

On the limiting probability distribution on a compact topological group

by

K. Urbanik (Wrocław)

I. Let G be a compact (not necessarily commutative) topological group. A regular completely additive measure μ defined on the class of all Borel subsets of G, with $\mu(G)=1$, will be called a probability distribution. A sequence of probability distributions μ_1, μ_2, \ldots is said to be weakly convergent to a probability distribution μ if

$$\lim_{n\to\infty}\int_G f(x)\,\mu_n(dx) = \int_G f(x)\,\mu(dx)$$

for any complex-valued continuous function f defined on G.

Let $X_1, X_2, ...$ be a sequence of independent G-valued random variables with the probability distributions $\mu_1, \mu_2, ...$ Put

(1)
$$Y_n = X_1 \cdot X_2 \cdot ... \cdot X_n \quad (n = 1, 2, ...),$$

where the product is taken in the sense of group multiplication in G. Let us denote by ν_n the probability distribution of the random variable Y_n . It is well known that

$$\nu_n = \mu_1 * \mu_2 * \dots * \mu_n : (n = 1, 2, \dots),$$

where the convolution * is defined by the formula:

$$\nu * \lambda(E) = \int_{G} \nu(E \cdot x^{-1}) \lambda(dx).$$

The limiting distribution of the sequence of random variables Y_n is the weak limit of the sequence of the probability distributions $\mu_1 * \mu_2 * ... * \mu_n$.

We say that the sequence of probability distributions $\mu_1, \mu_2, ...$ is normal (by an analogy with normal numbers in the sense of Borel), if for every integer k exists a sequence of integers $n_1 < n_2 < ...$ such that

$$\mu_s = \mu_{n_j+s}$$
 $(s = 1, 2, ..., k; j = 1, 2, ...)$.

In particular, the sequence $\mu_1 = \mu_2 = ...$ is normal.

The aim of this paper is to find the class of all possible limiting distributions of (1) and the conditions of convergence when the sequence of probability distributions μ_1, μ_2, \dots is normal. This is an answer to a problem raised by A. Rényi (see [6]).

For the case of the additive group of real numbers modulo I and the finite commutative group the results are known (cf. [1], [5], and [8]). The results of this paper are connected to some extent with the work of Kawada and Ito [4], who discussed the convergence of probability distributions and stable distributions for the case of a compact separable group.

II. Let K_{μ} , where μ is a probability distribution on G, denote the class of all compact subsets E of G such that $\mu(E)=1$. Put $A_{\mu}=\bigcap_{E\in\mathcal{K}_{\mu}}E$. It is easy to see that A_{μ} is a compact subset of G. We shall prove that

$$\mu(A_{\mu}) = 1.$$

Let V be an arbitrary open set containing A_{μ} . Then, since

$$V \cup \bigcup_{E \in \mathcal{K}_{\mu}} (G \setminus E) = G$$

and G is a compact set, there exists a finite covering of G:

$$V \cup \bigcup_{j=1}^{n} (G \setminus E_{j}) = G,$$

where $E_i \in K_\mu$. Consequently, $\mu(V) = \mu(G) = 1$. Then, according to the regularity of μ , the equality

$$\mu(A_{\mu}) = \inf_{V} \mu(V) = 1$$

is true. The formula (2) is thus proved. It is easy to see that the values $\mu(A)$ for $A \subset A_{\mu}$ determine the measure μ .

[E] will denote the smallest closed subgroup of G containing E. We shall use the following notation:

$$AB = \{xy: x \in A, y \in B\}, A^{-1} = \{x^{-1}: x \in A\}.$$

The following theorems will be proved:

THEOREM 1. Let $\mu_1, \mu_2, ...$ be a normal sequence of probability distributions. If the sequence $\mu_1 * \mu_2 * ... * \mu_n$ weakly converges to v, then v is the Haar measure of the subgroup $A_v = [\bigcup_{n=1}^{\infty} A_{\mu_n}]$.

Theorem 2. Let $\mu_1, \mu_2, ...$ be a normal sequence of probability distributions. The sequence $\mu_1 * \mu_2 * ... * \mu_n$ converges if and only if the equality

$$[\bigcup_{n=1}^{\infty} A_{\mu_n}] = [\bigcup_{n=1}^{\infty} A_{\mu_1} A_{\mu_2} \dots A_{\mu_n} A_{\mu_n}^{-1} \dots A_{\mu_2}^{-1} A_{\mu_1}^{-1}]$$

holds.

In particular, for the case $\mu_n = \mu$ (n=1,2,...) we find that: The sequence μ , $\mu * \mu$, $\mu * \mu * \mu$, ... converges if and only if the equality

$$[A_{\mu}] = [A_{\mu}A_{\mu}^{-1}]$$

holds. The limiting distribution is the Haar measure of the subgroup $[A_n]$.

III. Before proving the Theorems we shall give some elementary properties of the characteristic function of the probability distribution.

 $\mathfrak{A}(G)$ will denote the class of all continuous finitely dimensional unitary representations of the group G (see [7], chapter IV). $\mathfrak{A}_0(G)$ will denote the subset of $\mathfrak{A}(G)$ containing all the irreducible representations $U\not\equiv 1$. The matrix-valued function

$$\varphi_{\mu}(U) = \int_{G} U(x) \mu(dx) \quad (U \in \mathfrak{A}(G))$$

is called the *characteristic function* of the probability distribution μ . If U is the unit representation: $U \equiv 1$, then $\varphi_{\mu}(U) = 1$. It is easy to prove that

$$\varphi_{\mu \, \star \, \mathsf{r}}(U) = \varphi_{\mu}(U) \cdot \varphi_{\mathsf{r}}(U)$$
 .

Let \mathcal{B} be the Banach space of all continuous complex-valued functions f in G with the norm $||f|| = \max_{x \in G} |f(x)|$. The general form of linear functionals in \mathcal{B} satisfying following conditions:

$$L(f) \ge 0$$
 for $f(x) \ge 0$, $L(1) = 1$,

is given by the formula

$$L(f) = L_{\mu}(f) = \int_{G} f(x) \mu(dx) ,$$

where μ is the uniquely determined probability distribution (see [3], p. 247, 248). The weak convergence of functionals L_{μ_n} is equivalent to the weak convergence of distributions μ_n .

 \mathcal{D} will denote the set of all linear combinations of matrix elements of $U \in \mathfrak{U}_0(G)$ and $U \equiv 1$. According to the theorem of Peter-Weyl (see [7], § 21, 22) \mathcal{D} is a dense subset of \mathcal{B} . Hence the equality $\varphi_{\mu}(U) = \varphi_{\nu}(U)$ for $U \in \mathfrak{U}_0(G)$ implies $L_{\mu}(f) = L_{\nu}(f)$ for $f \in \mathcal{D}$, and, consequently, $\mu = \nu$. Thus the probability distribution is uniquely determined by the values of the characteristic function on $\mathfrak{U}_0(G)$. Obviously, if the sequence of distribu-

tions μ_1, μ_2, \dots weakly converges to the distribution μ , then the sequence of characteristic functions $\varphi_{\mu}(U), \varphi_{\mu}(U), \dots$ converges to $\varphi_{\mu}(U)$. Conversely, if $\varphi_{\mu_1}(U)$, $\varphi_{\mu_2}(U)$, ... converges to $\varphi_{\mu}(U)$ for $U \in \mathfrak{A}_0(G)$, then the sequence of linear functionals $L_{\mu_1}(f), L_{\mu_2}(f), \dots$ converges to $L_{\mu}(f)$ for $f \in \mathcal{D}$ and, according to the density of \mathcal{D} in \mathcal{B} , the sequence $L_{\mu_1}, L_{\mu_2}, \ldots$ weakly converges to L_{μ} . We see that the weak convergence of the sequence of probability distributions is equivalent to the convergence of the sequence of characteristic functions for $U \in \mathfrak{A}_{\mathfrak{o}}(G)$.

IV. The norm of matrix $B = (b_H)$ will be defined by the following well known formula:

$$||B|| = \left(\max_{1 \le j \le n} \sum_{i=1}^{n} |b_{ij}|^2\right)^{1/2}.$$

 $\| \|$ is the submultiplicative norm. By e we shall denote the unit element of G.

LEMMA 1. Let μ be a probability distribution and

(3)
$$e \in A_n$$

If $U \in \mathfrak{A}([A_n])$ and

(4)
$$\|\varphi_{\mu}(U)\| = 1$$
,

then $U \notin \mathfrak{A}_0([A_n])$.

Proof. Let $U(x) = (u_{ij}(x))$. There is an integer k such that the equality

(5)
$$\|\varphi_{\mu}(U)\|^{2} = \sum_{i=1}^{n} \left| \int_{A_{\mu}} u_{ik}(x) \, \mu(dx) \, \right|^{2}$$

is true. Since U(x) is a unitary matrix, then

$$\sum_{i=1}^{n} |u_{ik}(x)|^2 = 1 \quad \text{for} \quad x \in [A_{\mu}].$$

Hence, according to (4) and (5),

$$\sum_{i=1}^{n} \left(\left| \int_{A_{ii}} u_{ik}(x) \, \mu(dx) \, \right|^2 - \int_{A_{ii}} |u_{ik}(x)|^2 \, \mu(dx) \right) = 0 \; .$$

Since $u_{ik}(x)$ are continuous functions, then the last equality implies $u_{ik}(x) = \text{const}$ for $x \in A_u$. From condition (3) it follows that the equalities

$$u_{ik}(x) = u_{ik}(e) = \delta_{ik}$$
 for $x \in A_{\mu}, i = 1, 2, ..., n$,

are satisfied. Then $\langle \delta_{1k}, \delta_{2k}, \dots, \delta_{nk} \rangle$ is the invariant vector under the transformations U(x) for $x \in A_{\mu}$, and consequently for $x \in [A_{\mu}]$. The lemma is thus proved.

Lemma 2. The formula

$$A_{\mu \times r} = A_{\mu} \cdot A_{r}$$

is true for every probability distributions μ and ν .

Proof. The formulas

$$\mu * \nu(A_{\mu} \cdot A_{\nu}) = \int_{A_{\nu}} \mu(A_{\mu} \cdot A_{\nu} x^{-1}) \nu(dx)$$

and

and
$$A_{\mu} \cdot A_{\nu} x^{-1} \supset A_{\mu} \quad \text{ for } \quad x \in A_{\nu}$$
 imply the inequality

$$\mu \star \nu(A_{\mu} \cdot A_{\nu}) \geqslant \int_{A_{\nu}} \mu(A_{\mu}) \nu(dx) = 1.$$

Thus $\mu * \nu(A_{\mu} \cdot A_{\nu}) = 1$. Since $A_{\mu} \cdot A_{\nu}$ is the compact subset of G_{ν} therefore we obtain the following inclusion:

$$A_{\mu \times r} \subset A_{\mu} \cdot A_{\nu}.$$

The equality

$$1 = \mu * \nu(A_{\mu \times \nu}) = \int\limits_{A_{\nu}} \mu(A_{\mu \times \nu} \cdot x^{-1}) \nu(dx)$$

implies

$$\mu(A_{\mu \times r} \cdot x^{-1}) = 1$$
 for $x \in A_r \setminus N$,

where

$$(7) v(N) = 0.$$

Since $A_{n+r}x^{-1}$ is the compact subset of G, therefore we obtain

$$A_{\mu \times \nu} x^{-1} \supset A_{\mu}$$
 for $x \in A_{\nu} \setminus N$.

This implies

(8)
$$A_{\mu_{N}\nu} \supset A_{\mu} \cdot (A_{\nu} \backslash N) .$$

From the formula (7) and the definition of the set A, it follows that $A_r = \overline{A_r \setminus N}$. Consequently, in view of (8), we obtain

$$A_{\mu_{\lambda}}, \supset A_{\mu} \cdot A_{\tau}$$
.

Then it follows from (6) that $A_{\mu\nu\nu} = A_{\mu} \cdot A_{\nu}$. The lemma is thus proved. LEMMA 3. If the sequence of probability distributions $v_1, v_2, ...$ weakly converges to v, then

$$A_r \subset [\bigcup_{n=1}^{\infty} A_{r_n}].$$

If $\nu_n = \mu_1 * \mu_2 * ... * \mu_n$, where $\mu_1, \mu_2, ...$ is a normal sequence, then $\nu * \nu = \nu$ and

$$A_{\nu} = \left[\bigcup_{n=1}^{\infty} A_{\mu_n} \right].$$

Proof. ν is a regular measure and $[\bigcup_{n=1}^{\infty} A_{\nu_n}]$ is a compact subset of G. Then, for arbitrary $\varepsilon > 0$, there is a continuous function f satisfying the following conditions:

$$f(x) = 1$$
 for $x \in [\bigcup_{n=1}^{\infty} A_{\nu_n}]$,

(9)
$$\nu\left(\left[\bigcup_{n=1}^{\infty} A_{\nu_n}\right]\right) \geqslant \int_{G} f(x)\nu(dx) - \varepsilon.$$

Since $A_{\nu_n} \subset [\bigcup_{n=1}^{\infty} A_{\nu_n}]$, we have $\int_G f(x) \nu_n(dx) = 1$, and consequently

$$\lim_{n\to\infty}\int_G f(x)\nu_n(dx) = \int_G f(x)\nu(dx) = 1.$$

According to (9),

$$\nu([\bigcup_{n=1}^{\infty} A_{\nu_n}]) = 1.$$

Then $A_r \subset [\bigcup_{i=1}^{\infty} A_{r_n}]$. The first part of the lemma is thus proved.

Let $\nu_n = \mu_1 * \mu_2 * ... * \mu_n$, where $\mu_1, \mu_2, ...$ is a normal sequence. Let $n_1 < n_2 < ...$ be a sequence of integers such that

$$\mu_1 * \mu_2 * \dots * \mu_k = \mu_{n_j+1} * \mu_{n_j+2} * \dots * \mu_{n_j+k} \quad (j = 1, 2, \dots).$$

Then the equalities

$$\lim_{l\to\infty}\nu_{n_l+k}=\nu\;,$$

$$\lim_{f\to\infty}\nu_{n_f+k}=\lim_{f\to\infty}\nu_{n_f}*\mu_1*\mu_2*\ldots*\mu_k=\nu*\mu_1*\mu_2*\ldots*\mu_k$$

imply

$$(10) v = v * \mu_1 * \mu_2 * \dots * \mu_k$$

Hence

$$v = v * \lim_{k \to \infty} \mu_1 * \mu_2 * \dots * \mu_k = v * v.$$

From Lemma 2 it follows that $A_{\nu}=A_{\nu}$. Hence A_{ν} is a compact semi-group. Thus in view of the theorem of Iwasawa (see [2]) A_{ν} is a subgroup of G. Equality (10) implies $\nu=\nu\star\mu_n$ for every n. Consequently

$$A_{\nu} = A_{\nu} \cdot A_{\mu_{m}} \quad (n = 1, 2, ...)$$
.

Since A_{ν} is a subgroup of G, we have

$$A_{\mathfrak{p}} \supset A_{\mathfrak{u}_{\mathfrak{p}}} \quad (n=1,2,\ldots)$$

and, consequently,

$$A_
u \supset [igcup_{n=1}^\infty A_{\mu_n}]$$
.

The last inclusion and

$$A_{\nu} \subset [\bigcup_{n=1}^{\infty} A_{\mu_1 \times \mu_2 \times \dots \times \mu_n}] \subset [\bigcup_{n=1}^{\infty} A_{\mu_n}]$$

imply

$$A_{\nu} = \left[\bigcup_{n=1}^{\infty} A_{\mu_n} \right].$$

The lemma is thus proved.

Proof of Theorem 1. Let ν be a limiting distribution of a sequence $\mu_1 * \mu_2 * ... * \mu_n$. From Lemma 3 it follows that $\nu * \nu = \nu$ and

$$A_{\nu} = \left[\bigcup_{n=1}^{\infty} A_{\mu_n}\right].$$

Hence

$$\varphi_{\nu}(U) \cdot \varphi_{\nu}(U) = \varphi_{\nu}(U) \quad \text{for} \quad U \in \mathfrak{A}(A_{\nu}),$$

and consequently

(11)
$$\|\varphi_{\mathbf{r}}(U)\| \leq \|\varphi_{\mathbf{r}}(U)\|^2 \quad \text{for} \quad U \in \mathfrak{A}(A_{\mathbf{r}}).$$

Let $U \in \mathfrak{A}_0(A_{\nu})$. Then, in view of Lemma 1, $\|\varphi_{\nu}(U)\| < 1$. Hence, according to (11),

(12)
$$\varphi_{\nu}(U) = 0 \quad \text{for} \quad U \in \mathfrak{A}_{\nu}(A_{\nu}).$$

Let λ be the Haar measure of the group A_{r} , with $\lambda(A_{r}) = 1$. It is well known that the equality

$$\varphi_{\lambda}(U) = \int_{A_{\nu}} U(x)\lambda(dx) = 0$$
 for $U \in \mathfrak{A}_{0}(A_{\nu})$

holds (see [7]). From (12) it follows that

$$\varphi_{\mathbf{r}}(U) = \varphi_{\lambda}(U) \quad \text{for} \quad U \in \mathfrak{A}_{0}(A_{\mathbf{r}}),$$

and consequently $\nu = \lambda$. Theorem 1 is thus proved.

Proof of Theorem 2. Let

$$y_n \in A_{\mu_1} \cdot A_{\mu_2} \cdot \ldots \cdot A_{\mu_n} \quad (n = 1, 2, \ldots)$$

Then following formula

$$A_{\mu_1}A_{\mu_2}\cdot\ldots\cdot A_{\mu_n}y_n^{-1}\!\subset\! A_{\mu_1}A_{\mu_2}\ldots A_{\mu_n}A_{\mu_n}^{-1}\ldots A_{\mu_2}^{-1}A_{\mu_1}^{-1}$$

$$C[A_{\mu_1}A_{\mu_2}...A_{\mu_n}y_n^{-1}]$$
 $(n=1,2,...)$

is satisfied. Hence

$$[\bigcup_{n=1}^{\infty} A_{\mu_1} A_{\mu_2} \dots A_{\mu_n} y_n^{-1}] = [\bigcup_{n=1}^{\infty} A_{\mu_1} A_{\mu_2} \dots A_{\mu_n} A_{\mu_n}^{-1} \dots A_{\mu_2}^{-1} A_{\mu_1}^{-1}].$$

Put

$$\lambda_n(E) = \left\{ egin{array}{ll} 1 & ext{if} & y_n^{-1} \in E \ 0 & ext{if} & y_n^{-1} \notin E \ , \end{array}
ight.$$

$$\pi_n = \mu_1 * \mu_2 * \dots * \mu_n * \lambda_n \quad (n = 1, 2, \dots).$$

Then

$$A_{n_n} = A_{\mu_1} A_{\mu_2} \dots A_{\mu_n} y_n^{-1} ,$$

and consequently

(13)
$$[\bigcup_{n=1}^{\infty} A_{n_n}] = [\bigcup_{n=1}^{\infty} A_{\mu_1} A_{\mu_2} \dots A_{\mu_n} A_{\mu_n}^{-1} \dots A_{\mu_2}^{-1} A_{\mu_1}^{-1}] ...$$

Moreover,

(14)
$$\varphi_{\pi_n}(U) = \varphi_{\mu_1 \times \mu_2 \times \dots \times \mu_n}(U) U(y_n^{-1}) \qquad (n = 1, 2, \dots).$$

The necessity of the condition (*). Let a sequence $\mu_1 * \mu_2 * ... * \mu_n$ weakly converge to ν . From Theorem 1 it follows that ν is the Haar measure of the subgroup

$$(15) A_{\nu} = \left[\bigcup_{n=1}^{\infty} A_{\mu_n}\right].$$

Moreover,

$$\varphi_{\mu_1 \times \mu_2 \times \cdots \times \mu_n}(U) \rightarrow \varphi_{\nu}(U) = 0$$
 for $U \in \mathfrak{A}_0(A_{\nu})$.

Then formula (14) implies .

$$\|\varphi_{\pi_n}(U)\| \le \|\varphi_{\mu_1 \star \mu_2 \star \dots \star \mu_n}(U)\| \to 0 \quad \text{for} \quad U \in \mathfrak{A}_0(A_r).$$

Hence

$$\varphi_{n_n}(U) \to 0 = \varphi_{\nu}(U)$$
 for $U \in \mathfrak{A}_0(A_{\nu})$,

and consequently the sequence π_n weakly converges to ν . Then in view of Lemma 3 it follows that

$$(16) A_{\nu} \subset [\bigcup_{n=1}^{\infty} A_{\pi_n}].$$

The formulas (13), (15) and (16) imply the condition (*).

The sufficiency of the condition (*). Suppose that the condition (*) is satisfied. Then, according to (13),

$$(17) \qquad \qquad [\bigcup_{n=1}^{\infty} A_{\pi_n}] = [\bigcup_{n=1}^{\infty} A_{\mu_n}].$$

Let $U \in \mathfrak{A}([\bigcup_{n=1}^{\infty} A_{n_n}])$. If $\|\varphi_{n_n}(U)\| = 1$ for every n, then, according to Lemma 1, $U \notin \mathfrak{A}_0([A_{n_n}])$ for every n. Since $[A_{n_{n+1}}] \supset [A_{n_n}]$, we have $U \notin \mathfrak{A}_0([\bigcup_{j=1}^{n} A_{n_j}])$ for every n, and consequently $U \notin \mathfrak{A}_0([\bigcup_{j=1}^{n} A_{n_j}])$. Hence,

according to (17), $U \notin \mathfrak{A}_0([\bigcup_{n=1}^{\infty} A_{\mu_n}])$. Therefore, if $U \in \mathfrak{A}_0([\bigcup_{n=1}^{\infty} A_{\mu_n}])$, then there is such an integer k that $\|\varphi_{nk}(U)\| < 1$ and by (14)

$$\|\varphi_{\mu_1 \times \mu_2 \times \cdots \times \mu_k}(U)\| < 1.$$

Let n_1, n_2, \dots be a sequence of integers such that

$$\mu_1 * \mu_2 * \dots * \mu_k = \mu_{n_j+1} * \mu_{n_j+2} * \dots * \mu_{n_j+k}$$
 $(j = 1, 2, \dots)$,

$$n_j + k < n_{j+1}$$
 $(j = 1, 2, ...)$.

It is easy to see that

$$\|\varphi_{\mu_1 \times \mu_2 \times \dots \times \mu_n}(U)\| \le \|\varphi_{\mu_1 \times \mu_2 \times \dots \times \mu_k}(U)\|^{n_j}$$
 for $n_j + k \le n$.

Then, according to (18), $\varphi_{\mu_1 \vee \mu_2 \star \dots \star \mu_n}(U) \to 0$ for $U \in \mathfrak{U}_0([\bigcup_{n=1}^{\infty} A_{\mu_n}])$. The convergence of the sequence of characteristic functions

$$\varphi_{\mu_1 \star \mu_2 \star \dots \star \mu_n}(U)$$
 for $U \in \mathfrak{A}_0([\bigcup_{n=1}^{\infty} A_{\mu_n}])$

is equivalent to the weak convergence of the sequence of probability distributions $\mu_1 * \mu_2 * ... * \mu_n$. Theorem 2 is thus proved.

Note added in proof. The results of this paper were obtained, by a different method, at the same time by B. M. Kloss (see Доклады Акад. Наук. СССР 109, No 3 (1956), p. 453-455).

References

[1] A. Dvoretzky and I. Wolfowitz, Sums of random integers reduced modulo m, Duke Math. J. 18 (1951), p. 501-507.

[2] B. Gelbaum, G. K. Kalish and J. M. H. Olmsted, On the embedding of topological semigroups and integral domains, Proc. Amer. Math. Soc. 2 (1951), p. 807-821.

[3] P. R. Halmos, Measure theory, New York 1950.

[4] K. Ito and Y. Kawada, On the probability distribution on a compact groups, Proc. Phys.-Math. Soc. of Japan 22 (1940), p. 977-998.

[5] P. Lévy, L'addition des variables aléatoires définies sur une circonférence, Bull. Soc. Math. de France 67 (1939), p. 1-41.

[6] A. Prékopa, A. Rényi and K. Urbanik, О предельном распределении для сумм независимых случайных величин на бикомпактных коммутативных топологических группах, to appear in Acta Math. Acad. Sci. Hungaricae.

[7] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris 1940.

[8] Н. Н. Воробьев, Сложение независимых случайных величин на конечных абелевых группах, Мат. Сбор. 34(1) (1954), р. 89-126.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 3.5.1956