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In the paper we shall prove the following theorem:
A locally compact topological group of power of continuum is metrizable.

The proof of the theorem is based on the continuoum hypothesis or
rather on the weaker implication: if a> s, then 2> 2%,

We are going to prove that a locally compact topological group &
of power of continuum satisfies the first axiom of countability which
is known to be a satisfactory condition for the existence of an invariant
metrie 1).

Let us form the transfinite sequence
(%) B',...,R,...
the terms of which are families B* of compact subsets of the group G.
The family R* includes sets A'i’l,,_,,,-b,__ with & transfinite system of in-
dices ¢ ,...,%3,... of the type «, each of the indices i, taking the values 0 or 1.

The sequence is defined inductively as follows:

B'=(A")=(V), where V is an arbitrary open set with a compach
closure.

Let us assume that we have defined all %’ where f <a. Let us con-
sider two cases: 1. a=a’+1, 2. ¢ is a limit-number.

1. If any of A‘;’l’,_‘_,,-z__,, belonging to R consists of one element,
then R® is the last term of our sequence. Let w,,mgeA‘,’;w,,,),m and
mF#ry, lot us take such two neighbourhoods V.
that @, e Vi, i,..0, Bpe V' '
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1) 8. Kakutani, Uber die Metrisation der topologischen

Gruppen, Proe. Imp.
Acad. Jap. 12 (1938), p. 82.
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Leet the family {8,},<. consist of all finite intersections of sets of family
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2. It ¢ is limit-number, then

‘il;l,...,ix,...,iﬂ,m :m‘a ”"‘v?‘
It will easily he noticed that the sequence (x) has the following

properties:
1. For any sequence ij,...,i,... of zeros and unities of type a there
is a corresponding set A
2. It ¢>p then Aj
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3. In view of the compactness of A°=V all sets A}
non-void.

4. All sets of the family R" are disjoint.

Assume that the one-element set (.11)=:1?L"_,,-;!_" belongs to R°
and « <w,. The sequence i,,...,%,... is of a countable type. Let us write
according to the definition:

-
-

by ATQ

1_ 2 T
An=Vi, A=V Vigiay «oe

— N]
b ‘4i1,---,i11---_ m ‘51' .

y<a
Arrange the sets S, in a sequence of type w:
P, Fy,...

It follows from the definition of Af that each finite intersection
FiAFyn ... ~F, is non-void.

Form the sequence:

..... {g

Ty

W, =F, Wo=F, ~Fsy o, Wo=Fy ~ ...

. o
where the sets VW, are open. We have (\W,=(z). Let y,eW,. Take

n=1
the countable family of open sets Wy, W,. It can easily be verified
that z e W,y W, for each n. We are going to prove that

ﬁ ﬁ?n,’/n_].“?n _ (.L“) .
n=1

— X -1
Let us assume that zeW, y,,‘IW,, for each n, and then let 2= a,y, b,
where a, e W,, and b, « W,. The sequences {a,}, {¥.}, {b.} are convergent
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to . It suffices to show that for each néighbourhood U of a point x there
o __
exists such an » that W,C U. We have (\W,= (z) or W, =F,C U W, ~AU=@.

n=1 n=1

In view of the compactness of W, there exists a finite covering of W;:
i, A

It will easily be noticed that if W,CW,, then W,CU.

From the convergence of the sequences {m,}, {¥.}, {b,} to x, it follows
that z=1lm z,=lim a, im y,,"l lim b, == 2.

Thus we have shown that the countable family of open sets W,y W,
has as its intersection one point #, which is known to be equivalent, for
locally compact spaces, to the first axiom of countability.

Thus we have proved that the assumption that ¢ does not satisfy
the first axiom of countability implies that the family R™ belongs to
the sequence (x). To any sequence of zeros and unities of type w, cor-
responds a set of the family R™. Hence R™=2% and further, in view
of the disjointness of the sets belonging to R“, we have Gx>2%.
1t follows from the continuum hypothesis that & >2%, which contradicts
the assumption about the power of the group G.
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K Teopun xKoromortonuueckux rpynn Bopcyka

A. I'panac (Topyms)

B macrosme# SaMeTHe DACCMATPUBANTCH HEROTODHIe WONPYNLEL #-MepHOH
xoroMoTonRuecKol Tpymms Bopeyka W yeTaEABINBAIOTCH COOTHOIIEHHS MEmTY pai{-
TAME DACCMATPHBAEMEIX TPYmI. B KadecTBe IpOCTOro CIEACTBAS OLHOTO WS JOEA-
SaEHEIX COOTHONEHEY BHBOAWTCS msBecTHaf fTeopema Pparmesa-Bpayspa o pas-
fuennE eBEIEZOBHIX upocrparers. OzpoMepHEIH cxyual paccMarTpupales Difzen-
Geprom (om. [2]).

1, BBegém cmadaza oGosHadedEs ymoTpeGideMle B JaieEeimeM, a Tauwme
HATOMEEM KDATEO OUpefeleHHE KOTOMOTONHYeCKoH IpyImH.
T{pocTpaHeTBO Henpememe oToGpa,meHnﬁ KoMmakTa X B EoMmarT Y OyxeM

. 0603HaYaTE Yepes Y. Merpmxa 3 Y* ompepexasercs opuyaodi:

Q(f’g)=supg(f(m)7g(m))y f:geYX'
xeX .
QOroGpaxennsg f, g € 8X1) masriBaeM 20MomonmeLKu, ~ g, SCIE CYIIECTBYET
oTofpamerne h € e ?) (I — sameryTEit oTpesox <0,1}), yZO0BIETBOpADIMEe
JCIOBHK:

h(z,0) g aoore  x e X,

= flz), g9(z)

CoBoRYIEOCTE 0TOGpameHHl ¢ € 8¥ roMOTONEEX 0TOGpameHED f € S¥ Gymen
TABHIBATE 20MOMONUMECKUM KAGCCOM OTOSpameEms [ B oCo3HEawmM depes (f).
TIpocrparereo S pacTajaercd GIATAPH COOTHONIEHHN TOMOTONRE Ha Hemepece-
KAOMEeC TOMOTONAYeCKHe Kaacch. Hexm oroGpamenne fe 8¥ romoromme oropa-
meHHI Y = const, To 6yxeM HaSHBaTb €0 Hecy Jmecmsenmm, sammenBag f~1.

Bexn A, A, msa xommarTa A,C A, fo, go€ 820 for~ go, 1oCf €813y, 10,
B cmIy mgsecTHOH Teopemrr Bopeyxa (oM. [4], crp. 86), cymiecTByer ¢ € 82, ramoe
ato ¢,C g m g~ f. Tomorommyeckmtt mxace (f)C S84 Gyzem massisaTe npodosse-
Huem ToMoTonEecKoro Kxacea (f) C 810 ma 4.

h(m, 1) =

1y 3pecw S, 0603RaTAGT N-MEDEYI cfepy onpefendeMylo B (% 1)-HOM EBKIHOBOM
mpocrparetse B,,, ypasrenmeM x} 4w+ ... +ab, =1

%) Xx ¥ 06osmayaer TONONOTHTECK0e NPOEaBeNieRAe TpocTpancTs X & Y.

sy Bamncs focfeSg, rme f,,eS’" , d,c A, osHavaeT, ITO f ABITETCH NPONONKEHHEM
fo ma A, 7. e fln) = fo(z) naa Beex xedo.
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