ON THE WEIERSTRASS APPROXIMATION THEHOREM
BY
8. PASZKOWSKI (WROCLAW)

This paper’) deals with several problems concerning the Weierstrass
theorem for approximation with nodes?).

1. We introduce several notions and symbols. A closed interval I
on the straight line is given. ¢ denotes the clasy of continnous real-va-
lued functions defined on I with the usual metric,

=l = max|£@)—n()l,
tel

for any &, neC. A sequence of functions mg, iy, ..., fin,...€0 iy called
a Markoff sequence if for any n the funetion

) D iy
k=0
with
(2) [ +1@a] 4+ @y > 0

has at most » different roots in the interval I (see [1], p. 94). Functions
of the size (1) without the condition (2) are called polynomials of the
degree n. The set of all polynomials of this degree is denoted by W,.
The distance of a function &¢C from the class W, is defined by

&, (£) = inf |f—vf.-
we Wy

In the interval I a system 7' is given, consisting of m different num-
bers fy,%5,...,1,, called nodes. W,(&;T) denotes a subclass of W,,
congisting of all polynomials « satisfying the conditions w(t;) = &(t;)
(4=1,2,...,m). For n >=m this class is not empty (see [2], p. 120,
proof of theorem 1) and we shall suppose in the sequel that this inequal-

*) Presented to the Polish Mathematical Society, Wroclaw Section, on De-

cember 10th, 1954,
}) On other theorems coneerning such approximation with nodes see wy

paper {2].
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ity holds. The distance of the funetion ¢eC from the class W,(£; T) is
defined by ’

& (€, T) = Ti;lf( ﬂll§—wﬂ-
welVy, (&

2. THEOREM 1. There ewists a number s > 1, depending only on the

sets I and T, such that for any function £eC the following inequality holds:
& (& T) < 82, (8).

ijoof. Let 9, be a polynomial of the class W, , which is nearest
to &, 4. e such that [|f—y| = e, (£)2).

The polynomials ¢, ¢,, s Pm€ Wy C W, will be determined by
the conditions

(3) gill) = 05 (4,5 =1,2, ..., m),

where ¢, 5, ..., &, are nodes. It is known thai such a polynomial exists
(see [1], p. 85-86, proof of the lemma). Let

M

(4) e = D (£t —v, (W) g-

=1
By (3) it follows that P} = E)—v () (G =1,2,...,m) and
P+ W, (£; T). Then by the definition of the number 8, (£; T') we have

WD) KU Gyl < It = e (8)+] 3 (e —putto)eu

< (@) Fmax | £(t) —yp, (1) - | é'lwl < (14 gm,’ 74

Thus putting
(8) s =14 Mg
Tl

we obtfain theorem 1.

JEXGE

3. By theorem 1 the following inequalities hold:

En(f) < En(E; T) S seﬂ.(f)‘
It shows that the relations

(8) lim g, (&) = 0,
(7 lims, (£ T) = 0

are equivalent. In the special cage of

(8) B =T (n=10,1,..))

) It is known that such a polynomial exists; see [1], p. 79.


GUEST


5 ) T T ) TNICATIONS
208 ¢ 0O MMU I\

relation (6) is the Wejerstrass theorem; relation (7) follows alsq f{rom the
results of Yamabe [3]. But theorem 1 is stronger than (7). It is interegt-
ing to find such estimations for &,(&; ) as are known for sn(é'). (for
example if £ is an analytic function). Theorem 1 enables us to obtain a}l
those estimations and then gives a great deal of information on approxi-
mation with nodes. ‘

4. Moreover, theorem 1 leads to other facts. Let us consider a modi-
fied approximation with nodes: with the increasing degree n of tl}e poly-
nomial, m,, i. e. the number of nodes in T, increases. We confine our-
selves to the Markoff sequence (8) generating algebraic polynomials.
‘We assume of ecourse that m, <X n. Furthermore, we assume that the
smallest distance d,, between the points of T, (v =1,2,...) satisfies the
inequality d, = @|I|/m,, where d is a positive constant. Having made
these assumptions we can prove the following theorem:

THEOREM 2. If the sequonce {my,} tends to infinity in such a way that

n —()( [loge, (£)| )3)
" "\loglloge, (8] '

then
lime,(&; L) =0

Proof. We note that if &,(&) = 0 for some n, then also &,(&;2),) = 0
and the theorem is true for any m,< n. In the sequel we assume that
eo(£) >0 for v =1,2,

In the case (8) expressmn (4) takes the form of the Lagrange inter-
polation formula

Uty M

1—1f

(P(ﬂ) (t) =2 (H m) (5(t(n)) (t,@)),
i=1 7=1
ji
where {t{n)’ M, . 1%,),} = T,. Then by (5)
My Ty t'—t;") < i Ilmn--.l ('mn )mn-l
= m, i = (e, .
st I??f;g 1,5”)"1}”) = """ dlII )m,r-l ]
T TN

For sufficiently great my,, m,(m, /@)™ ' > 1. Hence

My My =1 m, Mp—1 . mn My
(9) ngn(T) '-|—1<2mn(d) == 9 (—= d .

S

) m, = o(k,) denotes that Lm (m,/%,)

n—00
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By hypothesis there exists a sequence {b,} such that

o legey(al o
S g logey ey L mbe =

By theorem 1 and (9) (for simplification we write &, for ,( &)

&n

B Hog en}
NGES) ( llog e )I“osnow

2d " dlog [log e,!
and

e (&5 Ty) {log e, 1 ( [tog )
0 n

b
< dlogfloga|

logs,.
2d log[log e, ) +loge,

Considering then lim loge, = —o0, t0 prove lm loge, (&; Ty) = — oo,
300

R—rco
which implies the theorem, it is enough to verify that

logen) - (b {log en] )
(10) " log |loge,| " dlog|loge,

— 0.

HOgEnl n—co

The expression on the left is equal to

by,
— " (logh,+log | loge,|—log(d loz| 1
1Og,!l()%l{og wlog | loge,| —log(d log | loge,))

by logd, by logd by, log log| log &,
" logllogs,] | " log|logey) log | logs,)|

The second member of this expression tends to 0 by definition, the first
and the third member tend to 0 because of the relations

lim b, logd, = 0, limlogiloge,| = +oco.
—r00

N—>00

In the fourth member, for sufficiently great m,
0 < log log|loge,| < log| logs,|.

Consequently, it also tends to 0, and hence relation (10) as well ag
theorem 2 are proved.

5. It is probable that theorem 2 may be strengthened, beeause it
uses only a very rough estimation of the constant s.
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Theorem. 1 leads to the following problems, which are open also in
the algebraic case (8):
P 163. Does there exist

(We know only that 1<s,(£;T)/¢,(8) <s<+oo for any n=m.)
P 164. Is
i 25D
nseo  &(E)

If the angwer to both problems is positive, then

e (&5 1)

lim =S )

£a(£)

which would very essentially strengthen theorem 1.

N—rc0
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ON THE NUMBER OF AFFINICALLY DIFFERENT SETS
BY
5. PASZKOWSKI (WROCLAW)

The problem solved in this paper®) concerns the constructive theory
of functions. In the theory of uniform approximation the notion of the
polynomial of the best approzimation of a continuous function () in the
interval <&, b)> plays an important role. Such a polynomial of degree %
is defined in [1] as a polynomial realising

min max |%(t)—w ()],

welWy asih
where W, is the class of all polynomials of a degree not greater than n.
Utilizing some results of de la Vallée Poussin [2], Rémds has given in [3]
a recurrently defined sequence of polynomials, convergent to the poly-
nomial of the best approximation. De la Vallée Poussin has remarked
that the polynomial v(t) of degree n which gives the best approximation
of a function z(#) on the system of n--2 points fos by ooy (e <l <
< ... <tyq1) satisfies the system of n-+2 equations

v(t) (=1 e =2) (i =0,1,...,041)

(¢ is here the (n--2)-th unknown). Thus, if »(t) = Go+at+...+a,t",
then

W+ byt +a,tete = x(ty),
oyt +.. . Fa, it —e = 2(t),
Gyt aty et (1) e = @ (t,).

Thus any coefficient of the polynomial »(f) is a linear combination
of the value of the function z(f) with the coefficients depending only on
the points %, 4, ..., thy1:

*} Presented to the Polish Mathematical Society, Wroctaw Section, on. Novem-
ber 2nd, 1954. )
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