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Derivate planes of continuous functions
of two real variables

by
J. R. Ravetz (Durham, England)

1, Introduction

We study here the problem of sufficient conditions for the existence
of a derivate plane to a continuouns function of two real variables. The
work is based on the paper [2] (henceforth referred to ag D. A.) in which
are contained all the basic definitions. Speaking loosely, we find that
there are two related sufficient conditions for the existence of a derivate
plane: that of continuity with respect to @,y of a pair of derivates in
two continuously varying directions, and equality of upper and lower
derivates in two continuously varying directions. These two conditions
combine to yield sufficient conditions for the existence of a derivate
plane both at a point (Theorem 2) and in a *“‘global” sense (Theorem 1}.

2. Notation

From Theorem 1 of D. A. we obtain the following theorem, which
will be basic for the present work:

THEOREM A. If 7(2) has finite derivales on a region R, then there is
a region R+ everywhere dense on R, such that at every point 2, of Kt,

Df(r) =% (25),  Dof(20) =8f (20}, @l 0,

and D%f(z,) and Dof(z,) are continuous functions of 8.

If the derivates of f(z) are bounded on R, then B+ =R.

This result is of twofold significance: first, we may ignove the dis-
tinction between D%{(z,) and 9°f(z,); and second, more important, we
may use the continuity of D%(z,) as an essential step of all “category™
arguments.

The statement “there exists a derivate plane to f(2) at z,” is defined
by the equation

(1) D°f(20)=Dif (24) = cos - D (z,) + sin 8- D™f(z,) ,
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for all 6. Given two directions 2 and x not diametrically opposed, such
that D (z,) and D*f(z,) are finite, a more general form of (1) is

(2)  D'f(e0) =Dif (z0)=[sin (u— )] [sin (0 — 1) D"/ (20) —sin (6— o) D (2,)]..

We denote this last expression by P™%%f(z,), and call it the wupper
4,u; 0 plane derivate. Then the definition of the existence of o derivate
plane becomes
(8) DY (z0)=Dof (20) =P’ (2), all 6,
for any pair of directions A,u not diametrically opposed. We note that
by using lower derivates throughout, we may define P;,;6f(z,), the
lower 1,u;0 plane derivate.

It is convenient to define another type of derivate,

B (2) =D o) =P (5),  Bppaf (20) =Dof () —Pru;of (%) 5

the upper and lower 2,u;8 error derivates, respectively. Then the existence
of a derivate plane is equivalent to the pair of inequalities

(4) F%(2) <0, Eppof(20) >0, for all 6.

We see thiy readily by observing first that the inequalities (4) imply
P50 (20) — Proof (26) >0, all 6. This is possible only in the case of
equality, since the left hand side is equal to 4 sin (8 —B) for some con-
stant 4 and B. Then from the equality of the plane derivates we easily
deduce D"f(zo)zl),f(zo), all 9, and (3) is immediate.

Throughout the paper, we shall use the symbols a(z) and b(z) to

denote directions varying continuously with z Expressions like D™ ()
will sometimes be abbreviated to D% (z); it will always be understood

that the direction a(z) is evaluated at the point 2z appearing as the argu-
ment of f(z),

Finally, we recall the definitiong D*f(z0)= sup D% (z,), and D.f(z)
0<<H<2n
= inf Dyf(2,), from D, A. !

B
3. Preliminary Lemmas
Lemma 1. (a) For a continuous function f(z) and a continuonsly
varying divection a(z), Df(2) is a Borel-measurable function of z.

(b} Let fo(2)=fi(e) + 12), and suppose that for some point 2* and
direction p,

-+ oo >D”f2(3*)=-D# o(#*) > —o0.
Do) =D"f\(2*) -+ DHfaf*) .

(¢) For a fized point 2, and three directions A, pu,v such that D¥(z,),
D*f(2,) and D*f(z,) are finite, we have

Then
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sin (g — 2) BY9F (2,) = sin (v — ) B (2g) = sin (1 — ») BY52f(z,) .

(d) Suppose that D¥f(2y) <M. Then given any pair of directions i,p
not diametrically opposed, and any pair of directions 0,¢, we have

|sin (2 — @)} | P25 (2q) — P49 (20)| < 2|0 — g .

Proofs. (a) It will be sufficient to show that for any K, the set
T*={z; D*?f(2) > K} is a G4 set. We consider the set 6¥ = {z,0; D% (2) > K}
ag a set of points in Euclidean three-space, as in D. A. §2, and let
Q={z,0; 6=1a(e)}. Since a(z)is continuous, then L is closed, and so Gl w]
is o G, set in ;. Since a(¢) is single-valued, then T%=(€*-Q),, and it
remains to show that the projection takes @ sets into G4 sets. This fol-
lows readily if we consider Q as a space with a metric defined by- g('fvl,]):_]) )
=|g,—2| for any points piz(zi,a(zi)) (1=1,2) of Q; the projection is
then a homeomorphism.

(b) Let {has;} (n=1,2,..) for §=0,1,2, be three sequences of
complex numbers such that |ha,.,]—0 and arg he,y;—>p a8 n—>oco, and

D/fy(e*)=1m {hay 1| 77 (" =+ ans 1) — F3(2*)] -

For any function k(¢) denote by 4,k(z) the difference quotient
Ih,.l_l[k(z-{—h,,)—k(z)]. By the definition of the directed derivate, we have

Dfi(e*)= lim 4.0, j=0,1, Dfle*)= ’}Eg Anfale™) .

On the other hand, we have
Anfo(2*)=Aafo(2%) + Anfo(=")
for any n. Taking upper limits, we have
Hm Aufo(s*) = m A,fy () -+ i 4.fy(2")

equivalent to D¥f(2*)=D"f,(z*) +D'f.(2*), as desired.

(c) and (d) are elementary.

LeMmA 2. For a continuous function f(2) and a point z,, suppose
that DYf(z,) and I'f(e,) are finite, where 2 and v are directions such that
A<v<A4= Let ¢ and oy be arbitrary positive numbers. ) B

Then for any direction 8 in the ares (v,A+=), (v-+=,A), the inequalities

(5) D (#) >P"""f(z)—e,
(6) Dof (") <P*f(z0) + &

are satisfied by points 2’ =z'(6), #"'=2"(0) lying in [z—z{<gq.
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Without loss of generalify, we assume z,=0, f(0)=0. Let 4 be an
arbitrary direction in the arc (»,A+4=). Let g(&)=g(z,y)=Ax+By (4,B
real constants) be such that D'g(z)=Df(0), D’¢(z)=D"}(0), for all
Then for any 2 and 6, : -

P9 ()=D'(z)=Dag (2)=P**"f(0) .
Let k(z)=f(2)—g(2). Then by Lemma 1 (b), for any 2 and 0,
D'h(2)=D'f (2) — D'g (2)=D" (2) - P> (0) .

Hence D*h(0)=D"k(0)=0.

We consider pairs of points 7,2* with the following properties:

(i) argZ=4, .

(i) |arg#* —»| < jminflu—s|, |r— 2],

(iti) arg(s*—7)=p.

We note that to each 2* there corres j z i
y sponds just one Z. It is clear th
the upper bounds of the ratios e

11 B

S

are fil‘lite. Dfnote them by M, M,, M, respectively.

. Sm(fs D'R(0)=0, there exists a positive ¢ such that for |%|<
h(z)<e]z]/?Ml. By the construction, there exists a positive g, such thﬁé
fqr any f* in || < g,, the ségment 22* lies in the -region |2| <me( )
Since D'A(0)=0, there exist points 2* such that 2% <o a.nd%}:(ezl*)
>—¢l2*|/2M,. We choose such a point z* denote it by zz and let z
be the unique point 3 corresponding to it. Y B

Then we have ’

hz)~h(z)

Izz“‘zﬂ

(7) —Slzzl _ Glle

2Mifey—n|  IMe—m) o " f
Hence on the segment %%, there exigts a point 2’ such that
(8) — e <Dhiz)=D'f(z') - D*g (') =D"} (') — P*"*4(0)

a8 desired. Changing signs in (7) give
8 8 - — ;
#i%, there exists a point 2 suchgtha,t o &) ~he); hence on

y

..... 7 2> Durnh (27 )=Dysaf (2) — P10

e g.‘huslwe have established (5) for 6 in (4,94 =) and (6) for in (v + = A).
omplete the proof by choosing a direction 4 i (v4-m,2); the c’on-

structions are the same. Since 2’ 1
! . and 2 s s
the proof is complete, are construeted to lie in |4] < g,,
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Note. If in the conditions of the Lemma, we have D;f(z,) and
D,f(z,) finite, then inequalities (5) and (6) become

(9) - D) > Pl (za)—e,
(10) Dyf (") < Ppyof (20) + 2

respectively, with the same conditions on 0.
Lemma 3. If in a neighbourhood N(z,) of a point z,, D*f(z) <M,
then for any pair of directions 0,p,

| D% (20) — D7 (20)} < M6 —¢| -
Suppose the lemma to be false, and that
sup {0 — | (D% (20) — D% (2) 1} ="M , ,
for some 7>1. Then there exists a pair of directions 1,» such that

|v—2] <2 arccos
and
le (20) —D'f(zg) > My — 2} .

Without loss of generality, we may assume A<v<<i+tm,
Let £ be the midpoint of the are (1,»), and let p=£—4in. We have

sin(u—A)=sin(g—v)=—cos } (r— 1),
and so

Pty =SSO D Dip(e) ~ Dj e > M

=2 _
M.
sin(y — =

sin{v—41)
Observing that p is in the are (v+m,4), we apply Lemma 2, with N (2}
as the given neighbourhood and e=(n?—#)M. Then in N (z,) we obtain
points &' such that

« M — (- M=nM <D'f{) <D,

the desired contradiction.

Note. Since D*f(2) <M for z in N(z,) trivially implies D,f(z)>—3
for z in N(z), and conversely, we see that upper derivates may be
replaced by lower either in the conditions or conclusions of the Lemma.

LueMMA 4. Let f(2) be a continuous function defined on a region R,
such that D*f(2) <M, for z ¢ R. Let a(2) be a direction defined on R, varying
continuously with 2.

Then

sup D*?f(z)=sup Dotaf (2) -
Z€R z€R

Hence, under the same conditions, if Df(z) is continuous at z,, then

Df(20)=Ddf (2), and D.f(2) is also continuous at z,.
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. The raegion R is included in the open set R' of Theorem A. Tt
N= .3;161)12)1) f(#). Then for any &>0, there is a point 2, such that D% (z,)
> N—e. There exists a positive p such that for [e—z,|< g, la(2)—a(zy)| < e/ M.
Denote a(z,) by p, and f(s,+te*) by g(t), a continuous function of g

single .real variable. Since D1g(0) >N —e¢, then in the interval [t] <
there is a point #' such that ¢

N—e<Dyg(t')=8,f(2o + t'ei)y=D,f (2, + t'€1) .
Denote zy+t'e by ¢, We have, by Lemma 3,
Dl () > Duf () ~M]a() — u| .
Since |¢'—z,| <<g, then |a(¢')—pu| </}, and so
Dof (') >D,f(#)—e>N—2¢.

Since ¢ i3 arbitrary, this is the desired result,
The second part of the lemma follows direetly.

4, Derivate planes

o a'.l;;&;zRE;{ 1. f{:t /(2) be a continuous function having finite derivates
7 ion B, and let a(z) and b{z) be continuously varying directi
that 2y o) Y varying directions sueh

S?lppo.s‘e t}’lat thﬁf@ exists a set E 7@3ld ural on R, at a“ 0’ U’}IOSE pmnts &
0
D ](z()) lcﬂ} (“0) ’ D J; ("0) JIbJ (2’0) .

Then at all poin ] ] ;
o 1) potnts of a set F vesidual on R, there exists a derivate plane
As a preliminary, we show that with :
; out loss of generality we ma
assume f(z) to have derivates uniformly hounded on R. F’oz, let R(’%
be the interior of the set {z; D*f(s) <M }; we have R’ = @R(M)

. M=
where dense on R. If this were not 80, then there woultli bhe a region

f; ;R;R’ on which each of the sets P™ = {z; D*/(2)>M} would bo
O.n lyarlv’v Zl:ddse;m:].l;;nfzetthe f“ are g,, sets, they would all be residual

s Intersection {z; D*f(z)=
Hence R’ is everywhere denge on R’ J{E)=+ eo} world be not-empty:
On each of the sets R™, we have D.f(2)>—M. It we prove tho

heorem for each of the sets EE(M) then — == g - —
en the set R—F R( ¥ + R—R'
’ le( f ) ( 3 )

is still of the first catego and . .
; Ty 50 W
henceforth that 2 is in R(M)’, for someF Mls residual on E. We. assume

iz every-

icm

Derivate planes of continuous functions 109

By Lemma 1(a), we know that D°f(z) and the other derivates with
continuously varying direction are Borel-measurable functions of 2. Hence
(Kuratowski [1], p. 191) there exists a set E, residual on R®, such that
all these derivates (considered as functions of 2) are confinuous on H,
with respect to E,. Let E*=E-E,; then a fortiori we have that the de-
rivates are continuous on E* with respect to E*. Also, B* is residual
on R*.

We recall that the existence of a derivate plane at a point z, is
cquivalent to

El‘ﬂ'ef (20) <0 < Byuief (20)
for some pair of fixed directions 4 and x not diametrically opposed, and
all directions 0. Let @(2) be an arc of directions, varying with 2, de-
fined by
OR)=1{0;b(z)—rw<l<al(z)+r}.

We prove the theorem by studying sets of points related to the

inequality :
(11) B (2) <0 < Bopiaf (%) -
Leb G be the set of points z, for which (11) is satisfied for all § in @(z)-
We shall show that G is residual on R®”. The proof is by contradietion.
We suppose that ¢ is not residual on R(M); then there is a set U of the
second category consisting of points 2; for which either

sup E**%f(z)>0 or  inf Eapef (%) <0.

Bed{(zp) 6e8(z))
We suppose the first inequality to hold ab all points 2, of U.

Since UCR™ is included in the set B* of Theovem A, then D'f(z)
is a continuous function of @ for fixed z. Let {0;} be the rational direc-
tions. Then U=} 4;, where

ij=1

A=z 2 B, 6,6 0(), B >,
and one of the sets A4 is of the second category. Abbreviating the no-
tation, we set this 4;=DB, where

B=1{z;2¢ B, ueO(2), B""{(2) >},

with p=8;, n=j"". The set E* being residual on R®, we have that
E*-B is a set of the second category on R®®.

Let A be the subset of R consisting of points 2, such that for
every p>0, the set {lz—z| <o} -E*-B is of the second category. Then
there exists an open set D such that A4 is everywhere dense on D. If not,

_ oa .
then 4 is a nowhere-dense set; let R _ 4=1J0;, where each 0; is

i=1
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open. Then E* B-R™=F+*.B- 4+ GE*-.B-Oi. For each point 2, of ¢,

i==1
there exists a positive gy such that E* B {|lz—2y| < e} is of the first
category. We may cover O; by a denumerable set of such neighbour-
hoods, denote them by 0;;, and then we have

B*B-E™=F*B-A+ ) B*-B-0;.

i j=1

Each of the sets in the denumerable union is of the first category; hence ‘

B*-B-R™ is as well. This contradicts the original assumption; hence
an open set D exists on whieh 4 is everywhere dense.

We choose a point 2* in D, and let g, he such that {jz—2* < g}
is included in D. From the definitions, we have pue O(z*), and
uFa(@), u#b(z*). Hence u lies in one of the open arcs (b(z*)——vc,a,(z"‘)),
(a(z*), b(z*)), (b(#*),a(2*)+ ). We assume that it lies in the first, and
that for all points 2z in RB;= {2—2"| <g,}, u lies in (b(2)~=,a(2)). The
subsequent eonstructions depend in detail upon the choice of are for Iy
but they are all substantially the same.

There exist positive K and g, < g, such that for z in B,= {lz—2* < gg}’
sin (b(2) —a(2)) >4k .

We already have that D*f(z)<3a, for z e R,. There exists a positive
03 < g2 such that the region R, = {|z—2*| < g} has the following properties:
(i) The variation of .Dyf(2) over all points of E* *By is less than Ky.

(ii) For z € R;, the set of directions b(z) consists of an arc @ such that

|| <2K%M .
Applying (13) to Lemma 1(d), we obtain the result that for any point
2o Ity and any pair of directions B,ye®,
(14) | P52 (20) — P57 (a)| < Iy .

We now show that the assumption that #*-B is everywhere dense
on R, leads to a contradiction. This will imply that B is of the first ca-

tegory, hence that U is of the first category, and finally that G is re-
sidual, as desired.

Let B'=E* B R,. By Lemma 1(c), we have

(12) sin (a(2) — ) > 4k

(13)

sin (b— a) B*#f(2)= sin (a — W B (2),
and hence by the definition of B,

7 <B*#f (2)= _Mz_):ﬁ)_

e b |
sin (b (2) — a(2)) E*%f(2)  for

zeB’,
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Sinee B'CR, we have by (12),
(19) 0 <sin (a—p) <1,
and so from (15),

4y < () =Df2) — P (7) = Dol (2) = P (@),

0 <4K <sin (b—a),

for z ¢ B'CE*. Hence, for ze B/,
PP (2) < Dof (2) — 4K .
Let L=sup Dsf(z). Then by property (i) of R,
zeB’

(16)

an L>Djf(x)=L—Kn,
and ,
(18) Prbi(e) <« L—4Kn for zeB'.

Let {#} be a set of directions everywhere dense on @. Then for any )
and any point z € B’, we have by (14)

| P50 () — P50 (2)] < Ko
and so . ‘

(19) zeB'.

Prufif(e) < L—3Kn  for

Let Oy={2; 2 € By, Dy, f(2) <L —2K7n}. We apply Lemma 2 ‘to (19),
with e=XKu; since §; lies in the arc a(z) <8 <p+m, ff)r 2 e Ry, then in everi
neighbourhood of every point of B’ there is & point of C;. Hence eac

. of the sets C; is everywhere dense on R; being G sets, each of them

is residual on R,, and so their intersection ¢ is also residual on R;. For
all points z, of C, we have Djf{2)) <L—2Kn (t=1,2,..). By the ;)c](;n-
tinuity of the derivates at a fixed point, ‘we also have Def () <L-—2Kn,
6 ¢ @. In particular,

(20) Dof (20} <L —2Hn,

Since B’ is of the second cabegory on Ry, and C is residual on Ra,‘then
B’ is not empty. At a point 2, of B'-C, we have by (17) and (20)
L—2Kn > Dof (%) 2L — K3

this i the desired contradiction. o

We now extend inequality (11) to the full ci};ule of directions. Let H
be the set of points 2, in B at which cither E*"* 1 (20) >0 or Bap, o (z°)<~0.
for some A such that a,(zl)+7r</1<b(zl)—17;. Z\]Ze will :how that H is
a set of the first category; this will complete the prooi. o

It H is a set of the second category on R, t}gn since @ is residual
on R™, @-H is also of the second category on R™. Let {6;} be the ra-
tional dircetions, and let ©'(z) denote the are a(2)+n<0<b(z)—m=.

2ol
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Denote by P the set {2 ¢ G H, O 0'(2), I*"%(2) >0}, and by p,

the corresponding set involving lower derivates. By the continuity of
o« .

the derivates at a fixed point, we have H={J(F'+DP), and 0 one of

i=1
the sets P’ or P; must be of the sccond category. Let it be oue of the
sets P'; abbroviating 8; to g, we have at all points of I,
(21) 0 < B () =D"f(2) = P*""f(2).
Since P'CG, and u+ne@(2), we have
O=Ea,b;y+'n:f (z) - ui—nf (z) "*I)a,b;lt-[ n/ (z)

23) =Dyyxf (2) — P*H7 (2)
(23) =Dyraf () + P (2);
(22) resulting from P () =Poyef (2) for 2 e GCE*, and (23) from the
definition of P**%(2). ‘

Henee, by (21) and (23), we have at all points of P,

0< DA () + Dy (2)

Since the derivates are bounded on P, then by Thcorem & of D. A,
P’ must be a set of the first category, in contradiction to the assumption
that it is of the second category. Therefore, H is of the first category
on. ™. Then R™_H is residual on R®”, and similarly - (R —H).
Denoting this last set by F, we have that # is residual on B, and (11)
is satistied at each point of F for all directions 0. Thus the proof is complete.

THEOREM 2. Let f(z) be a continuous function, 2, o fived poini, and
a(z) and b(2) two continuously varying directions such that a(z,) and b(z,)
are not diametrically opposed.

If the derivates of f(2) are bounded in somec neighbourhood of z,, and
D°f(2) and DPf(z) are continuous functions of z at z=z,, then there cwists
a derivate plane to f(2) at 2,.

‘Without loss of generality, we let z,=0 and f(0)=0, and assumo
that «(0) <b(0)<a(0)+n. For some integer M there exisly a positive g,
such that at all points of the region |2| < g,

(24) D)< M, sin(bz)—ale) =M.
From Lemma 4, we have
Df(0)=Daf (0}, D'} (0)=Dyf(0),

and all four derivates are continuous at z=0. We denote a(0) and b(0)
by A4 and » respectively.

By the arguments of § 2, it will be sufficient to establish the in-
equalities
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YR
(25) T E710) <0,
(26) 10/ {0) 20,

for all directions 6. The proof is in two stages: first we establish (25)
and (26) for 6 in (v—m, A+w), and then we use this result to prove (."25)
and (26) for directions 0 in the remaining arc. No single .constructlon
suffices for the first stage of the proof; separate congtructions are ne-
cessary for (25) and (26) in each of the ares (v—m,4), (A,7), (A+m).
However, these constructions are substantially the same; we shall prove
(26) for @ in (1,%).
Suppose that for a direction  in the open arc (4,v),

(27) . Eppif (0) = —h<0.

Lot |2| < o1 <o, be a region at whose points

(28) . | Daf (2) — Daf (0)] < oy4 M
and i
(29) [a(z) — 4| <h/6M%.

Applying Lemma 1(c), we have
gin (v — 1) Bpppf (0)=sin (=) Byt (0);

this together with (24) and (27) gives

in (v—24 sin (v —A)
B, (0) = S Bava (0= Gy 1 L
Hence
(30) P (0) < Dif(0)— /.

Observing that 1 is in the arc (v+m,p), we apply Lemma 2 (in-
equality (10)) to obtain a point ¢ in |2| < g, such that

(31) Dif(2) < Py uuf (0) +h/2M < Dsf (0) —h/20M,
the last inequality following from (30). By Lemma 3 and (29), we have
{32) Daf(#')—Dif (#) <Mla(z')— A <h/8M.
Combining (31) and (32), we get
D.f(e') <Daf(0)—h/3M

for a point 2’ in |2|<g,. This is in contradiction to (28). Thus we have
proved that for 6 in (4,7),
Bi,;0(0) >0

s
Fundamenta Mathemattcae, T, XLIV. i
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) Asm.lmmg that (25) and (26) have been established for all direc-
1510]1:% 9 1in (v—=, 1+ =), we now complete the proof. We choose two di-
rections &, with the following properties:

Q) Adrn>E>y,  v—m<y<i
i) The smaller arc wi i E ivecti
2+ﬁ(&])ld W—mma. er arc with endpoints £,y includes the directions
(i) sin{&—»)>1/2H, sin(A—n)>1/2M.
By the previous proof, we have

(33) DH(0)=D4f(0)=P*"¥ (0},
D'f(0)=D,j(0)=P""#(0),

and hence for any direction 8,

(34) PY01(0)=P*5%(0) =P (0),  ete.
Considering directions 6 in the are (&

. . 4 {€,7), there are four cases for the
proof: 6 lying outside the are (& yA+ ), lying outside (v—n 4 for

y w,%), and for

63:0hgof these,tgr(;offs of (25) and (26). As before, we discuss 0114;7 (’aa.se only.
HuUppose that for some direction u outside (y— o
(&,v—m), we have # (r=mn), and hence in

BMH0)=h 0.
By (34) we then have

B (0)=h>0,

Applying Lemma 1(c), we have

Eﬂ.E;vf(O)__ sin (v—¢&) B Sin (& —v)

= (E— ) T (g P R

the last inequality following from condition (iif) above

We notice that » is in the are (#—m, &), and .
L_emma, 2, choosing constants as before o
diction. In this faghion, 7

80 we may apply

to obtain the desired a-
we complete the proof. contme
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