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On Symmetl‘ic products

by
R. Molski (Warszawa)

1. Symmetric products. If M is a metric space, 27 denotes the
space of all closed, bounded and non-empty sets ECX metrized by the
formula

e(By, Ey)=max[sup g (x, E,), sup ¢ (2, By)] .

x€Ep x€Ey

Let E,,H,,...,E, be bounded and non-empty subsets of 3. By the
symmetric product ([1] and [2]) of the sets F,,...,E, we understand the
subset Eyo...o B, of 2 composed of all sets {13 @ayene, 0} 1) with x; ¢ B;
for i=1,2,...,n. In case E;=...=F,=F the product Eio..oE, is called
the wth symmetric power of E and denoted by E™.

It U is a neighbourhood of # in B; (i=1,...,n), then the set of all
points  {wf,®4,...,z;} of E,o..oH, such that U;n~ {ly . i} 520 for
1=1,2,...4 is a neighbowrhood of {x,,..,z,} in Eio..oB,. . i

In the case, where F; are disjoint sets, the symmetric product is
identical with the Cartesian product.

Evidently, if b is & homeomorphism mapping M onto another space
h(3I), then the symmetric produet E,o..oE, is homeomorphic with
the symmetric product h(E,)e...ch(E,).

Let @,, denote the m-dimensional Euclidean cube. It is known (ef. [2]),
that for n=1,2,3, @f (i. e,, the nth symmetric power of the segment)
is homeomorphic with @,, but, for n >4, Q% is not homeomorphic with
any subset of the Euclidean space R”. Tn this note it is shown that QP
is homeomorphic with @,, but, for #>3, @ and @ are not homeo-
morphic with any subset of R™.

2. An elementary lemma. We need the following

LeMMA. The set P of all points p lying in the Buclidean 4-space R*
and having the form

) We denote by {w,,...,u,} the set composed of the elements u,,...,s,, and we
denote by (#1500, ,) the ordered system y,...,m,. C

12*
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O p=/{(p cosy, osiny, vecosw, vsinw),
1

0<<o<l, O0<y<2n, O0<v<<l~p, O0<0<2m,

is a 4-dimensional element 2).

Proof. Evidently the points of P with =0, 4. ¢. the points of the
form (g,0, cos w,v sin w) with ¢, v and o satysfying (1), constitute
a rotation cone C (in the elementary sense). Let A de-
note the cylinder (in the elementary sense) circumscribed
on ( and let a be the centre of the common base of
A and C. Evidently 4 is a set of points of the form
(g, 0,7 cos w, v sin @), where

) 0<p<l, O<m<2r, 0<7<LL

For every point ze C—(a) let p(z) and g(x) denote the
point of intersection of the ray a# with the surface of
the cone ¢ and with the surface of the cylinder A respectively. Evi-
dently g(x) and p(x) depend continuously on z. It can easily be seen
that setting

efe,g(a)

wa=at efe,p(@)

(#—a)

for every point z ¢ ¢ —(a), we obtain a homeomorphism mapping C on-
to A. If x={(g, 0,7 cos w,v 8in w), let us put w(x)= g, 0,7 cos &, ¥ sin o),
where 5, ¥ and o satisfy (2). Moreover '

#{0,0, v cos w,» sin w)=(0, 0, v cos w, v sin w).

Now let us observe that the set ¢ composed of the points of the
form (g cos y, p siny, Tcosm, 7 sin®), where 0 <<p<1, 0 <p<2n, 0TI,
0<w<2n, is homeomorphic with the Cartesian product of two 2-dimen-
sional elements. Setting

k(g eosy, ¢ siny, vcos w, vsin w)= (g cos p, gsiny, ¥ cos @, ¥sin @) ,

for every point (o cosy, ¢siny, »cos @, vsinw) we obtain a homeo-
morphism mapping P onto ¢. Thus the proof of the lemma is finished.
Let us observe that the boundary of the set P, i.e., a set homeo-

morphic with a 3-dimensional sphere, is composed of the elements of
the form

@ - (0 cosy, gsiny, (1—g) cos w, (1— o) sin w) .

-

¥} By an n-dimensional element we understand e"rery set homeomorphic with
an n-dimensional Euclidean cube.
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3. Symmetric square of a 2-dimensional element. Using
the last lemma we are able to prove the following

TueorREM 1. The symmetric square of a 2-dimensional element is
a 4-dimensional element.

Proof. Consider a system of polar coordinates r, » in the Euclidean
plane and let @, denote the disk defined by the inequality » <1. Leb p,q
be two points of ¢, and let

s=(rcos y, 7 sin p)
be the centre of the segment pg. Let ¢, 0 <gp<w, denote, for p=y¢, the
positive rotation angle from the axis =0 to the straight line I,, join-

ing p and g, and let ,,,b,; be the points of intersection of L,, with the
boundary of @,. Let

dpg =} Q((S,apq) +0(8,bpg) — |0(5,80) "9(37bpq)|) y
w=g(p,8)=el(¢,s),
d,, being the smaller of the numbers p(s,a,) and o(s,by,). From the
definition of d,, we have 0<wu<d,, and observing that the distance
from the point s to the boundary of @, is (1—7), we have (1—7)<dpy.
Setting, for every.p,qe@s,

( . u(l—7r)
7CO8 y, T8Iy,
g

cos 2¢,

u(l—7) . .

Q{p,qt= dpq Sln'.)(p), o
(rcosy, rsiny, 0,0), i p=gq,
we can easily see that @ is a 1-1 transformation of the symmetric
square QS onto a subset P of the Euclidean 4-space R composed of
all points of the form (r cosy, »siny, ¢ cos @, tsinw) with 0<r<1,
0 <y <2n, 0<t=u(l—71)|dyy<1—7, 0 <w=2p<2m.

Moreover, let us observe that the transformation is continuous.
If p=%q, then the continuity of @ at the point {p,g} is a consequence
of the continuity of every coordinate of @ {p,q}; if, however, p=g, 60
and o({p’,q'}) <6, then denoting by r',u’,dy, and ¢’ the numbers de-
fined for p’,¢’ in the same way as the numbers #,%,d,, and @ are defined
for p,q, we have

‘ w'(1—7")

g Cos 20" <u' <4,
r'e’
w'(1—1r") . ‘
(; )sln2¢'<u’<é.
'

Since Q% is compact, we infer that @ is a homeomorphism. But
by the lemma the set P is a 4-dimensional element. Thus the proof of
our theorem is finished.
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Let us observe that the boundary of Q§2), i. €., the set of points
which is mapped by @ on the set of points of the form (3), is composed
of the points {p,q} for which w=d,,, i. e., for which at least one of the
points p, ¢ lies on the boundary of @,. It follows that the symmetric
square of an open 2-dimensional element is an open 4-dimensional ele-
ment and we obtain the following

CorOLLARY. The symmetric square of a closed 3-dimensional manifold
is @ closed 4-dimensional manifold.

THEOREM 2. For w3, Q¥ is not fomeomorphic with any subset
of R™.

Proof. Let @, denote the disk defined in the Eueclidean plane by
the inequality 2*+3?<1. Let U, U,,..., U,11 be disjoint disks in @, with
centres at the points &)= (0, (i—l)/(vn——l)) and the radins r;=1/3(n—1)
i=1,2,.., -1

Let us consider the subset W of Q% defined by the formula

b4

W= FE [elU;, i=1,..,n—2; 21,2 ¢ Upy].

{xppmeixn}

Setting for every {zy,..,x,}e W
g{'TU ey Tn) = (1’17 7'1"'1—27@{1'"—17‘11"}) s

where @ is the homeomorphism mapping U®, onto the 4-dimensional
element defined in theorem 1, we can easily see that ¢ is a homeomor-
phism mapping W onto a 2n-dimensional element. The point & {z%_,,4%_,}
is by the definition of @ an inner point of @(Uf,”ll). It follows that the
point ‘

0 0 n—1 _n—1
g{@y X2y y 20,20}

is an inner point sz g(W). Now, let h be a homeomorphism mapping Q¥
ont.o a .subs;t of R™. Applying Brouwer’s theorem on the invariance of
region in K™ (cf. [3]), we conclude that the point. h{al,xl,...,z0_, %) 1)

is an inner point of A(W). Now let us consider the sequence [p,] of points
from the set Q: »

1
Pr= {a"g, (0, E),xg,...,.r?,-l}.
We have p, ¢ W, and
1@132 Pr= {rg,xg,z'g,... ).
Further h(pi) e R¥ —h(W) and

: 0
khm h(pe)="n{xl,a],a3,... Ly},
— 00

- .. " . 0 8 0 0 .
_fvhmh is impossible since % {a1, 21,22,y Tpoa} == B {ad, 03, .2y, a 1) is an
inner point of i(W). This proves the theorem.
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4. Symmetric square of an n-element. Let us prove the fol-
lowing :

THEOREM 3. Ior n>>3 the symmelric square of an n-element is not
homeomorphic with any subset of the BEuclidean space R

We shall use the notions of homology theory and the theory of inter-
sections of closed manifolds. The basic group used for homologies will
be the cyelic group of order two.

With each closed manifold M, we can associate a ring R(Af,). The
commutative group of this ring is the direct sum of Betti groups of dif-
ferent dimensions. The product of a p-cyele and a g-eycle is a (p +g—n)-
-eycle defined as their intersection (see for instance [5], p. 205-207). Our
proof is based on the following theorem proved by H. Hopf ([4], p. 173):

A necessary condition that the k-dimensional closed manifold MM, might
be imbedded in the (k4-1)-dimensional Buclidean space Rk“, is that the
direct sum of their Beiti groups mod 2 of different dimensions except zero
be a direct sum of two subrings, R(My) and Ry M), of R{(M}). (That means
that the product in this rings is defined as an intersection ).

We use this theorem in the proof of the following lemma (this
proof exactly follows the route taken by Hopf in the case of projective
spaces):

LeMMA. The Cartesian product Ma, y==8"xP"™" of the n-dimensional
sphere 8" and the (n—1)-dimensional projective space P"~' cannot be im-
bedded in the 2n-dimensional Buclidean space R™.

Proof. My, is a (2n—1)-dimensional closed manifold. By the
Kineth formula (cf. [5], p. 141) the homological structure of M,, , is
as follows: in each dimension the Betti basis consist of exactly one ele-
ment. The element of the (n—1)-dimension is the unity of the ring
R(My,1). Let 2z denote a (2n—2)-element. It is easy to show that for
every r the power #r is the (2n—7~"1)-element. If »>1, then = has a po-
sitive dimension. Suppose that M,,.. can be imbedded in R™ From
Hopi’s theorem it follows that z belongs to one of the two rings, Ey(Mz, 1)
and Ry(M,,_,), for instance to R (M,._;). The ring R(Ms—;) contains
with z every power of z, in particular #*-!, which is a zero-dimensional
element, in contradiction to the fact that R,(M.,_:) contains only ele-
ments of positive dimension. Thus the proof of the lemma is finished.

Proof of theorem 3. Let @ be an n-dimensional ball with radius 1
lying in the Buclidean n-space E' and let ¢, denote the concetric fn-dif
mensional ball with radius }. Consider the compact subset Z of Q¥
composed of all points {p,q} such that

(4) P<e(p, )<}


Artur


170 R. Molski

and
(6) the centre s of the segment pg belongs to @,.

It follows by (4) that for every point {p,q) ¢ Z there exists exactly
one straight line I, passing through p and ¢. Let

W{P,Q}=(3,4[Q(P1Q)—ﬂ;qu) {0, ¢} 7.

Evidently ¥ is a 1-1 transformation of the set Z onto the set of all 8ys-
tems (s,4[o(p,g)—+1,L,). Since for every s e @, the straight lines LCR"
passing through s constitute a space homeomorphic with the (n~—1)-di-
mensional projective space P and s, 4[o(p,q)— 4] and L,, depend
continuously on {p,q}, we infer that ¥ maps Z topologically onto the
Cartesian product @, x<0;1> xP"™". Since @, x<0;1> is an (n4-1)-di-
mensional element, we conclude that ZC@® contains topologically the
Cartesian product S8"XP"™ of the n-dimensional sphere §" and the
(n—1)-dimensional projective space P"~*. By the lemma §" x P™, and
consequently also @®, are not homeomorphic with any subset of R,
which concludes the proof.

for every
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On homotopically stable points and product spaces
by
Yukihiro Kodama (Tokyo)

§ 1. Introduction

Let X be a topological space. A point z, of X is called homotopically
labile in X whenever for every neighbourhood U of 2, there exists a con-
tinuous transformation f(x,t) which is defined in the Cartesian product
X xI of X and of the closed interval I= <0,1> and which satisfies the
following conditions:

(1) flz,t)e X for every (x,5)eX xI,

(2) He,0)=2  for every wmeX,

(3) fle,t)y=2a for every (x,t)e(X—T) xI,
(4) fo,t)e U for every (z,0)eU xI,

(5) flz, )5z, for every weX.

A point z, of X is called homotopically stable if it is not homotopically
labile. K. Borsuk and J. W. Jaworowski [5] introduced this notion and
studied the various properties of labile and stable points.

In this paper, we shall study first a certain characteristic property
of homotopically labile points in ANR’s for metric spaces. This shows
that “homotopical stability” is equivalent to “n-homotopical stability
for some integer »1)”. The main theorem, which states that the homo-
topical lability or stability of a point in a product space is determined
by the local conunectivity groups at that point?), is proved in § 4. This
theorem gives a generalization of H, Noguchi’s theorem [21] to the case
of ANR.

Let X and ¥ Dbe two topological spaces. The equality dim X x ¥
=dim X +dim ¥ does not generally hold; for example, K. Borsuk [4]
has proved that there exist 2-dimensional Cantor manifolds whose Car-
tesian produet has dimension three. In § 5 we shall show that this equa-
lity holds in the following two cases:

') For these definitions, sec §§ 2 and 4.


Artur




