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On the definitions
of computable real continuous functions
by

A. Grzegorczyk (Warszawa)

In this paper I shall prove the equivalence of some definitions of
computable real continuous functions. Let us assume the following ab-
breviations: SN = the set of natural numbers, J = the set of all integers,
R = the set of real numbers, ¥=97 (the class of functions defined over
the set J and assuming the values from J), Gom = the class of com-
putable (general recursive) integral functions, ComC, K = the class of
computable functionals in the sense of [1] (defined over the n-tuples
of the elements of §, and the k-tuples of the elements of J and assuming
the integral values. We shall often nse the expression A(a,f) as an ab-
Dreviation of: ae R, fef and for any neN

Ia_)_{g’%i<ﬁ~i.

Latin letters will be used in such a manner that always i,%,7,m,n ¢ N,
Pyy¥ 585, 0,8,0,2 €T, a,bye,d,ee R

Let , be a rvecursive enumeration of all rationals without repeti-
tions. Let No(p,q) be the recursive converse function of the funetion #,.
This means that

1) FNo(p.g) = g .

We assume that p/0=0. Instead of No (p,q) we shall often write No(p/q).
Let us set

@ Wn(k)=W(n,k)=<u.v>{

Pp— ——-——m l‘ < -———1
k1| T k+1)
No, W,eEom. We obviously have

_ W(n,k) < 1

@) [ T R

for all  n,keN.
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We start from the definition proposed in [1}: A real function @ i
said to be computable continuous (pe &) if and only if there exists
a funetional @ e K such that for all ¢ e R and fe¥

@) i hfﬂ‘

1
a!<m for all kéw,

then ‘W— @(a)

T for all ZLeoy.

)
(To simplify the proofs we shall consider only the real functions defined
over the whole set R.)

The second definition shall he an extension of the definition of Mazur:
¢ € K it and only if the following two conditions are satisfied:

(8) (i) For each computable sequence {a,}, the sequence of values {p(a,)}

is also computable 1),

(i) ¢ is computably uniformly continuons with respect to the rg-

tional segments. This means that there exists a function g € Com,
such that

L 1 1
if Y <@, b<7"m and la“b'<‘m then I¢(a)—¢(b)l<m
for all n,m,k e N and a,beR.

THEOREM 1. K(CKyr.

Proof. If ¢ ¢ Ky then there exists a functional @ e &K, such that

condition (4) is satisfied. A sequence {a,} is said to be computable if there
exists & funection fe Gom such that f,(k)=f(n,k) and

! fulk) 1
(6) | E+1 ,<m for all

n,kelly.

Hence if the sequence {a,} is computable, then from (4) and (6) it fol-
lows that

) %—«p(aﬂ <ﬁ for all  n,keSy.

‘This neaus, according to (6), that the sequence {p(a,)} is computable
because the substitution of & computable function in g computable fune-
tional produces g computable funetion (11, property 6, p. 174).

}) 8. Mazur in an unpublished paper: Introduction to the compulable analysis,
considers the real functions satisfying only condition (51). The main result of Mazur
is that condition (61) implies the continuity of the function @ in the get of computable
numbers, In this paper we make no use of thig result,
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According to Theorem 2 of [1] there exists a functional w, e K sueh
that if 4(e,f), 4(d,f’) and ¢<<a, b<d and

1

o
. —gb)| <s=—.
Ia——bl<my then  |g(a)—g(b)] F+1

Setting e=1w,, d=7m, gn,m,k)=w,(W,, W>{2k+1)+1 we ob-
tain (ii) from (3). . .
Let us modify the definition of HKu: ¢ e Kt if and only if
(8) (i) the sequence {p(v,)} is computable, . -
(ii) ¢ is computably uniformly continuous in the sense of (5ii).

THEOREM 2. KuCKi. ‘
Proof. According to (3) and (6) the sequence {r,} is computable.
. . A
Hence by (Bi) the sequence {p(r,)} is computable ). ‘ .
A continuous function is defined by the values at the ratlonaéhpomts.
’ inui ; it suffices that the con-
e if we assume the continuity of ¢, then i _
giil(l)f of computably uniform continuity be formulated W1th respt?et. to
thé sequence {g(r,)}. Thus we obtain the following definitions similar
to that of E. Specker [4]. o o
Let &K be the class of real functions satisfying the conditions:

(9) (a) @ is continuous,
)} is computable,
(b) the sequence {p(r,)} is comry . . .
(c) the sequence {@(r,)} is computably uniformly continuous with
respect to the rational segments:

1
it <y 1 <rm and r—rl < oot

1
then [p(n)—@(r)| < Fr1
for all »,l,t,melN.

Evidently:
TEEOREM 3. K7iC K-

. . %
?) The computability of the sequence {p(r,)} ean be expresse?d in manygdolrflfe:zgh
ays. For example by the condition that there exist two functions f;,fs ¢
ways.

that for all %,m e N
@) e <Pl <Tywn
(b) lrjl(n,l:)—,rlg(n,l:)|< Hle+1)-

The discussion of different definitions of computable sequences is cgnt:.i:;i 1;;1
Mostowski [3] and in an unpublished paper. of Mazur (mentioned in the foot .
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From (9) it follows that the condition of computably uniform eon.
tinuity can be formulated without using the funection @. Namely le
@ ¢ Kin if and only if there exist two functions 7,9’ e Gom such that
(10) (a) @ is continuous,

f(n,%) ) 1
) | Bt —otm <51,

1
then  [£(1,k)—7(t,k)| <3 3),

Obviously (9) and (6) involve (10). Hence

THEOREM 4. KnC K.

Conversely we shall prove

THEOREM 5. KinC K.

Proof. We shall prove the u
Suppose that r,<a <b <tm and

(e) it ry<iyyry<r, and i—r] <

niform computahle continuity of ¢,

1
@ U
From the continuity of

@ it follows that there exist two rationals r; and 7,
such that

(12) @<y, r<<b

and

13) P@ g <1,

a9 P~ p0)] < 2
Hence from (12), (13) and (10¢) we find that

(15) [f(l,k)—f(t,k)j<3.

(13), (14), (10b) and (13) involve |p(a)—
g(n,m,k):g’(n,m,7k+6) we obtain (5ii).

%) Condition (10b) of the computable convergence of the double sequence
Fn,k)j(k+1) to the sequence o(r

W) can be replaced by others, For example by the
following two conditions- .

(%) 97("..)=1imf(ﬂ,k)/(k+1),

()| < 7/(k+1). Thus setting

(b”) the sequence {a}={f(n,k

The definition of HKiy with
very similar to the definition of Specker. The main difference is that
in [4] only the primitive recursive funetions.

W&+ 1)} is computably convergent.
(b) replaced by the conjunction of (b’) and (b”) is
Specker considers
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THEOREM 6. KT K.
Proof. Suppose that for any keHN

j(k) 1
(16) R
Hence for all keN
(a7 JO)—2<j(k)(E+1)<j0)+2.

Let g be the computable function satisfying (5ii). Hence the fol-
lowing functional y; is computable:

(1) a2 ()= g No{((0) —2) 2}, No[j(0) +2) 1) k).

From (5ii), (1), (17) and (18) it follows that for bR and j{0)—2<b
<j(0)+2

1
op 1 — (b .
(19) if |a—bl<m, then I(p(d) @( )]<—k+l
Setting in (16) y H(k) for k, and in (19)
<> (k)
w By +1

for b, we find from (16) and (19) that

Hwnin(®)) )‘< 1
(20) "’(“)‘q’(wl<f><k)+1 B+1’

Now we shall use the fact that the sequence ¢(r,) is computable in the
sense of (6). Let us set

(21) (k)= Noj{p ) m<i>) 1)),
(6) implies that

o

f(’/’z<]>(k):k) 1
(22) P (Pyacioy) — ) <%FI1
From (1), (20), (21) and (22) we obtain
Flpa<id (k) ) 1 2

(23) involves that

2 ¥ QL 1
W2k +1),2k+1) —1 (26 +1),28 +1) +
i 5k )’1) ) <g(a)< ST

5
Fundamenta Mathematicae, T. XLIV.

(24)
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If we set
(25) @Gk

M@k +1),2 +1) -1 = f(w2<7'>(2k+1),2k+1)+1]
=("“”)[ 2ETT) SEFLS 2(k+1) ’

the minimum operation' in (25) is obviously effective, thus & ¢ K and
according to (24) and (25)

D(k) 1
e L ACIRS BT

which completes the proof of {4).

Now we introduce a definition similar to that of D. Lacombe pro-
posed in [2].
Let {s,} be a computable sequence of all open rational segments:

(26) s=F, 1, < <r1,]

where Kn=n—]]/mg, Ln:[}@l—Kw, J(@,y)=(x+y)?2+z (the pairing
functions).

Let us set g e Kiy if and only if there exists a function fe Gom
such that

(27) (@) if aes,, then P(a) €Sremy
(B) if p(a) € .y, then there exists neN such that a¢s, and Sy C Sy
(1) if 5,Cs; and %>k, then S5 C8ry 4.

In order to prove the equivalence of % and Kiv we need the fol-
lowing

Lenwa 7. There exist two functionals 0, € K and a function pt e Com,
such that if A(a,g) then

KD _npntl) - gdnt1) _ggyn)

(28) pt(n) Pt(n+1) Pi(n+1) ~ pt(n) ’
KO _ L@ 1
pt(n) ptn) | "1

) The definition of D. Lacombe in the original version contains the condition
of monotonity:

(¥ if 5,cs,, then 80 gy

without the supposition that 022k, The proof of (27) with (Y*) is more difficult. We
omit it sinee condition () can be disregarded, as will be pointed out in Theorem 11.
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Proof. First we shall define some auxiliary computable functionals,
especially the functional y such that for any function g the sequence
y<g>(n)/(n+1) is convergent and if A (a,g) then y{g>(n)=g(n). Let us set
gy =2 _ g(k) _g(i)+2

i1 SERL S Gl

(29) E(g,mznn

k<n ik

0 Hg>(0)=g(0),
gln+1) it E(g,m+1),
l<g>(%+1)={ Kgd(n) it ~E(g,n1),
1) {g>(0)=0,
n+1 if E(g,n+1),
v{gyn+1) = { »g>(n) if ~Z{g,n+1) %)

gln) i E(g,n),
(32)  wp(n)= e Kpm |1 ] E ~E(0m
() in4-1 v(g)(‘n)—}-ll<n+1 i Z(gsm) -
We shall prove that for all 7 ¢ SN
OO =2 _ L vg(n) _ ygd(d) +2
(33) i+1 <h"m n41 < t4+1
Let us distinguish two cases: 10 For all 7, £(g,n). Hence, according
to (32), ¥<{g>(n)=g(n), and thus (33) follows from (29). 2° For some =,
~E(g,n). Let ny=(un)[~E(g,n+1)]. From (30), (31), (32), (1) and (2)
it follows that Iim;z(g)(n)/(n—i—1)=g(no)/(no+1), and y<{g>(n)=g(n) for
n<n, and y<g>(n)=W(N0(g(n0)/(no+1)),n} for n>m,. Hence (33) is
satistied by <, according to (29) and by i>n, according to (1), (2)
and (3).
From (33) it follows that
PN =3 W pBGE+1) -3 yigd(n)
S R S P
P BE+L)+3 (i) +3
3G+ 41~ il
Hence, putting rt(0)=0, r6(n+1)=3(rt(n)+1}, we find from (34)
that

(34)

yDt(m) —3  pgp{rt(n+1))—3 < 1 2
Tt (n)+1 b{n+1)+1 » N+l
P rb(n+1))+3  pgdrt(n)+3
D1 - Th(m)+1

*) These three definitions are due to A. Ehrenfeucht.

(35)
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Finally setting st(0)= (uk)[2t(k)+1>6],

st(r+1)=(uk)[k>st(n) and {r6(k)+1)(n+1)>6)

and .

nlgn)= yq’g}(rt(st(n))) -3, Kgn)= y(g)(rt(st (vn))) +3,
pt(n)zl't(st(n)) +1

we obtain (28) from (35).

THEOREM 8. KiCKyy.

Proof. If ¢ ¢ K, then according to Theorem 3 of [1] the function
y'(a,b) = max p(c) belongs likewise to Ki. It is evident that similaxly

a<e<h
y"” e K1 where v'(a,b) = min ¢(c).
a<eh

P ¥ e K such that aceording to (4) if A(a,f') and A(b,f”) then

Hence there exist two functionalg

(36) Aly'(a,b), <, 1) and Afyp"(a,b), PG L)

We shall define the function f in such a manner that

(37) E [9"(rkas i1n) < ¢ <TP/("KH7)'LI!)]C'5}"(H)
[4

and that sy, decreases with s,. Namely we set
10 =[N0l (8" Wicn, Wa>(n)/p(w)], No{t < (Wi, Wed3(n)fpb(n))
Hence according to (26) and (1) .
L Wi, WL,.>>(M)]
pt(n) :

77<TH<WKJU WLn>>(
p(n)
Putting in (36) j(k)=Wx,(k) and 1"'(k)=Wyi,(k) we obtain (37) from (3),
(36}, (38) and Lemma 7. Condition (27a) follows from (26), (37) and
the definitions of »’ and y"'. Condition (27y) follows from the definitions
of the functions 4" and y” with the use of (26), (38), and Lemma 7. In order
to prove (278) let us suppose that (@) €8y Sm=[[b' <c <b'"] and

n)
<<

(38)  spm = l:? [

(39) b = g(a)] > —

b —
{6 —g(a)] > T

‘m— and
e N

From the continuity of the function @ it follows that there exists a
segment s, such that

(40) aes,,
(1) lp(e)—g(a)] <k—i—l for any ces,.

icm
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We can suppose that » >k because there are infinitely many segments s,
satisfying (40) and (41). From (41) and from the definitions of »" and p”’
it follows that

1

(42) [W,(TKMTLH) —¢(a')| <L 5

E+1 and

’” 1
W (eran) - Q?(a)l < m .

From (38), (3), (42) and Lemma 8 we find that for any ¢ e syy:

2 1
nrl TEIT

le—p(a)| <

Hence te—@(a)] <3/(k+1) because n>k; thus according to (39) 8¢»Cspm-

Let &Kiv be the class of functions satisfying the following conditions:
(43) («) if aes,, then g(a)esq,,

(B) if bs£g(a), then there exists a number # ¢ N such that aes,

and b ¢ spyy,

where fe@om. Evidently (278) involves (438). Thus we have

THEOREM 9. KwCHKiv.

Now we shall prove

THEOREM 10. KivCK;. .

Proof. Let us consider the computable functional © defined as
follows:

= ()9 (0)—3 e5, and §(0)+3 es],
g(m)+3

e € 8}

m+1
and s;7% Saced () for i< 17’le .

g(m)—3

(b) @<g>(17z+1)=(yk)[ prs e s, and

From this definition it follows that if

glt)—2 _  _g(H)+2

24 < 5 T.
(43) P B for all ieXN,

then
(46) for each n e N if ¢ es, there exists such m e N that $n== So(eS(m) .

Indeed let us consider all segments s, for k<, such that a es;.
Let s be the intersection of all those segments. Hence s is an open seg-
ment and « ¢s. Thus according to (45) there exists a number m, such
that

g(m)+3

g(m)—3
€8 m-41

m-4+1

(47) and es for al m>m,.
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Now if we suppose that

(48) Sn?’: Socgsm) for all me N,

we shall obtain a contradiction. Namely (48) and (47) imply that the
segment s, satisfies condition (44b) under the operation of minimum
for all m>m,. Hence according to (44b) it follows that n=0{g>(my41)
or there exists a number & < such that s, satisfies condition (44b) gnder
the operation of minimum and k=6{g)>(m,+1). The first possibility is
ez.telused by our assumption (48); thus, for some %< n, E=04g>(my+1)
Similarly we conclude that there exists &’ <n such that =0 (m0+2)
But from (44) it follows that for m's£m’’ @(g)(m’)#@(g)(m").o'l‘hus:
ks£F'. Repeating this reasoning n+ 1 times we find that there exist n -}—i
numbers less than the number n. Hence condition (46) is proved.

From condition (438) it follows that for each number ae R and
ke N there exist n',n” ¢ N such that

(49) aesyn sy  and (q)(a) — W}Jﬁ) € S

1
and (97(a) +5m> € Sy -

Putting a= linm y<g>(n){(n+1) we find from (33), (45), (46) and (49)
that for each g e, and k < N there exist m’ and m” such that

lSf(c-><~/<g>>(m')) 8y o~ <1

S(80Ked ™) EF+1
where [s;) = the length of the segment s,.. H . .
nal is computable: g k. Hence the following functio-

7 k)= 1
%$gy (k) = (um) [Isf(e<-/<g>>a<m))”‘ Sp{acrarm)] <m] .

Setting

20> (k)= (un)ls sf(e<-/<g>>(1<zl<g><k)))f\sf(e,(.,(g»(%(gx,‘)))]

i
we find that 7, K. According to (33) and (44) lim y<g> (n)/(n+1) S6g»m

for any m. Thus for each
W g¢%, and k¢ N, accordin
definitions of 7 and z, we have € N, according to (43«) and the

(50) p(lim y<g> (n)j(n + 1) €Sy and [$xo0] < L
2 E4+17
If A(a,g), then g=1lm v<g>(n)/(n+1). Hence (50) implies that
1
e (@) = eerin] < T

On the definitions of computable real continuous functions 71

and we obtain (4) in the same manner as in the end of the proof of
Theorem 6.

It is possible to introduce many other notions of computable real
functions. E. ¢., starting from the decimal developments we can assume
that a function g is computable if and only if there exist a computable
functional which produces the decimal development of value @(a) from
the decimal development of a. From the results of Mostowski [3] con-
cerning computable sequences it follows that this definition and a si-
milar definition using the cuts of Dedekind lead to non-equivalent no-
tions. But the notion of the computable continuous function considered
in this paper seems to be the most natural one. The definition of com-
putable convergence of the form

fn) 1

n+1 n+1 neN,

a— for any

where fe Gont, is equivalent to the most general definition of comput-
able convergence of a computable sequence of rationals:

|@ —rum| <1j(-+1) for a>g(k), for any keN,

where 7,g,h e Com 8).
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%) In the previous paper [1] I used the shorter name: computable real function
to denote the eomputable real continuous functions. The present name is more con-
venient, because it is possible to introduce some kinds of computable real functions
which are not continuous, e.g. Riemann’s computably integrable functions and Le-

besgue’s computably measurable functions.
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