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Differential inequalities in linear spaces

by W. MTAK (Krakéw)

In this paper we discuss several forms of the generalized mean
value theorem (see [1], [5] and [7]). In the second part of this work it
ig shown how the classical theorems concerning differential inequalities
may be generalized by means of the notion of the cone.

§ 1. I. Suppose ¥ to be a real topological vector space. Its elements
are denoted by x,y,2,... The functions of the real variable ¢, with values
lying in B are denoted by «(?), y(t), 2(t). By 4, 4° where ACE we
mean the closure and the interior of 4 respectively. FA4 denotes the
boundary of 4. The class of all linear (additive and homogeneous) and
continuous functionals defined on ¥ is designated by E. We consider
closed hyperplanes, 4. e., the sets given by the equations £z = a where
Eck, a real —in symbols H (5, a). A closed (open) right half-space is
defined as follows:

HY (&, a) =l§{£w >a}  (Hy(f a) = E{£m> a}).

A convex body is a closed convex subset of E, possessing interior points.
We have the following lemmas:

LemMA 1(1). For every point x of the boundm"y of the convex body A
there exists such a £eE that A C HY (&, éx).

LemmA 2(1). A convex body A is the common part of il closed right
half-spaces of the form H'(&, Ex) where xeFA and A C HY (£, éx).

We now prove

LemmA 3. The inierior of the convex body A is the common part of all
open right half-spaces of the form H (&, £x) where < FA and A C HY (&, £2).

Proof. Suppose that for every &c¢E and every z<FA such that
A C H* (&, &2) we have the relation z,eH, (&, é2). From lemma 2 we
get woed. Tf 2,6 A%, then by lemma 1 there iy such a &eE that
A C HT (&, &y) and @oeH (&, £,2,) — this contradicts the fact that x,
is supposed to belong in particular to H (&, &,2,).

(1) These lemmas are essentially due to 8. Mazur — see [3]. See also [2],
p. 72, prop. 3.


GUEST


96 W. Mlak

II. The function wx(#) defined in the interval 4 is called weakly
continuous if for every £eF the real valued function &x(¢) is continuous
in A.

Applying lemma 2 and lemma 3 in the same way as it has been done
in [5] we.may prove the following theorems:

TEEOREM 1. Suppose A to be a conves body lying in a linear topolo-
gical space B. We assume that x(t) is weakly continuous in A. Suppose
that for every &< there exists an ut most denumerable set Z(&)C A such
that for every te A—Z (&) there are o sequence of reals t, — 0+ and u sequence
YneA such that

Under the assumptions given above we have

% (t)—x(ty)

A or
o1, &

b by by, bped.

THEOREM 2. Suppose that V is an open and convex subset of H. We
assume that x(t) is wealkly continuous in the interval A. Suppose that for
every £k there emists an at most denumerable set Z (&) C 4 such that for
every te A—Z (&) there are a sequence of reals T, — 0+ and an element zeV
such that

e 2 o0},

Under our assumptions we have

#(ty) —2(t,)

14 or
Wt O

By 1y 1, ted.

Similar theorems may be proved for functions weakly ACG (see [5],
th. 2).

§ 2. I. Suppose F to be a real topological vector space. We introduce
the following definition:

DEFINITION. A set S is a cone in B if it is closed, non-void and the
following conditions hold:

(1) if €8, yel, then s+yes,
(2) if 2 >0 and xS, then iwed.

Given a cone § one can introduce the relation of ,inequality” by
means of the formula

o<y =y—xel.
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This relation fulfils the following conditions:
(3) for every xeF we have z < x,
(4) o<y, y <2 then z <z,
(8) if # <y and 2 is arbitrary, then z42 <y +2,
(6) if 2 >0 and z <y, then iz < Jy.
Conversely, if the relation ,,<” satisfies (3)-(6), then the seb

s =FElo=<d,

if it is closed, is a cone.

In the following, in order to simplify our considerations we assume
that in B the second axiom of Hausdorff is satisfied, 4. e., that for every
% 7y there exist disjoint neighbourhoods of # and y. This enables us to

introduce the definition (of Cauchy’s type) of the limit lim (¢) for functions
oty
of the real variable ¢ with values in E.
We define Dtz () by the formula -

Dah) Zhl_l,ﬂ M;Z——w(t)' .

The interior §° of the cone being non-void, one can introduce the relation
z<y=y—ws

The relation ,,<” possesses the following properties:

(7) if <y and y < 2, then z < 2,

(8) if >0 and 2z <y, then iz < Ay,
(9) if lim x(¢) > @,, then for ¢ > ¢, and ¢ sufficiently near ¢, we have
i—+ty+
the relation x(t) > x,.

Let us formulate some theorems implied by theorem 1 and theorem 2
(theorem 3 is true in locally convex topological spaces without the
assumption 8° = 0).

TurorREM 3. Suppose that ©(t) is continuous in the interval A. Let 8
be a cone with o non-void interior. If the relation © < DT x(t) holds in A
except in an at most denumerable subset of A, then for 1, <ty (ty,t,ed)
the inequality »(t,) < x(ty) holds.

THEOREM 4. Suppose that x(t) is continuous in the interval A. Let 8
be a cone with a non-void interior. If the relation © < DT x(t) holds in A
except in an at most denumerable subset of A, then for t; <ty (t,tyed)
we have the inequality »(t,) < x(ty).
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Let us consider the function f(#,y) defined on the Cartesian pro-
duct 4X B, 4 being an interval. Suppose that F fulfils the second axiom
of separation of Hausdorff and § is a cone with a non-void interior. The
function f(¢,y) is increasing in y if the inequality y, <y, .implies
F(t, 1) < F(t, ¥s). Now we formulate the theorem about ,strong” diffe-
rential inequalities. We use the notation introduced previously.

THROREM 5. We assume that f(t,y) defined in AXH, where A
= (ty, to+a), ncreases in y. Let x(t) and y(t) be continuous in A. Suppose
~that the following conditions are satisfied:

(10) z{t) < ¥ (%),
(11) Dro(t) < f{t,n(t) for  ted,
(12) it y(@) <K Dry@)  for  ted.

Under our assumptions the inequality
(13) L om(t) <yt

holds for t, <t < ty+a.

Proof(?). According to (10), (11) and (12), since f(¢,y) increases
iny we get DV ax(t,) < DTy(4,). Therefore for some o > 0 we have z(t)
< y(t) for 1, < t << {p+6. Suppose that the set

Z = Eftelt, teta), y(t)o—(1)¢8°)

is non-void. Write v = infZ. We have 7 >{,+4. Functions z(?), y (¢)
are continuous and § is closed — therefore z(r) < y(z). The inequality
@(r) < y(r) implies D*w(r) < D*y(v). Hence for some 5 > 0 and for
te(r, v+n) we have the inequality 2(f) < y(f). We now see that x(t)
< y(t) for te(ty, v-+n). The function f(t,y) increases in y — according
to the last inequality and to (11) and (12) we get

Dra(t) < flt, (1) <7t @) < DTy(t),  telty, v47).

Applying theorem 4 to the function 2(f) = y(t) —x(t) we get a(f) < y(t)
for t, <<t < 7-+7. One can infer therefore the inclusion Z C{v+-n,ty+a)
whence 7 = infZ > v-+#, which is a contradiction.

II. Let us assume that F is a Banach space. We introduce the
following assumption:

Assumption H. The function f(¢,x) defined for ¢, <t < t-|-q,
|le—ao|| < » is continuous and takes on values from a compact set

(*) In that proof we apply (7), (8) and (9).
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V C E; moreover if W = conv{V v {6}]), then ad(W) < r(®). We have
the following existence theorem (%)

THEOREM 6. Suppose that the function 1(t, ) satisfies the assumption H.
Then in the interval to <t < 14+ a there exists at least one solution of the
differential equation y' = f(t,y) satisfying the initial condition y(t,) = w,.

Proof. The set W is compact (see [4]). Let O denote the space of
continuous functions » = x(¢) defined for f, <t <t,+a with values
from B, the norm being defined as usual: The subset B of Oz composed
of those functions » for which |lz(¢) —=,|| < 7 is convex and closed in Cg.
Let us consider in R the following operation F':

i
1+ F () = o+ [f(z, a(x)) dr.
ty

Denoting by y(t) the element F(n) we have
Yy (t)ewy+(t—ty) conv flz, z(x)) Cap (1 —ty) convW C 5, +aconvW C zg+ a W

h<rst

(the last inclusion follows by @<W). Hence |ly(f) —z,| < ad(W) < 7.
Thus the operation F' maps the set R in a subset 7 of R; moreover T
Cxy+aW, whence T is compact. Applying Schauder’s fixed point theo-
rem [6] we deduce that there exists an element neR such that 4 = F(z).

Now we assume that §° 5 0, § is a cone, the assumption H being
fulfilled. Suppose that function (), continuwous in (%, t,-+-y) where
y =r[d(W), satisfies the inequalities

(o) z(ty) < @, DTw(h) <f(t:w(t))7 telly, to+9)
(we assume ||n(¢)—xol < r for tedldy, th+a)). Let us consider the equa-

tions
, 1
(8) ¥ =Ff 9 +—Y
n

where & < y, and ||y || = 1. We form a sequence of solutions of (B) @, (f)
such that z,(f,) = x,; 2,(¢) is defined in <t, t,--a,> where

7

o 1jn4-6(W)
(*) conv.4 denotes the smallest convex set containing the set A: §(W) stands
for the diameter of the set W.
(4) This theorem has been communicated to me by A. Alexiewicz to replace
a less general theorem of my own. I am indebted to Prof. Alexiewicz for his permission
to publish this theorem here. .
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We have
() : Fty () < an(t).

Suppose that f (¢, #) increases in #. By theorem 5 and (y), according to (a),
we obtain

(3) o) <@ (), o < &< lotdp.
On the other hand, we have the equality

: 1
(e) @ (1) = o+ ff(Ty 377»(7))017‘1",;./0('5“%)-
ty

But x(t) are equicontinuous and their diagrams are in a compact get.
From Arzela’s theorem we conclude that there exists a partial sequence
%, (1) converging in {4y, ¢+ y) almost uniformly to a certain funection y (t).
From () we get y' (1) = f(i, y(#)) in <&, ty+y). Because of (5) we have
#(t) < y(1). '

We introduce the following definition:

DEeriNerioN. The solution y (1) of the equation y’ = f(¢, ) such that
Y(to) = @, valid in {t, %+ ) is called the right mazimal integral of this
equation for the interval (t,, f,+a) if for every solution z(t) of the equa-
tion ¥ = f(t,y) passing through (f,,xz,), valid in <ty f,+-u), Wwe have
the inequality w(t) < ().

Let us assume that the following condition holds:

(14) If 2 <y and y < o, then x = y.
£ (14) is satisfied, then S is called a proper come.

According to our previous discussion we formulate the following
theorems:

TrrorREM 7. Suppose thal f(t,y) increuses in y and satisfies the assump-
tion H. Let S be a proper cone with & non-void interior. Then there exisls
a unique right maximal integral of the equation y' = f(¢,y) for the interval
oy bo+7) (v = r[6(W)) passing through the point (ty, m,).

TerorEM 8. Suppose that the assumptions of theorem T are fulfilled.
Let the function x(2) be continuous in (g, ty--y) and satisfy the following
conditions :

lle () —@ < 7,

o(by) <y, Dta(t) éf(t,m(t)).

Then for telty, ty+y) we have the inequolity @(t) < y(t) where Y (t) is the
right mazimal integral of the equation y' = f(t, y) for the interval Loy To-k ),
passing through the point (ty, x,).

Remark 1. In a similar way one can introduce the notion of the
right minimal integral and formulate theorems analogous to theorems 7
and 8.
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Remark 2. If /(3, y) increasing in y satisfies the Lipschitz condition,
a theorem analogous to theorem 8 may be proved by the method of
succesive aproximations. In that case the H assumption and the assump-
tion 8° £ 0 are superfluous.

Remark 3. If y* = f(t, y) posseses a unique solution passing through
the point (4, #,), the H assumption is satisfied and f(z, y) increases in ¥,
then a theorem analogous to theorem 8 holds, if we assume in addition
that the following condition is satisfied: if x, —>w,, 2, >y, and
Ty < Yn < 2, then y,—y,. In that case the assumption §° 520
is superfluous.

Remark 4. The theorems presented in this paper may be generalized
to the case of derivatives of the form

_ 2(t+h)y—>(t)
Do) = e

@ (t) being a real valued, stricly increasing function. Left-sided derivatives
may be considered.
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