = m_n \left(\frac{m_n}{d}\right)^{m_n - 1}.$$

For sufficiently great m_n , $m_n(m_n/d)^{m_{n-1}} > 1$. Hence

$$(9) s \leqslant m_n \left(\frac{m_n}{d}\right)^{m_n-1} + 1 < 2m_n \left(\frac{m_n}{d}\right)^{m_n-1} = 2d \left(\frac{m_n}{d}\right)^{m_n}.$$

By hypothesis there exists a sequence $\{b_n\}$ such that

$$m_n = b_n \frac{|\log \varepsilon_n(\xi)|}{\log |\log \varepsilon_n(\xi)|}$$
 and $\lim_{n \to \infty} b_n = 0$.

By theorem 1 and (9) (for simplification we write ε_n for $\varepsilon_n(\xi)$)

$$\frac{\varepsilon_n(\xi;T_n)}{2d} < \left(b_n \frac{|\log \varepsilon_n|}{d\log|\log \varepsilon_n|}\right)^{b_n \frac{|\log \varepsilon_n|}{\log|\log \varepsilon_n|}} \varepsilon_n$$

and

$$\log \frac{\varepsilon_n(\xi; T_n)}{2d} < b_n \frac{|\log \varepsilon_n|}{\log |\log \varepsilon_n|} \log \left(b_n \frac{|\log \varepsilon_n|}{d \log |\log \varepsilon_n|} \right) + \log \varepsilon_n.$$

Considering then $\lim_{n\to\infty}\log\varepsilon_n=-\infty$, to prove $\lim_{n\to\infty}\log\varepsilon_n(\xi;T_n)=-\infty$, which implies the theorem, it is enough to verify that

(10)
$$\frac{b_n \frac{|\log \varepsilon_n|}{\log |\log \varepsilon_n|} \log \left(b_n \frac{|\log \varepsilon_n|}{d \log |\log \varepsilon_n|} \right)}{|\log \varepsilon_n|} \xrightarrow[n \to \infty]{} 0.$$

The expression on the left is equal to

$$\frac{b_n}{\log|\log \varepsilon_n|} (\log b_n + \log|\log \varepsilon_n| - \log(d\log|\log \varepsilon_n|))$$

$$b_n \log b_n \qquad b_n \log d \qquad b_n \log\log|\log \varepsilon_n|$$

$$= \frac{b_n \log b_n}{\log |\log \varepsilon_n|} + b_n - \frac{b_n \log d}{\log |\log \varepsilon_n|} - \frac{b_n \log \log |\log \varepsilon_n|}{\log |\log \varepsilon_n|}.$$

The second member of this expression tends to 0 by definition, the first and the third member tend to 0 because of the relations

$$\lim_{n\to\infty} b_n \log b_n = 0, \quad \lim_{n\to\infty} \log |\log \varepsilon_n| = +\infty.$$

In the fourth member, for sufficiently great n,

$$0 < \log \log |\log \varepsilon_n| < \log |\log \varepsilon_n|$$
.

Consequently, it also tends to 0, and hence relation (10) as well as theorem 2 are proved.

5. It is probable that theorem 2 may be strengthened, because it uses only a very rough estimation of the constant s.

Colloquium Mathematicum

s) $m_n = o(k_n)$ denotes that $\lim_{n \to \infty} (m_n/k_n) = 0$.

icm®

Theorem 1 leads to the following problems, which are open also in the algebraic case (8):

P163. Does there exist

$$\lim_{n\to\infty}\frac{\varepsilon_n(\xi;T)}{\varepsilon_n(\xi)}\,?$$

(We know only that $1 \le \varepsilon_n(\xi;T)/\varepsilon_n(\xi) \le s < +\infty$ for any $n \ge m$.) P 164. Is

$$\lim_{n\to\infty} \frac{\varepsilon_n(\xi; T)}{\varepsilon_n(\xi)} = 1?$$

If the answer to both problems is positive, then

$$\lim_{n\to\infty}\frac{\varepsilon_n(\xi;\mathcal{I})}{\varepsilon_n(\xi)}=1,$$

which would very essentially strengthen theorem 1.

REFERENCES

- [1] Н. И. Ахиевер, *Ленции по теории аппронсимации*, Москва-Ленпиград 1947.
- [2] S. Paszkowski, Sur l'approximation uniforme avec des nocuds, Annales Polonici Mathematici 2 (1955), p. 118-135.
- [3] H. Yamabe, On an extension of the Helly's Theorem, ()saka Mathematical Journal 2 (1950), p. $15\cdot 17$.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

ON THE NUMBER OF AFFINICALLY DIFFERENT SETS

 $\mathbf{B}\mathbf{Y}$

S. PASZKOWSKI (WROCŁAW)

The problem solved in this paper*) concerns the constructive theory of functions. In the theory of uniform approximation the notion of the polynomial of the best approximation of a continuous function x(t) in the interval $\langle a,b \rangle$ plays an important role. Such a polynomial of degree n is defined in [1] as a polynomial realising

$$\min_{w \in W_n} \max_{a < t < b} |x(t) - w(t)|,$$

where W_n is the class of all polynomials of a degree not greater than n. Utilizing some results of de la Vallée Poussin [2], Rémès has given in [3] a recurrently defined sequence of polynomials, convergent to the polynomial of the best approximation. De la Vallée Poussin has remarked that the polynomial v(t) of degree n which gives the best approximation of a function x(t) on the system of n+2 points $t_0, t_1, \ldots, t_{n+1}$ ($t_0 < t_1 < \ldots < t_{n+1}$) satisfies the system of n+2 equations

$$v(t_i) + (-1)^i \varepsilon = x(t_i)$$
 $(i = 0, 1, ..., n+1)$

(s is here the (n+2)-th unknown). Thus, if $v(t) = a_0 + a_1 t + \ldots + a_n t^n$, then

Thus any coefficient of the polynomial v(t) is a linear combination of the value of the function x(t) with the coefficients depending only on the points $t_0, t_1, \ldots, t_{n+1}$:

^{*)} Presented to the Polish Mathematical Society, Wrocław Section, on November 2nd, 1954.