

## ANNALES POLONICI MATHEMATICI V. (1958)

## Differential inequalities in linear spaces

by W. Mlak (Kraków)

In this paper we discuss several forms of the generalized mean value theorem (see [1], [5] and [7]). In the second part of this work it is shown how the classical theorems concerning differential inequalities may be generalized by means of the notion of the cone.

§ 1. I. Suppose E to be a real topological vector space. Its elements are denoted by x,y,z,... The functions of the real variable t, with values lying in E are denoted by x(t),y(t),z(t). By  $\overline{A},A^0$  where  $A \subset E$  we mean the closure and the interior of A respectively. FA denotes the boundary of A. The class of all linear (additive and homogeneous) and continuous functionals defined on E is designated by  $\overline{E}$ . We consider closed hyperplanes, i. e., the sets given by the equations  $\xi x = a$  where  $\xi \in \overline{E}$ , a real - in symbols  $H(\xi,a)$ . A closed (open) right half-space is defined as follows:

$$H^+(\xi, \alpha) = \mathop{E}\limits_{x} \{ \xi x \geqslant \alpha \} \quad \left( H_+(\xi, \alpha) = \mathop{E}\limits_{x} \{ \xi x > \alpha \} \right).$$

A convex body is a closed convex subset of E, possessing interior points. We have the following lemmas:

LEMMA 1(1). For every point x of the boundary of the convex body A there exists such a  $\xi \in \overline{E}$  that  $A \subset H^+(\xi, \xi x)$ .

LEMMA 2(1). A convex body A is the common part of  $c\overline{\iota}i$  closed right half-spaces of the form  $H^+(\xi, \xi x)$  where  $x \in FA$  and  $A \subset H^+(\xi, \xi x)$ .

We now prove

LEMMA 3. The interior of the convex body A is the common part of all open right half-spaces of the form  $H_+(\xi, \xi x)$  where  $x \in FA$  and  $A \subseteq H^+(\xi, \xi x)$ .

Proof. Suppose that for every  $\xi \in \overline{E}$  and every  $x \in FA$  such that  $A \subset H^+(\xi, \xi x)$  we have the relation  $x_0 \in H_+(\xi, \xi x)$ . From lemma 2 we get  $x_0 \in A$ . If  $x_0 \notin A^0$ , then by lemma 1 there is such a  $\xi_0 \in \overline{E}$  that  $A \subset H^+(\xi_0, \xi_0 x_0)$  and  $x_0 \in H(\xi_0, \xi_0 x_0)$ —this contradicts the fact that  $x_0$  is supposed to belong in particular to  $H_+(\xi_0, \xi_0 x_0)$ .

<sup>(</sup>i) These lemmas are essentially due to S. Mazur — see [3]. See also [2], p. 72, prop. 3.

II. The function x(t) defined in the interval  $\Delta$  is called weakly continuous if for every  $\xi \in \overline{E}$  the real valued function  $\xi x(t)$  is continuous in  $\Delta$ .

Applying lemma 2 and lemma 3 in the same way as it has been done in [5] we may prove the following theorems:

THEOREM 1. Suppose A to be a convex body lying in a linear topological space E. We assume that x(t) is weakly continuous in  $\Delta$ . Suppose that for every  $\xi \in \overline{E}$  there exists an at most denumerable set  $Z(\xi) \subseteq \Delta$  such that for every  $t \in \Delta - Z(\xi)$  there are a sequence of reals  $\tau_n \to 0+$  and a sequence  $y_n \in A$  such that

$$\lim_{n\to\infty}\xi\left\{\frac{x(t+\tau_n)-x(t)}{\tau_n}-y_n\right\}=0.$$

Under the assumptions given above we have

$$\frac{x(t_1)-x(t_2)}{t_1-t_2} \epsilon A \quad \text{for} \quad t_1 \neq t_2, \ t_1, t_2 \epsilon \Delta.$$

THEOREM 2. Suppose that V is an open and convex subset of E. We assume that x(t) is weakly continuous in the interval  $\Delta$ . Suppose that for every  $\xi \in \overline{E}$  there exists an at most denumerable set  $Z(\xi) \subset \Delta$  such that for every  $t \in \Delta - Z(\xi)$  there are a sequence of reals  $\tau_n \to 0+$  and an element  $z \in V$  such that

$$\lim_{n\to\infty}\xi\left\{\frac{x(t+\tau_n)-x(t)}{\tau_n}\right\}=\xi z.$$

Under our assumptions we have

$$\frac{x(t_1)-x(t_2)}{t_1-t_2} \in V \quad \text{for} \quad t_1 \neq t_2, \ t_1, t_2 \in \Delta.$$

Similar theorems may be proved for functions weakly ACG (see [5], th. 2).

§ 2. I. Suppose E to be a real topological vector space. We introduce the following definition:

DEFINITION. A set S is a cone in E if it is closed, non-void and the following conditions hold:

- (1) if  $x \in S$ ,  $y \in S$ , then  $x + y \in S$ ,
- (2) if  $\lambda \geqslant 0$  and  $x \in S$ , then  $\lambda x \in S$ .

Given a cone S one can introduce the relation of "inequality" by means of the formula

$$x \leqslant y \equiv y - x \epsilon S$$
.



This relation fulfils the following conditions:

- (3) for every  $x \in E$  we have  $x \leq x$ ,
- (4) if  $x \leqslant y$ ,  $y \leqslant z$ , then  $x \leqslant z$ ,
- (5) if  $x \le y$  and z is arbitrary, then  $x+z \le y+z$ ,
- (6) if  $\lambda \geqslant 0$  and  $x \leqslant y$ , then  $\lambda x \leqslant \lambda y$ .

Conversely, if the relation "

satisfies (3)-(6), then the set

$$S = \underset{x}{E} \{\Theta \leqslant x\},$$

if it is closed, is a cone.

In the following, in order to simplify our considerations we assume that in E the second axiom of Hausdorff is satisfied, i.e., that for every  $x \neq y$  there exist disjoint neighbourhoods of x and y. This enables us to introduce the definition (of Cauchy's type) of the limit  $\lim_{t\to t_0} x(t)$  for functions of the real variable t with values in E.

We define  $D^+x(t)$  by the formula

$$D^+x(t) = \lim_{h \to 0+} \frac{x(t+h) - x(t)}{h}.$$

The interior  $S^0$  of the cone being non-void, one can introduce the relation

$$x < y \equiv y - x \, \epsilon \, S^0.$$

The relation ,,<" possesses the following properties:

- (7) if  $x \le y$  and y < z, then x < z,
- (8) if  $\lambda > 0$  and x < y, then  $\lambda x < \lambda y$ ,
- (9) if  $\lim_{t\to t_0+} x(t) > x_0$ , then for  $t > t_0$  and t sufficiently near  $t_0$  we have the relation  $x(t) > x_0$ .

Let us formulate some theorems implied by theorem 1 and theorem 2 (theorem 3 is true in locally convex topological spaces without the assumption  $S^0 \neq 0$ ).

THEOREM 3. Suppose that x(t) is continuous in the interval  $\Delta$ . Let S be a cone with a non-void interior. If the relation  $\Theta \leq D^+x(t)$  holds in  $\Delta$  except in an at most denumerable subset of  $\Delta$ , then for  $t_1 < t_2$   $(t_1, t_2 \in \Delta)$  the inequality  $x(t_1) \leq x(t_2)$  holds.

THEOREM 4. Suppose that x(t) is continuous in the interval  $\Delta$ . Let S be a cone with a non-void interior. If the relation  $\Theta < D^+x(t)$  holds in  $\Delta$  except in an at most denumerable subset of  $\Delta$ , then for  $t_1 < t_2$   $(t_1, t_2 \in \Delta)$  we have the inequality  $x(t_1) < x(t_2)$ .

Let us consider the function f(t,y) defined on the Cartesian product  $\Delta \times E$ ,  $\Delta$  being an interval. Suppose that E fulfils the second axiom of separation of Hausdorff and S is a cone with a non-void interior. The function f(t,y) is increasing in y if the inequality  $y_1 \leqslant y_2$  implies  $f(t,y_1) \leqslant f(t,y_2)$ . Now we formulate the theorem about "strong" differential inequalities. We use the notation introduced previously.

THEOREM 5. We assume that f(t, y) defined in  $\Delta \times E$ , where  $\Delta = \langle t_0, t_0 + \alpha \rangle$ , increases in y. Let x(t) and y(t) be continuous in  $\Delta$ . Suppose that the following conditions are satisfied:

$$(10) x(t_0) \leqslant y(t_0),$$

(11) 
$$D^+x(t) < f(t, x(t)) \quad \text{for} \quad t \in \Delta,$$

(12) 
$$f(t, y(t)) \leq D^{+}y(t) \quad \text{for} \quad t \in \Delta.$$

Under our assumptions the inequality

$$(13) x(t) < y(t)$$

holds for  $t_0 < t < t_0 + a$ .

Proof(2). According to (10), (11) and (12), since f(t, y) increases in y we get  $D^+x(t_0) < D^+y(t_0)$ . Therefore for some  $\delta > 0$  we have x(t) < y(t) for  $t_0 < t < t_0 + \delta$ . Suppose that the set

$$Z = F_{t} \{t \in (t_{0}, t_{0} + a), y(t)x - (t) \in S^{0}\}$$

is non-void. Write  $\tau=\inf Z$ . We have  $\tau\geqslant t_0+\delta$ . Functions  $x(t),\,y(t)$  are continuous and S is closed — therefore  $x(\tau)\leqslant y(\tau)$ . The inequality  $x(\tau)\leqslant y(\tau)$  implies  $D^+x(\tau)< D^+y(\tau)$ . Hence for some  $\eta>0$  and for  $t\epsilon(\tau,\,\tau+\eta)$  we have the inequality x(t)< y(t). We now see that  $x(t)\leqslant y(t)$  for  $t\epsilon\langle t_0,\,\tau+\eta\rangle$ . The function f(t,y) increases in y—according to the last inequality and to (11) and (12) we get

$$D^+x(t) < f(t, x(t)) \leqslant f(t, y(t)) \leqslant D^+y(t), \quad t \in (t_0, \tau + \eta).$$

Applying theorem 4 to the function z(t) = y(t) - x(t) we get x(t) < y(t) for  $t_0 < t < \tau + \eta$ . One can infer therefore the inclusion  $Z \subset \langle \tau + \eta, t_0 + a \rangle$  whence  $\tau = \inf Z \geqslant \tau + \eta$ , which is a contradiction.

II. Let us assume that E is a Banach space. We introduce the following assumption:

Assumption H. The function f(t,x) defined for  $t_0 \le t \le t_0 + a$ ,  $\|x-x_0\| \le r$  is continuous and takes on values from a compact set

 $V \subset E$ ; moreover if  $W = \text{conv}(V \cup \{\Theta\})$ , then  $a\delta(W) < r$  (3). We have the following existence theorem (4)

THEOREM 6. Suppose that the function f(t, x) satisfies the assumption H. Then in the interval  $t_0 \le t \le t_0 + a$  there exists at least one solution of the differential equation y' = f(t, y) satisfying the initial condition  $y(t_0) = x_0$ .

Proof. The set W is compact (see [4]). Let  $C_E$  denote the space of continuous functions  $\eta = x(t)$  defined for  $t_0 \leqslant t \leqslant t_0 + a$  with values from E, the norm being defined as usual: The subset E of  $C_E$  composed of those functions f for which  $||x(t) - x_0|| \leqslant r$  is convex and closed in  $C_E$ . Let us consider in E the following operation E:

$$\eta 
ightarrow F(\eta) = x_0 + \int\limits_{t_0}^t fig( au,\, x( au)ig)\, d au.$$

Denoting by y(t) the element  $F(\eta)$  we have

$$y\left(t\right)\epsilon x_{0}+\left(t-t_{0}\right)\operatorname*{conv}_{t_{0}\leqslant\tau\leqslant t}f\left(\tau,x\left(\tau\right)\right)\subset x_{0}+\left(t-t_{0}\right)\operatorname*{conv}W\subset x_{0}+a\operatorname*{conv}W\subset x_{0}+aW$$

(the last inclusion follows by  $\Theta \in W$ ). Hence  $||y(t) - x_0|| \leq a\delta(W) < r$ . Thus the operation F maps the set R in a subset T of R; moreover  $T \subset x_0 + aW$ , whence T is compact. Applying Schauder's fixed point theorem [6] we deduce that there exists an element  $\eta \in R$  such that  $\eta = F(\eta)$ .

Now we assume that  $S^0 \neq 0$ , S is a cone, the assumption H being fulfilled. Suppose that function x(t), continuous in  $\langle t_0, t_0 + \gamma \rangle$  where  $\gamma = r/\delta(W)$ , satisfies the inequalities

$$(\alpha) x(t_0) \leqslant x_0, D^+ x(t) \leqslant f(t, x(t)), t \in \langle t_0, t_0 + \delta \rangle$$

(we assume  $\|x(t)-x_0\|\leqslant r$  for  $t\,\epsilon\langle t_0,\,t_0+a\rangle$ ). Let us consider the equations

$$(\beta) y' = f(t, y) + \frac{1}{n} y_0$$

where  $\theta < y_0$  and  $||y_0|| = 1$ . We form a sequence of solutions of (3)  $x_n(t)$  such that  $x_n(t_0) = x_0$ ;  $x_n(t)$  is defined in  $\langle t_0, t_0 + a_n \rangle$  where

$$a_n = \frac{r}{1/n + \delta(W)}.$$

<sup>(2)</sup> In that proof we apply (7), (8) and (9).

<sup>(3)</sup> conv A denotes the smallest convex set containing the set  $A \colon \delta(W)$  stands for the diameter of the set W.

<sup>(4)</sup> This theorem has been communicated to me by A. Alexiewicz to replace a less general theorem of my own. I am indebted to Prof. Alexiewicz for his permission to publish this theorem here.

We have

$$f(t, x_n(t)) < x'_n(t).$$

Suppose that f(t, x) increases in x. By theorem 5 and  $(\gamma)$ , according to  $(\alpha)$ , we obtain

(8) 
$$x(t) < x_n(t), \quad t_0 < t < t_0 + a_n.$$

On the other hand, we have the equality

$$(\varepsilon) x_n(t) = x_0 + \int_{t_0}^t f(\tau, x_n(\tau)) d\tau + \frac{1}{n} y_0(t - t_0).$$

But x(t) are equicontinuous and their diagrams are in a compact set. From Arzela's theorem we conclude that there exists a partial sequence  $x_{a_n}(t)$  converging in  $\langle t_0, t_0 + \gamma \rangle$  almost uniformly to a certain function y(t). From  $(\varepsilon)$  we get y'(t) = f(t, y(t)) in  $\langle t_0, t_0 + \gamma \rangle$ . Because of  $(\delta)$  we have  $x(t) \leq y(t)$ .

We introduce the following definition:

DEFINITION. The solution y(t) of the equation y'=f(t,y) such that  $y(t_0)=x_0$  valid in  $\langle t_0,t_0+\alpha\rangle$  is called the *right maximal integral* of this equation for the interval  $\langle t_0,t_0+\alpha\rangle$  if for every solution x(t) of the equation y'=f(t,y) passing through  $(t_0,x_0)$ , valid in  $\langle t_0,t_0+\alpha\rangle$ , we have the inequality  $x(t)\leqslant y(t)$ .

Let us assume that the following condition holds:

(14) If 
$$x \leq y$$
 and  $y \leq x$ , then  $x = y$ .

If (14) is satisfied, then S is called a proper cone.

According to our previous discussion we formulate the following theorems:

THEOREM 7. Suppose that f(t,y) increases in y and satisfies the assumption H. Let S be a proper cone with a non-void interior. Then there exists a unique right maximal integral of the equation y' = f(t, y) for the interval  $\langle t_0, t_0 + \gamma \rangle$  ( $\gamma = r/\delta(W)$ ) passing through the point  $(t_0, x_0)$ .

THEOREM 8. Suppose that the assumptions of theorem 7 are fulfilled. Let the function x(t) be continuous in  $\langle t_0, t_0 + \gamma \rangle$  and satisfy the following conditions:

$$||x(t)-x_0||\leqslant r, \quad x(t_0)\leqslant x_0, \quad D^+x(t)\leqslant f(t,x(t)).$$

Then for  $t \in \langle t_0, t_0 + \gamma \rangle$  we have the inequality  $x(t) \leq y(t)$  where y(t) is the right maximal integral of the equation y' = f(t, y) for the interval  $\langle t_0, t_0 + \gamma \rangle$ , passing through the point  $(t_0, x_0)$ .

Remark 1. In a similar way one can introduce the notion of the right minimal integral and formulate theorems analogous to theorems 7 and 8.

Remark 2. If f(t, y) increasing in y satisfies the Lipschitz condition, a theorem analogous to theorem 8 may be proved by the method of successive approximations. In that case the H assumption and the assumption  $S^0 \neq 0$  are superfluous.

Remark 3. If y'=f(t,y) posseses a unique solution passing through the point  $(t_0,x_0)$ , the H assumption is satisfied and f(t,y) increases in y, then a theorem analogous to theorem 8 holds, if we assume in addition that the following condition is satisfied: if  $x_n\to y_0$ ,  $z_n\to y_0$  and  $x_n\leqslant y_n\leqslant z_n$ , then  $y_n\to y_0$ . In that case the assumption  $\mathcal{S}^0\neq 0$  is superfluous.

Remark 4. The theorems presented in this paper may be generalized to the case of derivatives of the form

$$D_{\varphi}^{+}x(t) = \lim_{h \to 0+} \frac{x(t+h) - x(t)}{\varphi(t+h) - \varphi(t)}$$

 $\varphi(t)$  being a real valued, stricly increasing function. Left-sided derivatives may be considered.

## References

[1] A. Alexiewicz, On a theorem of Ważewski, Ann. Soc. Polon. Math. 24 (1951), p. 129-131.

[2] N. Bourbaki, Espaces vectoriels topologiques (livre V), Actualités scientifiques et industrielles, Paris 1953.

[3] S. Mazur, O zbiorach i funkcjonalach wypuklych, Lwów 1936, p. 1-20.

[4] - Über die kleinste konvexe Menge, die eine gegebene kompakte Menge enthält, Studia Math. 2 (1930), p. 7-10.

[5] W. Mlak, Note on the mean value theorem, Ann. Polon. Math. 3 (1956), p. 29-31.

[6] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), p. 171-179.

[7] T. Ważewski, Une généralisation des théorèmes sur les accroissements finis au cas des espaces de Banach et application à la généralisation du théorème de l'Hôpital, Ann. Soc. Polon. Math. 24 (1951), p. 132-147.

Reçu par la Rédaction le 21.11.1956