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On a problem of W. Sierpinski
on the congruence of sets

by
E. G. Straus (Princeton, N. J)

1. Introduction

W. Sierpiniski [5], [6] has raised the question of the existence in
EBuclidean n-dimensional space E, of point sets which are congruent to
several subsets obtained by the removal of a single point. In [53] he
proved that a set § in F; can contain at most one point p so that
S —{p}==~8. He also gave a wrong proof of the existence in E, of a set §
containing two points p,q so that S—{p}=8—{¢}=8. This error was
recognized by J. Mycielski and discussed by W. Sierpiiski [7]. In sec-
tion 2 we prove that no such set exists, and that the above-mentioned
result for E; is therefore valid for F,. In section 3 we show that in H,
there exist sets S congruent to every maximal proper suhset; that is
S22 8—{z} for all x. This has been accomplished by J. Myecielski [3]
and our proof is included only because it may be somewhat simpler.
We shall call such sets Sierpiriski sets. This completes the solution of
Sierpinski’s problem.

Finally we discuss the underlying group-theoretical ideas. The author
wishes to express his thanks to the referee, J. Mycielski, for his valuable
corrections and improvements.

2, The two-dimensional case

TueoREM 1. A point set S in the Euclidean plane E, can contain
at most one point p so that 8—{p} is congruent to 8.

Proof. Assume that there are two points p,ge 8 so that S=8—
—{p}=8—{q}. Let p,p be isometries so that pS=8-—{p}, v&§=8—{¢}.
Then the following relations must hold:

I° pref, yreS for every zed,
2 g~z e § for every wp, xeS; pipé s,
30 ylze S for every s+#4q, vel; plgé S
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Levma 1. gmps£p and yigstq for all n=1,2 i i

are of infinite order). . B2 (i partinlar v
Proof. Tf ¢"p=p, u>0 then g-lp=¢-1 y icti

. ; ¢ Ip=0p~p e § contradieting condi-

tion 2°. The proof for yg=£¢ is analogous. & condi
LEMNA 2. At least one of p,p is a rotation.

i Proof. _If tneit-her @ nor p is a rotation then they are either trans
tions or orientation reversing transformations sider fous
e r one . We consider the various
i) e, boﬁh translations. Then gpp=ypp and since p=—1p ¢ § we must
havg w'—lp=p since otherwise g-ip~—1p=y-lp-1p ¢ § implies e pel, a co1 .
tradiction. But ¢ is a translation and thus has no fixed points ’ "
(i) ¢ a translation, p orientation 7 ; i )
‘ - entation reversing. In this case, using t
colmplex number z to denote a point in E, we can write ’(ﬁ)—g‘ hz
with |a|=1. Hence v

plp(@)=a(aZ+b)+b=|al2+ab+b=e+ab+b.

lIn d?t'her words ¢? is a translation, and Pyt =v*p. Now p—2p~1g ¢ § would

—loy~—-2 '
]f:w t0~;; j) qel amli hence y~1g ¢ 8, a contradiction, so that we must

h, wt ]ip fg:q thgt I8 ppg=g. Since ¢* commnutes with gp we gee that
v a-s 1 eB ixed :‘[)Ol.ntS f,u“q. Hence gy must be a reflection on a line and
tp‘lpq:rgu(—:.). ut this implies peyp=¢-1p € 8, a contradiction.

i) @,y both orientation reversin in (i
. . g- As in (ii) we see that ¢2u? ar

gfznsclatlgnzj a.tnd thus ¢*p?=1%"2 Thus again o 2p—2p e § Wouldqpl’tezda;s
d ontradiction y—2¢—%p ¢ S and hence -t / ideri
sible reasons for g—p—2p¢ 8 we have: PRl Considering the pos-

(a) p2*p=p impossible since -2 is a translation

(B) vp=gp or p=yPgp. S ;

Ygp. Since ¢ commutes with 2 thi

® ‘ - ; S i3 shows
that y% ha:s the fixed points ¢2p and hence Pioprep=1 “z/;lli h 1 Tt
the contradiction ¢-lp=1y?py®p e S. o feads o

(v) y7'p=g and similarly g=2g=p so that ppp=p, pyg=g
and ]Ngow_ Wg mustlhnawe e %*p e S since y2p£p ag y? is a translation
and w_}l)jzy_{; oor ¢ =p would give to g—iy® the fixed points ¢ 9(;
hat g—lye _w~=1,lea.d.mg to the contradiction y—2¢= p~ly2p-1g— — lp?p :S‘
Thus to avoid the contradiction Pl 2lp=0" ¢ §, we mus%;jlzvzwez?t;l :

T i i ’ . ‘

3 _(15)2 PTYPp=g=gp, which leads to y*p=¢% and hence oty
t-;qgl VP so that we must have either P y*p =g, that is, yPp= qu ’
radiction; or ¢~ly?p—ryq, that is ¥*p=yg or y*g=¢q in ’co t etion t
Lemama 1. or ntradiction to

(s) ¢*p=yg=p which implies -
identity. q=p implies that the translation p-%y® is the
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We now combine the relations pgp— p; ¢*=y* setting

gl)=azi+b, y@E)=rit+d, p=0, laj=l|=1.
Then _ ~
plp(0))=eb+d=0, lp(0)) = ab +b=1plp(0)) =cd +4d.
Substituting d= —cb in the second equation we obtain
ab+-b=—|ePth—cb=—b—cb
or b= —{a+e)b. Now |a-+¢|=2 and la|=|¢|=1 so that we must have

a=¢ and b+ ab=0. But this means ¢*p=p, a contradietion.

Without loss of generality we may now assume that ¢ is a rotation.

LevmA 3. If w is a rotation then ils center differs from that of g.

Proof. If g,p had the same center then they would commute and
gy ip=y~lg~ p e 8 With ¢~'p£p would imply ¢~'p € §, a contradiction.
But ¢t p=p would imply pp=p, a contradiction.

Remark. Lemmas 1-3 imply that grps=yigm for all m, n==1,+2,..

We now know that the orbit of a point x ¢ E, under ¢ lies on @ circle
C(p,x) (possibly of radius 0) and that the orbit of x under y lies on
a cwrve C(p,z) which is either a circle not ‘concentric with C(p,x) or
a straight line or a pair of parallel straight lines.

The commutator of two orientation preserving isometries is always
a translation, so that the commutator of two commutators is the identity.
Applying this fact to the commutators afa”*p" and pa ' 'a we obtain

aﬂa'lﬁ_lﬁawlﬁ'laﬂaﬁgla—la"lﬁaﬁ_l= aﬂa—gﬁ_laﬂaﬁ_la—aﬂaﬂ'lz 1,
{see also [1], [3]). Substituting f=y~", a=¢" We obtain

{1) e T A e A

We now set- po=1, Pr='P; Pa=@" D1y Pu=¥""Pro=g "p. If Wo
can show that pre S (i=0,...,11) for suitable positive choices of m,n
then we obtain a contradiction.

We again divide the problem into two cases.

Case 1. y a rotation. Since both ¢ and y are of infinite order we
may assume m,n S0 that ¢7,y" are nearly identity rotations and we
write @7(z)=(1+ &) (z—2) + 21, p(e)=(1+&)(E—2)+2 where z 2, and
6,2 are small complex numbers so that 114 &)= 1+ &]=1. Without
loss of generality we further assume p=0, ¢g=1 and obtain

Po==—EaRe;  Do= — &% Efa 818

=0,
Py=— 8% — 8% — %),

. -2
Py= —&& T 2i6a2 — ) + 1852 — %),

Dye= — By — a2 — E152(28 — ) —B1ea(h— )
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Pe= —e2y + (5, —28) g5 (2, —2),  py= — &8 —&) (2, —2),
Pg=—&2 —26,8(2, —2,) —Ezsi(zl —2),
Po==— &2 — g2+ £185(2 — 22,) 4 8§82(31 —2),
Dro=—et1 — &2 —y852,, D= —%&g,.

B We can now choose &8 80 that p,,ps,p, are not on ¢
—{zf]z~z2[=]1-zzl} and py,p, are not on Olp,p
we have to show is that none of the five e
0 &, for any permissible choice of 2148

3 ¥:9)
P)={2|le—z|=|5/}. Al
quations can be an identity

(1) P2 —BP=[np+ a2,3, +&z el + ..
=|Zzl2 + &2i(Z—Z,) + &2, —2)+ .= Il +22|2
where the three dots indicate t i i i
identity in g since 2,=£0 and 2 ;eér:,l .S relving . This ot be an
(ii) IPG —gF= 12212‘ (e1—2;) es(1 +8) (2 —2,) 2 —
. ] ‘—81)5_2(1 +a)(Z—%)2+ (&—5) (&)~ &) A — 2
=lzzl'+ (& —&eafz, —2)% “32(51—22)2'2 +
. +(a—5) (62.;_52)]2‘1—%[2] .
If this were identically [1—2,)® then we would have -

12212211 —2%[*  and Ea(2y —2y) % — (2 —2,)2, +

This is impossible since 2. e —&)(e+5) [f1—2ff=0 in ¢,e¢,.

(i) Ipxo“%]z:Il“f‘leglEﬁl + 2

=&+ e 70, + B %, + [2[?
=& (%—2) + 323, —21) +|2)?

which cannot be identically [1—2f? since 270 and z ¢
1 2

[2s —& =zt a8 —2,)7, + £16:(%;
=42+ 66,2 — P +...

which cannot be identically |o|2

(iv) Z
%)%+ e85, — 2

Since z;5£z,.

(¥) —z =z |2 = o -
. hlpe 4=y T eE —R) + 8 —2) + ei A —2) + 5ye (52
wnich ¢ : . .
vanish tﬁr‘)ffjof ez lde(? t;cauy |#]* since the terms in &8 and Ze, would
v = T 2= . N : .
Ha!VlIlg ehOSeln e 1=2; both of which gre impossible.

: — that is, m,n — 50 thag 3
D3,24 ¢ Clg,p) we know that PiedS (z'-,:l,...,ll). Inpf);;ﬁ:rpxoiti(z,—gpmg
€

for some (in fact arbitrarily large) m, a contradiction
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Case 2. 9* a translation (this includes both the case p a translation
and yp orientation reversing). Here the identity (1) can be replaced by
the simpler identity

&) e e T

which expresses the fact that the translations y* and gmp—p-m com-
mute. We again introduce the notations p,=p, p,=¢*pg, ..., P =p*"Pg=¢—"p
so that p;e8 (i1=1,...,7) would lead to a contradiction. We set ¥
=z+a, ¢"e=(1+e)(2—7)+2, (a7#0,|{1+¢]=1); p=0, ¢g=1. Then we
obtain
Po=0, pi=a, PpP=a+e(a—-2), p=t(a—z),
Pa=—¢et, Ps=—(l+el@, Ps=—0a—E7, D=8

Now we can select positive m,n so that p,,p, ¢ C(p,p) and p, ¢ C{w,q).
The first part, p;,ps ¢ C(p,p), can be attained simply by choosing #» and
hence |a] so large that the circle |¢|=|a| does not intersect the circle
C(p,p). The second part, ps,p,¢ C(p,q), is obtained by choosing ¢ so
that arg ((a—z) —1)7arg a, arg (f(a—z,)—p(1))s=arga, arg(—ea—1)
#arg a, arg (—ea—y(1))s£arg a. Since we may choose a0, a7z, these
inequalities can be satisfied. We thus have p; ¢ § for ¢=1,...,7, a con-
tradiction.

As pointed out by Sierpinski [7] the reason for his error was his
neglect of the identities (1), (2) and his consequently fufile attempt to
construet two independent elements of the group of rigid motions of E,.
We shall now show that Sierpiniski’s method is valid whenever the group
of motions contains two independent elements (and hence infinitely
many independent elements). For another method of accomplishing these
results see [3].

3. The three dimensional case

The following extension of my original theorem was suggested by
J. Mycielski.

THEOREM 2. Let ( be a free group of rank >2 and m a cardinal so
that G"=@. Then there exists o subset U of G with U=@ so that for each
QCU with §<m there exist a pge@ s0 that

pU=U—Q.

In other words the removal from U of any set of cardinality less than m
yields a set which is a translation of U by an element of &.

__ Proof. Let &= {p.} be a set of generators of G. We may assume
®=@. By @,, .0 we denote those elements of ¢ whose reduced expres-

ar e
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sion in terms of the ¢ does not have a ¢, as rightmost term, respectively
as leftmost term. Let G ={Q.} be a well ordering of the subsets Qcg
with Q<m so that the order type of ® is the initial order type of §.
Since m<G. We can make a one-to-one association between & and ele-
ments of @ so that if @, corresponds to ¢, then (,C.G. We now define
(3) U=G— U{ga‘?’;nqa o € Qo5 o€ G n=1,2,..}=—-JV,.
Multiplication by ¢, maps all the sets on the right of (3) into themselves
except the set V, for which ¢,V,=V,w0,. Thus

e U=U—-@,.

Remark. The set ¢ —U is thus a nontrivial set for which the ad-
dition of any QC@ with §<m ecan be attained by a translation by an
element of @..

COROLLARY. (See also [3], Theorem 8§ for fuller exploitation of Theo-
Tem 2). There is @ point set M on a sphere 8 in By so that for every » e A
there is a rotation p of 8 so that oM =1 —{x).

Proof. The group of rotations of & in E, contains a denumerahle
free subgroup @ of infinitely many generators (see [4]). Thus, according
to Theorem 2 there exists a denumerable seb of rotations H go that for
every y e H there is a pe @ with pH=H — fy}.

Since ¢ is denumerable the set of Doints of § which are fixed points
of an element of @& other than the identity iz denumerable. Thus there
exists a point 2, e § which is not a fixed point of any element of G’ other
than the identity. Let W =Hz,, that is the set of all images of x under
rotations of H. Then every z « M has a unique representation asg WLo,w € H.
Let ¢ be chosen so that pH=H— {y} then oM =3 —{x)}.

4. The group-theoretical background

From Theorem 2 we see that the existence of Sierpiniski sets in
a group & follows from the existence of two independent elements in G.
Kuranishi [1] has shown that such pairs of elements exist in every non-
solvable Lie group. If G is a group of motions in a space §, and the fixed
point of an element of @ other than the identity form & nowhere dense
set in 8, then we can apply the method of the Corollary to Theorem 2
to obtain a Sierpinski set in 8 with respect to the motions of @.

The nonexistence of independent elements in a Lie group @ implies
the existence of a nontrivial monomial M (z,y)=]] 2™y™ which is the
identity for all elements of @ {see [1]) such an “identical relation” surely

«xists.in all nilpotent groups and hence for all solvable Lie groups. How-
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ever even the commutativity of the group does not preclude the exis-
tence of sets which are congruent under that group to more than one
maximal subset. In particular we have the following
THEOREM 3. There exists a set 8 in B, so that (0,1)e 8, (1,0)e8
and §—{(0,1)}, 8~{(1,0)} are images of S under diagonal matrices.
10
02)

20
Proof. Let §={(0,2", (2,0)] n=0,1,...} and let ¢=(0 1), -zp:(

then obviously
p8=8—{(1,0)},
We may still conjecture that some converse to Theorem 2 holds:
Conjecture. A group contains a Sierpitiski set only if it contains
a free group of rank 2.

p8=8—{(0,1)}.
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