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Tnequality (13) implies D (0, #) = 6. Then, in view of (11), relation

(iv) holds. .
From inequality (14) and from relation (iil) we obtain for 4 # 0 and

zeX:

o] = “ (1) uzwn

Hence
|Afllel] << A«

Then, according to (14), relation (v) holds: The theorem ig thus pro-
ved.
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ON THE COMPARISON OF TWO PRODUCTION PROCESSES AND
THE RULE OF DUALISM™
BY

H.STEINHAUS AND 8. ZUBRZYCKI (WROCEAW)

INTRODUCTION

A silk ribbon produced by an automaton is an example of a conti-
nuous production process. An observer estimates the quality of the pro-
duct by counting the defects, say, in a given segment of the product. In
this example the role of defects may be played by stains or holes. From
the number of defects observed the inspector estimates the defectiveness
of the product and expreqses it by the number of defects per meter of xib-
bon.

It may happen that not the estimation of defectiveness but the compa
rison of two production processes is the purpose of examination. In such
a case the above example should be replaced by another, namely by two
ribbons running parallel with the same gpeed. The comparison is a sta-
tement that the defectiveness of the second ribbon is at least o times
greater than the defectiveness of the first ribbon; it is known that such
statements can be deduced from observations with a certain “probability”.
The observation proceeds according to a certain plan. We shall be concer-
ned with two such plans. The first of them, called classical, consists in
observing the ribbons until the total of defects in both ribbons reaches
a prescribed number N. If n and m are the numbers of defects on the
first and second ribbon respectively, we have m--n — N. The iecond
plan, called sequential, consists in observing the ribbons until on the first
ribbon the n-th defect appears, where n is prescribed. Once the plan is
chosen and the observation taken we compute by a suitable formula the
‘“probability” P of the statement formulated above. This probability de-
pends on three numbers, a, m and #. Our aim is to discuss the methods
of defining the “probability” P.

It is worth while to answer the question why we do not estimate
the defectiveness of each process separately. We have here an analogy

* Another version of this paper appeared in Polish, see [8].


GUEST


1645“ l‘()'\I\’[UN[(‘\TIONH

with the rule applying to any measuring: it is much easier to state directly
how many times a given thing is heavier than another, than to weigh
both separately and to compare their weights. In our examples the obser-
vation (m,n) immediately answers the question concerning the ratio
of defectivenesses; when we want to estimate first the defectivenesses
themselves, we must also know the lengths of both ribbons.

The comparison of two production processes is, as we shall see, closely
connected with the problem of estimating the fraction of red balls in an
urn filled with red and black balls.

§1. ASSUMPTIONS

In the sequel we shall agsume that the distributions of defects along
-the ribbons are Poisson distributions. More precisely, we shall assume
that the defects on each ribbon separately form a homogeneous Poisson
stochastic process. It means that there is a constant ¢ such that for every
segment (¢, t--h) of the ribbon the probability P(k) of & defects in this
segment is given by the formula
( Gh)k

P;c(h) — ___6—nh

(1.1) o

(F=0,1,2,...),

% being the length of the segment, and that the numbers of defects in

disjoint segments of the ribbon are stochastically independent. We shall

call the parameter ¢ of the process the defectiveness of the ribbon.

Besides these assumptions characterizing the defects on each ribbon
ag a Poisson process we ghall assume the mutual independence of any two
random variables v, and v, defined by the distribution of defects on the
first and on the second ribbon respectively.

§2 BAYES RULE AND LIK.ELIHO()Db

Before we proceed to the comparison of two processes we may discuss
some questions related to a single process.

Let us observe a homogeneous Poisson process in the interval of
unit length. Let us suppose that we have observed & defects, or, in other
words, that » =k, where » denotes the random variable representing
the number of defects. What is the probability that the parameter ¢ of
this process iy less than «? This question cannot be angwered without
the knowledge of the prior distribution of the parameter, ¢. e., without
a knowledge preceding the observation and determining. before the obser-
vation the sought probability. Usually, we lack this knowledge. In these
cases the so called “fiducial argument’” is used which dispenses with
this knowledge. This argnment consists in changing the original question
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and in computing another probability which ean be determined without
the knowledge of the prior distribution. This probability is then called
the Uikelihood of the inequality ¢ < a.

In his papers {H], [6], [7] Steinbaus has discussed the difficulties
connected with the lack of information about the prior distributions and
tried to explain the role of likelihood or “fiducial probability”, In conneec-
tion with these considerations Sarkadi published in 1953 the paper [4]
(written in Hungarian). The word “duality” in the title of his paper re-
minds Oderfeld’s paper {1]. Now, reproducing here one of Sarkadi’s re-
gults, we shall show the “fiducial argument” and the rule of dualism for
the Poisson proeess.

The “fiducial argument” substitutes for the previous question of
the probability of ¢ being less than «, provided that in the unit length
of the ribbon % defects have been observed, the following one: what is
the probability of observing more than % defects in the unit of length of
the ribbon if the defectiveness of the inspected ribbon is equal to oy 1. .y
if ¢ = a? Let us denote the last probability by P(x = k¢ = a). I, mo-
reover, the likelihood of the ineqnality ¢ <C a is denoted by W(( < a| x = k),
we ghall have the following relation:

(2.1) We<o |l xw=k=Pxzk|c¢=a),.

Now the original question becomes meaningful if we accept any prior
distribution of the parameter. Further one can ask for what prior distri-
bution of the parameter ¢ the posterior probability of the inequality
¢ < a iy equal o the likelihood of this inequality. We shall denote the
posterior probability by Pgp(e < alx = k), the letter B reminding us that,
this probability is calculated according to Bayes’ rule and the letter H
standing for the hypothesis on the prior digtribution. We also ask for
what prior distribution of the parameter ¢ the relation
(2.2) Wie <
holds.

Now relation (2.2) does not hold for any prior distribution of
the parameter in the usual sense, but, as has been observed by Sarkadi
r4], relation (2.2) holds if we assume for the prior distribution of the pa-
rameter the uniform distribution on the half-line 0 < ¢ < co. The precise
meaning of thiy statement is as follows. If we define the right side of (2.2)
by the relation
(2.3) Puulo < a | x =k) = ImP§h(c <a | » =),

Tre0

a | x=1F = Pyglec< a | x=F)

where P{(¢c < a|x = k) is the posterior probability of ¢ <« caloulated
a»ceordmg to Bayes' rule nnder the hypothesis that ox the unit length


GUEST


¢COMMUNTICATIONS

106

of the ribbon % defects have been observed and that ¢ is & priori uniformiy
distributed in the interval 0 < ¢ < L, then we have (2.2) for every % and a.
We call (2.2) the rule of dualism for the Poisson process. This rule
reveals the arbitrary hypothesis concealed in the notion of likelihood
which, at first sight, has nothing to do with the prior distributions.
For the sake of completeness we give here an easy proof of (2.2).
Let

1/L  for

0 .otherwise,

0 <a< L,

(24) mm={

be the probability density of the prior distribution of the parameter c.
By virtue of the assumption we have

Plr=F|c=a)=—6".

2.
(25) k!

Using Bayes’ rule we get

pr(a)P(x =k | ¢=d)da

z I A

PE(c<ta | x=k) =

I
pr(a)P(% =% | ¢ = a)da 1,
of L 7 k'e da
Obviously we have
- .
ike"“da =e*14at... + Gl ol M) b
) T = -I;'- —e ; -1--..,+~k—!— y

and therefore

alc
1—6”“(1+a+...+~7;'—)
Pllc<a|x=k = -

.
l——e“L(l-l—L—{—..‘-}—%-)
This and (2.3) imply

&
Puple<a | %=k = —e"“(l+a+...-{—%),
and we immediately get from (2.1)
We<al . i o of
[ o = = O == ] —g - e
x = k) 1-:%‘16 =1 (1-{ a+...|—k!),

which proves (2.2).
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§3. RULES OF DUALISM FPOR THE OOMPARISON OF TW0O PROCESSES

We now turn back to the comparison of two processes. We shall
denote by ¢; and ¢;; the parameters of the first and the second process
respectively in the sense of §1. The random variables representing the
numbers of defects observed during the examination on the first and
the second ribben shall be denoted by » and u respectively. For
obvious reasons the joint probability distribution of the variables » and
u does not depend on the absolute values of the parameters ¢; and ey,
but only on the ratio ¢y /e¢;. Therefore it is the distribution of the ratio .
oyfer that really matters. Accordingly we shall denote by

Pyglegfer > a | u=m, pt+v = m+n),

the posterior probability of ¢y /o, being greater than « if the prior distri-
bution of the ratio ¢y /oy is specified by the hypothesis (H;) and if » and m
defects have been observed on the first and on the second ribbon respecti-
vely, the plan being classical. If the sequential plan of examination is
adopted, then the posterior probability of the same inequality shall be
denoted by

PHB;(UII/GI >o | p=mv="n).
Furthey
Plusm| egley = a, utv = m-4n)
shall denote the probability that we shall observe at most m defects on
the second ribbon if the examination continues until the total m--n of
observed defects reaches the prescribed number N (classical plan), the

ratio e/e; being supposed equal to a. The analogous probability for the
sequential examination shall be denoted by

Plu <m | eglep = a,v = n).
It will be shown that
(3.1)

N

» m'—l—n a & 1 mtn—k
P(lughm | OII/GT. :=a’/’6+v=m+n);:2( 7‘; )(1+a) (m)

Ie= 0

and that
m

—14% . k 1 n
(82) Pp<m|eglg=oa,y=n)= 2(” k+ )(lj—a) (m) :

k=0

The formula (3.2) was first found by Romejko [3] for o = 1.
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The “fiducial argument” which abandons the Bayes rule, substi-
tutes for posterior probabilities the likelihood of e¢;/e; being greater
than a, provided that » and m defects have been observed on the first
and on the second ribbon respectively. The likelihood Wiis defined for
the classical plan by N

(3.3) Wi(egfe; > a | u=m, utv = m-|n)

=Plu<m| egler = u, ut+v = m-n),

and for the sequential plan by

(3.4) Wi(enley> a | u=m,»=mn)=Plu<m| ¢rf¢; = u,v =n).

Now it turns out that the likelihood is equal to the posterior proba-
bility caleulated with Bayes’ rule, if a suitable hypothesis on the prior
probability is adopted, as is shown by the forthcoming rules of dualism.
They show that the notion of likelihcod is by no means free of hypothe-
ses on prior distributions. It ig also remarkable that in the most inte-

resting cases one must assume for the prior distribution the uniform -

distribution on the half-line, .
We shall be concerned with the following hypotheses on the prior
distribution of the ratio epf/e;:

- (Hy) the ratio ¢;/e; has the distribution function
al(l4+a) for 0 < a< oo,
Plegqlep < a) = 1
(e ) | 0 otherwise;
(H;) log(1--eyfer) is uniformly distributed on the half-line (0, oo);
(H,) the ratio ¢/e; is uniformly distributed on the half-line (0, o).

It must be explained what is meant by the posterior probability
under the hypothesis that a certain quantity is e priori wniformly distri-
buted on the halfline (0, cc). We define it as the limit of posterior
probability caleulated under the hypothesis that this quantity is « priovi
uniformly distributed in the finite interval (0, L), with L - oco.

We call attention to the fact that only the hypothesis (H,) is symmet-
ric with respect to ¢; and ¢;;. Under this hypothesis op/eg and ¢g/ey; have
the same distribution. The remaining hypotheses favour great values
of e¢ppfe;.

For the classical plan of examination we have the following rules of
dualism:

(35)  Prpolenle;> a | u = m, utv — m+n)

= Wlon/ey > a | p=my utv = m+n+1) (n 2 0);
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(36)  Pygmlonfer> a | p=m, uty = m-tn)

=Wleg/ey>a | p=m,ptv =mdn) (n>1);
(3-7) Pypololey > a | u =m, p+v = m+n)

=Wyl >a | p=m, p4+r = mtn—1) (n>2).

The relations

(3.8)  Pyglenfe; > a | p=m,putv =m+n)

= Pypleple;>a | p=m,» =n) (j=0,1,2)
and.
(3.9) Plu<m | enlep = a, ptr = m4n)

=Pu <m | epfe; = a, v.=n)

make it possible to dednee immediately from (3.5)-(3.7) the ana-
logous rules of dualism for the sequential plan of examination. We
have namely

(310)  Pyglonfe;>a | p=m,» =n)

= Wionfey> a | p=m,» =n+1—4) (n>j;j=0,1,2)

Special attention is to be paid to the rules (3.6) and (3.10) with § = 1,
ag they reveal the hypotheses concealed in the notion of likelihood while
the others show only the close connection of the notions of likelihood
and prior probability.

We defer the
sections.

proofs of the above rules- to the forthcoming -

§4. RELATION TO THE PROBLEM OF ESTIMATING FRACTION DEFECTIVE

In this section we propose to show that the compazrison of two Poisson
processes may be reduced to the investigation of the fraction of, say,
red-coloured balls in an wrn. Namely at every instant ¢ we can ask for the
probability p of the next defect to appear on the first ribbon. Let us sup-
pose that both ribbons spoken of in the introduction run with unit speed.
Further, if =; is the time of waiting since the instant ¢ for the appearence
of the first defect on the first ribbon and 7y is the time of waiting since
the instant ¢ for the appearence of the first defect on the second rib-
bon, then, by our assumptions, 7; and 7y are independent random va-
rlables with distribution functions

Pl <t) =1—¢% (i=1I,II).
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We observe the next defect on the first xribbon if v < 775, and on
the second ribbon if z; < 7;. Now it is easily verified that

(4.1) p = Plv; < 7)) = 6f{6r+¢r1) = 1(1+erfer),

(4.2) g = P < v) = egflortery) = (enfor)/(L+eufer) .

The equality 7; = 15; hag probability zero and may be disregarded.
It also turns out that observing defects on two ribbons running
side by side and characterized by the defectivenesses ¢; and ¢;; amounts
to the same as drawing balls from an urn containing the fractions p and
¢ = 1—p of red and black balls respectively. The role of the ratio ey /e,
is now played by the ratio ¢/p of fractions of balls. The present prob-
lem differs from those usually considered in the statistical quality con-
trol by the fact that we are now interested in the ratio » = ¢/p and not
in the fraction ¢; in the usual model black balls are called bad and ¢ ig
called the fraction defective. Nevertheless the relation 7 = ¢/(1—¢q)
makes it possible to pass immediately from » to ¢ and conversely.

§ 6. TRANSLATION OF THE ORIGINAL PROBLEM INTO THE LANGUAGE
OF DRAWING BALLS

Owing to (4.1) and (4.2) we now express our original problem in
terms of drawing balls. .

The classical plan of examination means now that a fixed number
N of balls are drawn, while the sequential plan of examination means
that the balls are drawn one after another until the total of red balls
drawn reaches the preseribed number n. The relations ¢ /e; > a and
g > f, where § = af(1+a), are now equivalent. To the hypotheses (H;)
on the prior distribution of the ratio ¢;/e; correspond the following hy-
potheses on the prior distribution of ¢:

the fraction ¢ is uniformly distributed in the interval (0,1);
log[1/(X—g)] is uniformly distributed on the half-line (0, oo);

the ratio ¢/(1—¢) is uniformly distributed on the half-line
(0, o).

Note that (H;) is the only hypothesis symmetric in g and 1—g¢. Under
this hypothesis ¢ and 1—g¢ have the same distribution. The other two
hypotheses favour great values of ¢ and therefore seem too pessimistic
from the point of view of statistical guality control.

Without danger of misunderstanding we may retain the notation
w and » for the numbers of black and red balls drawn from the urn during
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the examination. Now with easily comprehensible changes of notation
we obtain the following equivalents for the relations (8.1)-(3.10):

ne

(81) P(u<m | g=p,utr = min) = kZ(mZ”)ﬁ"u—ﬂ)“’f"”‘;
=0
62 Plrma=p,0=n = 3" g,
(63)  W{g>B | u=m,uty =m+n)
=Plp<m | ¢=p,ptv=mtn);
(54) W>plu=myr=n)=Pu<nm|qg=4r=n);
(6.8) Pypolg>f | u=m,ptv =m+n)
=W@g>p|p=mptr =m4+atl) (n=0)
(5.6) Ppmlg=>p | u=m,pty=m+tn)
=Wg>8|pu=mputr=mitn) (n=l)
(5.7)  Pgpalg > B | p=m, pt+v = m+n)
=W u=m -ty =mAn—1) (n>2);
(5.8)  Pypulg>p | u=m,putv = m+n)
=Pgplg>p |l u=myv=mn) (j=0,1,2);
(39) Plu<m|q=p,utr=mtn) =Pa<m|g=4fv=n)
(5.10) Pandg> | w=1m,v=mn)=Wig>F | u=m,»=n+1—j)

(n2d;i=0,1,2).

The rule (5.5) was first discovered by Oderfeld [1]. Sarkadi [4]
hag remarked that it is a special case of the rules of dualism which cor-
respond to the hypothesis of ¢ having a priori the beta distribution.

§ 6. PROOFS

To render all our statements fully proved it remains to establish the
relations (5.1), (5.2) and (5.5)-(5.9).

We have
(61)  Plu=m | =, ut» = min) = (mjn'”)ﬁ"’(1¥ﬂ)“
and .
(6.2) Plu=m|qg=Ff»=n)= (m_';:_l)ﬁ’"(l—ﬂ)"-
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The first equality is obvious as it states that the number u of black
balls in the sample of size N=m-+n drawn at random from the urn con-
taining the fraction # of black balls has the binomial distribution. As to
(6.2) et us remark that if we drvaw balls until the n-th red ball iz drawn,
we obtain m black balls if and only if in the first m4-n—1 drawing
m black and »-—1 red balls are drawn and in the last, 4. e., the (m--n)-th
drawing there, appears a red ball. The first ‘of these events has the
probability (m—l—n— F™1—p)*?, while 18 i the probability of the
second one. The right slde of (6.2) is already the product of these two
probabilities.

Relations (5.1) and (5.2) follow immediately from (6.1) and (6.2).

In the sequel we sha.ll use the identities

1 £
. S n+m+1 k, npmd- 1=k S (n+lm+1) LIS AL S
_Z( . )a,(lua,) —2 ' b (1 —b)
k=0 k=0 .
and
b
1 n "
(6.4) #—WB(m—{—l,n—&—l) afw (L —20)"dw

zg(n:k)ak(l_a)m_Z(n;rk)bk(l By

k=0
These identities can easily be verified by differentiation.
LEvMMA. TIf for a natural s

©5) 0 < f< K(L),

1 1
wuf) = [i g
0 otherwise,
is the_probability-density of the prioy distribution of ¢, and if
PRg> B | p=m, utr = m4n)

denote the posterior probabilities of g being greater tham B for classical and
sequential plan, then we have for n = s

(6.8)

and

lim PE(g > B | 4= m, g+v = m+n)
T—~o0

= lim Pig(g > Bl == myy=n)= —py**ag.

l 0
(m+1 n-+1-—g) jﬂ

PG> B | p=m,» =n)
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Proof of the lemma. In view of (6.5) we have
(6.7) lim K(L) =1,
Lrroo
Using Bayes rule we get for the classical plan
(6:8)  Phblg> | p=m,u+» = m-+n)
B
[ Pra)P(u=m | ¢=q,utr = mtn)da
_ B
)
[ pr@Pu=m| q¢=a,ptv =m+n)da
0
oy MmN o
il m, — 1 m — —8
) L—(l——a)’( m )a 1—a)*da Bf a )" da
CEm 1 1 m-+n T
— m — %3 — n—8
| Ty ( m )a (‘1 a)'da Of o a)**da

In the same way, the only change congisting in replacing (m:;n)
by (m—l—n—l

" ), we obtain for the sequential plan

a"(1—a)"°da

(6.9) P

q>Flp=mv=n)=
a™1—a)**da

In view of (6.7) we have for n >3 .

(L)
f ¢™(1—a)"*da
(6.10)

=

im (
e J e™(1—a)"*da

[

Relations (6.8)-(6.10) prove (6.6).

Proof of (5.7). If the ratio ¢/(L—gq) is a priori uniformly distribu--
ted in the interval (0, L), then we have

fl ™1 —0)""*da
i

o™1—a)"*da
v

q B B
=t =-— 0 < L
P(1~q<ﬁ) (KHﬁ) p o 0sf<d
or, substituting a for g/(1+48),
P _1 e <<
(Q<a)_L1——a 1+L°

Colloquium Mathemeticum V,1
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The probability density of this prior distribution is

it for 0<a <~EJ—
pule) = 7y 1+L

By virtue of the lemma we have for n > 2

(611)  Pypalg> f | p=m, ut» = m+n)

1
1 T
=Pgplg>f |l p=mv=1n)= fam(l—a) *da.

B(m-+1,n—1) |

Note that this pfoves (3.8) for § = 2. Further, developping the right
side of thiz equality aeccording to (6.3), we get

m
m—+n—1 Yy AR, P
Pagslg > B | = m, pv = mtn) =2( R
and in view of (6.1) we recognize in the last sum the probability
: P(,u < m|g = B, p+v = m-+n—1). This and (5.3) prove (5.7).
The proof of (5.6) is analogous to the preceding one. If log (1 J(1—g)
is a priori uniformly distributed in the interval (0, L), then we have

1 1 ]
— =Pl— < | =Pg<l—e?f) =—
P(logl__q< ﬂ) P(l—q< ) (g | ) 57
for 0<f <L,
or, substituting « for 1—e#,
1 1 ,
Plg<a) = I IogE for 0 <a<<l1—e%

The probability density of this prior distribution is

1 1
pr(e) = for 0 <a<l—e®

—flwa

By virtue of the lemma we have for # > 1

(6.12) Pypi(g>p4 | p=m, ptr = m-+t+n)

1
fa‘nl(l____a)%—-ldq.
B

This proves (5.8) for § = 1. Further, if we develop the last integral
according to (6.3) and take into account (6.1) and (5.3), we obtain (5.8).

1
" = Fmiln)

i

=Pyppu(g>f | u=m,» =

icm°®
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The proof of (5.5) and of (5.8) for § = 0 proceeds in the same manner,
with the only change that we deal here with the prior distribution in
the usual sense so that the passage to the limit is spared.

Finally, by virtue of (6.3) and (6.4), we can write

3 m
1 m Nn—1 — n+m Tk T —
B(m—}—l—,_ﬁjﬂfw (1—w) d“’"g( . )ﬂ"(l—ﬁ)““ g
m Lk !
= ("),
k=0

which, in view of (5.1) and (5.2), proves (5.9). This relation enables us to
use Pearson’s tables [2] for the caleulation of probabilities and likelihoods.
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