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The situation is different from IV in the following point. The space
X,(w) Dossesses the property (A) since (3;) and (X,) are fulfilled (see
[2]). The norms | [if and || [§ being non-equivalent in X, with | ||f,
the corresponding Saks spaces do not possess the property (A).

Especially in X,(w;) we have (By) but not (By).

VI. Let us denote by X the space of all bounded continuous fun-
ctions defined in an open interval (a, b). (The end points need not he fi-
nite here). As ¥, we take the set of all linear functionals of the form

b—

[ =)y,

at
where y denotes a function of finite variation in (a, b), continuous from
the left and equal to zero at the point (a--b)/2. It is easy to see that
Y, is not identical with ¥ and possesses the property (T). The space Y,
is non-separable, since

Iyl = vary(t) for
(@b)

3

yeXo.

Let a, b be finite and let us denote by B the set of all ye¥, such that
y(t) =0 for te(a,a+1/n)4(b—1/n,b) and var y() =1/n.

(a4 1n, b=1/n)
Then

flaf* = suply(@)] = sup  sup
vel no{a-klin, b1y

| @)l /.

In the case when a, b are infinite we define B and the norm || |*
analogically,

It is possible to show that X,(w) is a Saks space fulfilling condi-
tions (3)) and (3,) and that Y,(w) = ¥, (see [1],[2]).
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On the continuity of linear operations in Saks spaces with an
application to the theory of summability

by
W. ORLICZ (Poznan)

1. Let X be a linear space and let a B-norm || || (fundamental norm)
and a B- or F-norm | |* (starred norm) be defined in X. If the seb

X = E{mEX, flell < 1}

with the distance defined as d(x,y) = loe—y|" is a complete space, it
will be called a Saks space (with the norm || ||*, see [2]%)). The following
theorem is a generalization of the result given in [3]:

i.4. Let X, X,,..., X,,... be linear subspaces of the space X and
et an F-noom || I be defined in X, for n=1,2,... Writing

Xy = ml-Xn;

N=
we suppose the following conditions to be satisfied:
(a) X; DX, D...D0X,2..;
(b) there exists a linear subspace ¥, C Xy swch that the set X, = Yorn X X
is dense in X, ~ X,, the distance being induced by || e for m =1,2,...;
(c) the set X, ~ X, is a Saks space under the norm | s satisfying the
condition (Z;)2), for n =1,2,...);
(dy 4f x;e X, and llzylly — 0 for a fized k& and ¢ — oo then lzgl 5 = O for
every k' <k.
Further suppose that in X, additive operations U, awith values in
a Fréchet space Y are defined, such that

(«) for every xeX, the sequence {Un(w)} is convergent;

(B) for every fized positive integer n, k, |l <1, w6 Xy and |zglf — 0
for i—>o0 imply Un(w;)—0.

1) The numbers in square brackets refer to the references at the end of this

paper.
%) Concerning the definition of the -condition (Z,) see [2], p- 240.
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Under these assumpt sons |ogfl < 1,26 Xy, and [z — 0 for k& = 1,
2, ... implies Uy(w) — 0.
Let us define the starred norm by the formula

SERN
(t) ol = Y = =

,g; 2" 14zl
Write

zelXy.

Xy = BlreX,, ol <1}.
x

Then from (c) it follows that X, is a Saks space with this norm.

I 26Xy, flrgfl <1 for i =0,1,2,..., let [ry—roly -~ 0 a8 4 — oo
(with fixed k), then in virtue of (8) and the fact that (w;—um,)/2eX,, it
follows that Up,(a;) — U, (2,). Since, by the condition (e), the sequence
Uy () converges in X,,, there exists an zyeX,, such that the operations
U, are equicontinuous at x,. Given an e > 0 let us choose a positive
number ¢ in such a manner that for every pair of elements a’, #** belong-
ing to the sphere

K = 1;7{'7"6)(07 Izl <1, lz—xel* < (’}

the inequalities

[Un(@)—=Unla")| <& for a=1,2

TR

are satisﬁe.d.. ~Further let us choose a positive integer m sufficiently large
and a positive number o’ sufficiently small to have

K = BloeXs, o] <1, [o-alh < o'} C K.

1gjhi;; 1”s ”p‘ossilglelby (d) and (). By (c), there exists a number 6 > 0 such
at [lz]” < 6, |lz|| <1 and weX, C X, imply the
contatin & o ol 1 and 0 m imply possibility of a repre-

@', w”ezE{mEXma lel <1, le—nyn < (_’,}-

Acoord.ing to the condition (b) there exist sequences @y, x;'e X,, conver-
e ;

gent with respect to the II’OI‘III).' I llm to &', &" respectively. Since one can

zup}tose, ofl course, that 23,43 € Ky, it follows that || U, (¢f) — U, (2})]| < e

or v, m =1,2,... Moreover [U,(z})— U,(2})]/2 = U, (& —a" 97 gives

Taol =< tor m o n w(@:)]] w (@ & )[2] gives

Thus we have proved the equicontinnity of the operations U, in

the space X;, at 0. Hence (see [2]
. , P. 265) and from the definiti £t
norm | [|* follows the statement of our theorem, wition of the
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1.2, Let X,, X1, X4y ..., Xpn, ... have the same meaning as in 1.1
and let us suppose that the conditions (a)-(d) of 1.1 are satisfied. Further
let X, denote the same Saks space as in 1.1 with the norm ().

Suppose that U is an additive operation in X, to & Banach space X with
the following properties: .

(a) the range Y, of the operation U is separable;

(b) there emists o fundamental set Hy of linear functionals over Y
such that for every neH, the functional n(U(x) is continuous ({21,
D. 267) in the sense that a;eXy for ¢ =0,1,2,..., and the existence
of a positive integer k such that flo; — oz — O for @ -— co implies
(U (@) = (U (@)

Then the operation U is (Xys, Y)-continuous ®).

It is sufficient to prove the continuity of the operation U at 0 ([2],
p. 265). Supposing that x;eXy, lrsl* =0, let us choose a functio-
nal n;¢H, such that 7;(T(z) > ¢l|U ()}l for ¢ = 1,2, ... Here ¢ denotes
a positive constant occurring in the definition of the fundamental set of
functionals. The condition (a) implies the existence of a subsequence
7, 0f the sequence 7, convergent in the whole of ¥,. Since the functio-
nals U;(z) = n,,(U(x)) satisfy the assumptions («), (8) of 1.1, then
9y U (23,) —~ 0, whence [[U(xy)| 0. Since analogical arguments hold
for an arbitrary subsequence of the sequence a3, it follows that U (z;) — 04).

1.3. Let Xy, Xy, X5, ..., Xy, ... have the same meantng as tn 1.1
and let us suppose that the conditions (a)-(d) of 1.1 are satisfied. Let X,
denote the same Saks space as in 1.1 with the norm (T) and let &, be addi-
tive functionals in X, satisfying the hypothesis 1.1 (B), where &, = U,
(this implies the continwity of &, in Xo)-. Suppose that
(a') for every weX,, the sequence {En(m)} is bounded;

(B') the sequence {E,,(m)} is convergent to 0 (48 convergent) in a set dense in Xos

Then the set of sequences |&,(2)}, xeXos, is cither non separable in the
space Ty or convergent to 0 (convergent for every meXy)®).

Let us suppose that the set of the sequences {£,(2)}, zeXy,, is con-
tained in the separable, closed, linear subspace T, C T,. Define the ope-
ration T on X,, to T, by the formula U (z) = {&,(z)}. Since the set H,
of linear functionals (over the space Tp) of the form

3) This means: [jw,—w " = 0. @, 2,¢ X, implies U(z) - U (%)

1) The arguments used in this proof are known.

5) T, and T, denote the space of sequences convergent to. 0 and that of bounded
sequences respectively, with usual norms.
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o0
Onln,  Where S low| <1, = {[n} €Ty,
=1

e

7(y) =

il
~

n

and almost all ’s vanish, is a fundamental set, 1.1 (8) implies that H,
satisfies the hypothesis 1.2 (b). It follows by 1.2 that the operation U ig
(Xogs Tp)-continuous. Since, by ('), &,(x) is convergent to 0 (econver-
gent) in a set dense in X, this is also true for every reX,.

2. Now we give an application of 1.3 to the theory of linear methods
of summability. In the sequel we use the notation and definition intro-
duced in [1].

TeroREM. Suppose the linear methods of summability A', 4%, ...
to be permanent for null-sequences. Let X, denote the set af all bounded se-
quences summable to 0 by all the methods A™ simultaneously. Let B be an
arbitrary method of swmmability permanent for null-sequences. Then the
set of all sequences of tramsforms {Bi(w)}, zeXy, 48 either mon-separable
wn Ty or convergent io 0 for every xeX,. ‘

Put X =T, and
] = sug [t,].

Let us denote by X, for n = 1,2, ... the set of all bounded sequences
summable to 0 by the methods 4*, 4%,..., 4", and by ¢" the method
of summability corresponding to the matrix (¢z) arising by the juxta-
position of all rows of the methods 4, 4%, ..., 4™, Obviously X, = CY AT,
We define in X,, the norm

. NE
lolls = supiCa @)+ ' 1.
t=1

According to the result of [2], the condition 1.1 (c) is satisfied. The fulfil-
ment of the conditions 1.1(a) and (d) follows immediately from the de-
finitions of the method ¢" and of the starred norm. From lemma 2.2 ([1])
it follows that the set ¥, of all bounded sequences with almost all elements
equal to 0 satisfies the hypothesis 11(b). Further let uy observe that

Ay =N2Zx,
=l

and that the transforms B, () fulfil the hypothesis 1.1 (B) (for U,(z) =
= Bu(x)). If we write in 1.3 £, — B, then the classical conditions of
permanence for null-sequences imply the fulfilment of the condition
1.3 («'). Finally, since Bu(m) -0 for we¥,, the condition 1.3 (') is
also satisfied,
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Under the same hypothesis about the methods Al AR A L.
and with the same meaning of X, as above we get the following corollary:

A. Let B be a permaneni method such that B, (5) > B(w) for xeX,,
then B(z) = 0 for every xzeX, (see {1], theorem 1°).

Our hypothesis ensures that the set of all sequences {B{(m)}, xed,,
is separable.

B. If there exists a bounded divergent sequence summable to 0 by the
methods A", then the set of all bounded divergent sequences, A™swmmable
to 0, is non separable in space T),®).

For the proof one can take as B the identical method.
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‘) See [1], where this theorem is proved in the special case when A' = 4% =

= eue :A”:_,,,

Regu par la Rédaction le 10. 2. 1956


GUEST




