

332

F. A. Szász

Proof of Theorem. Let R be a ring with property P. By Lemma 3 we can suppose the existence of divisors of zero. If R contains an element of infinite order, then by Lemma 2 and 4 there exists a number $n \in J$ for which $0 \subseteq nR \subseteq R$. But by $R^+ \simeq (nR)^+$ and by property P, R is cyclic.

If R^+ is a torsion group, then a ring-theoretical direct decomposition $R = \sum R_p$ holds, where the ideal R_p is generated by all elements of p-power order of R. If $R \neq R_p$, then R is a finite cyclic ring. Now let R be a p-ring in which R' is generated by all elements of order p of R. If $R' \neq R$, then R is cyclic or else of type p^{∞} because in both cases R' is cyclic [2]. Finally we assume that R'=R. By the existence of divisors of zero, by pR = 0, by Lemma 1 and by property P the existence of a left-ideal L of order p of R is necessarily ensured. Now we show the impossibility of $O(R) \geqslant p^3$. It is clear that Lr is a left-ideal in R $(r \in R)$. If there exists an element $0 \neq r \in R$ for which $Lr \neq 0$ and $L \cap Lr = 0$ holds, then for the left-ideal $D = \{L, Lr\}$ it is R = D, i. e., $O(R) = p^2$. But if $Lr \subset L$ for all $r \in \mathbb{R}$, the subring L is a two-sided ideal in R. Then \mathbb{R}/L has the property P and consequently has no proper left-ideals. By $O(R) \geqslant p^3$ we can assume that R/L is a skew-field, and thus not a zero-ring, but has the property P. By $O(R/L) \geqslant p^2$ and by Lemma 5 we have obtained a contradiction, which completes the proof.

References

- [1] N. Jacobson, Lectures in abstract algebra, New York 1951.
- [2] A. Kertész, On fully decomposable abelian torsion groups, Acta Math. Acad. Sci. Hung. 3 (1952), p. 225-232.
 - [3] A. G. Kurosh, Theory of groups, Moscow 1953.
 - [4] G. Pickert, Einführung in die höhere Algebra, Göttingen 1951.
 - [5] L. Rédei, Algebra I, Budapest 1954.
- [6] T. Szele, Eine kennzeichnende Eigenschaft der Schiefkörper, Comment. Math. Helv. 22 (1949), p. 115-116.
 - [7] Die Ringe ohne Linksideale, Buletin Stii, Bucuresti 1 (1950), p. 783-789.
- [8] On direct decomposition of abelian groups, J. London Math. Soc. 28 (1953), p. 55-58.

Reçu par la Rédaction le 12.9.1956

Errata to the paper "On the e-theorems"

(Fundamenta Mathematicae 43, p. 156-165)

hy H. Rasiowa (Warszawa)

Page	for	read
156,5	of [10]	of [10] and [13]
156,1	theories	theories since the non-enumerable case follows immediately from the enumerable one
1614	a consistent	a consistent, enumerable
161,	cf. [8]	cf. [8], or an extension in a Boo- lean algebra of all subsets of a set
		cf. [13].
16210	\cdot in algebra B	in algebra B of sets
16217	f	of
16417	$\varepsilon ext{-theorem}$	ϵ -theorem 5.1 (with open α).