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Let & be asystem of the classical functional caleulus of the first order,
containing the following primitive symbols: an infinite set 9?2 of indi-
vidual variables, a set C of individual constants, a set & of funetors (4. e.,
symbols for functions from individuals to individuals), a non-void set
R of predicates (7. e., symbols for relations), the signs (), +, -, -, —
and quantifiers [[, 3 where x<?). The set € or % may be empty.

z

Among the expressions constructed from these signs we distinguish,
in the familiar way, terms and well formed formulae. Let T and 94 be,
respectively, the set of all terms and the set of all well formed formulae
of d.

For every set of C W let S(sf) denote the elementary theory based
on the system J of the functional caleulus and on the set of of axioms.
In particular, §(O) is identical with the system o of the functional cal-
culus.

We shall always assume that the well formed formulae belonging
to of are closed. Clearly, this hypothesis puts no restrictions on our in-
vestigations.

Let Cn(w{) be the set of all theorems of the theory J{«{). A well
formed formula o is called refutable in o (ef) when —aeCn(sf).

Given a consistent theory (i), let €(A) be the Lindenbaum algebra
of this theory. More precisely, if we treat <’ as an abstract algebra with
operations +, -, —, —, the Lindenbaum algebra £(¢{) is the factor
algebra Ofj~g, where ~; is the congruence relation defined on W7
ag follows?!):

o~gf if and only if a— feCn(«l) and f —~ aeCn(g() for a, B2

If a9 then |a| , denotes the element of £(«f) determined by «.

It is known that

1) The eoncept of construecting algebraic structures with formulae of deductive
systems is due to Lindenbaum. It was never published by its author and came to be
known thanks to Tarski. Lindenbaum’s method was first published by MoeKinsey.
For the description of Lindenbaum algebras see e.g. [11].
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(1)  2(¢l) is a Boolean algebra with the unit element ¢ == |o| , where
aeCn(el).
Hence for each &/, § is refutable if and only if (8] , = 0.

2y ol C 181, if and only if a — BeCn(sl) 2).
® Xl > G~

where z¢°), @ (;) is a well formed formula which results from a < by the
substitntion of the term 7 for z (assuming that the necessary changes
of the bound variables of a were performed before the operation of substi-
tution) and > as well [] on the left side of these equalities are the
76T 2C

gymbols of the infinite Boelean sums and products in £(«7). ]

The sums and products (3) are said bo the sums or products correspon-
ding to the logical quantifiers, or gimply the l-sums or I-products.

A Boolean isomorphism kb of £(s{) onto a field of gets iz said to be
an [-isomorphism provided that it preserves all l-sums and I-products,
i 6., if

:} Ya ”,
ol "EJ o

@ ' WX ala) = L%h(a(:’) 1)
and ‘ . )

= ‘ ’
(1= (e[

for ael, <)/, where () and (M) denotes get-theoretical unions and
T 26T :
intersections.

A Lindenbaum algebra £(«f) is said to be representable by a field
of sets if there exists an Il-isomorphism of £(sf) onto a field of sets.

We shall discuss the question under what conditions £(«) is repre-
gentable by a field of sets.

Let <2, +, -, —> be a Boolean algebra. A non-void subset §C A
ig said to be a filter of this algebra when { 5= 2l and following conditions
are satistied: 1° if a, bef, then a-bef; 2° if acf and be¥, then a--bef.

A filter { is called prime provided that if a-+bef, then either aef
or bef.

%) The sign C denotes here the Boolean inclusion b(st‘w.uen the elements of the
Boolean algebra 2{sf).
?) For the proof of (3) see e.g. [11], p. 70.
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A prime filter § of £(+f) is said to be I-filter when the condition
| Jalgr et implies that there exists such =<C that ‘a(;)l ef.

By an easy analysis of the proof of Stone’s [18] representation theo-
rem for Boolean algebra we obtain

(i) £(sA) is representable by a field of sets if and only if for every well
formed formula B e non refutable in S(<7) there is an I-filter | such that
1Blsg et

In fact, if b is an l-isomorphism of £(e() onto a field & of subsets
of a set X and lﬂ'dl # 0, then h(|ﬂ|&q) is & non-void subset of X. Let
@oeh((8] ;) and let f, be the class of all sebs 4 ¢F such that zed. Since h
ig an ldsomorphism of €(sf) onto &, we infer that the set f= A~'(f,) is
the required I-filter of £(of) containing |8|.;.

Conversely, suppose that the condition mentioned in (i) is satisfied.

For every a<V, let jla o Pe the set of all I-filters f of £(sf) such that
la] ,ef. The mapping h which associates with every |a|,; e2(«) the set
llal,; is an lisomorphism of (i) onto the field £,(<7) of all sets
llall; (@em).

This isomorphism will be called the canonical isomorphism of (),
and the field £,(sA) — the canonical representation of £(cA).

In the sequel we shall use the notion of generalized model as well the
notion of generalized algebraic model*) of a theory f(«{). These notions
being known, we shall give only an outline of their deseription in the
language of theory of Boolean algebras.

Let J be a non-void set and let B be a complete Boolean algebra.
Let M be a mapping associating with every a<© an element Gy e J, with
every n-argument fe¥ an m-argument function fy defined on J with
values belonging to J, and with every k-argument »<R a k-argument
function ry defined on J with values belonging to B. The mapping N
will be called a realization of primitive signs of & in J and B.

The realization 9N permits us to interpret every formula aey as
a function ag, of several variables running over J with values in B3, viz.
it suffices to treat the individual variables as variables running over J
and the logical operations -+, -, —, —, 3, [] as the corresponding

& z

operations in B. In particular, the quantifiers }' and [] are interpreted
x z

a8 sums§ and products in B where » runs. through J. Clearly, if no free
variable appear in e, then oy is an element of 23.-

*) For the notion of a generalized algebraic wodel cf. [8] and [7].
Colloquium Mathematicum V.2. 10
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Every mapping ¢ of the set )7 into J is called a valuation of )7 in the
realization M. A valuation ¢ is said to be valable for a formule oW when,
after substitution of elements ¢(x) for variables x in the ay, respectively,
the value of ay, i3 equal to the unit element of B. In that case we shall
write ay, = e. A formula o is said to be salisfiable in M if there exists
a valuation ¢ of ©)? in the realization M, which is valable for a. A for-
mula « is called valid in M, if every valuation ¢ of )7 in the realization N
ig valable for «a, d. e., if ay, is identically equal to the unit element of 3.

A realization 9N is said to be a generalized algebraic model of a theory
() provided that every mesi is valid in M. A generalized algebraic
model M of a theory -5(«A) is called functionally free if, for every a<Op,
the condition a<Cn(«() is equivalent to the condition: « iy valid in 9.
A generalized algebraic model M of a theory (o) is said to be of a
power m, if the set J is of the power m.

Ino the case of a realization M in the two-element Boolean algebra
B,, the generalized algebraic model ofS(of) will be called a generalized
model of this theory. Notice that in a generalized model the symbol
of identity need mot be realized by the characteristic function of the
relation of equality. Of course, it is always interpreted as the characte-
ristic function of some congruence relation. If it is interpreted as the
characteristic function of equality, we omit the word ,,generalized”.
In this case the definitions of satisfiability, validity and model are equi-
valent to the usual ones, since every function of % arguments defined
on J with values in the two-element Boolean algebra B, can also be
treated as a k-argument relation on J.

It is known (see e. g. [3]) that for every theory «§(«{), if there exists
a generalized model of S(sA) of the power m, and n > m, then there exists
a generalized model of this theory of the power n. Moreover, if there exists
for a theory o («{) a generalized model of powerm, then there exists a mo-
del of $(<f) of the power < m. Consequently, the sentences “‘there is
a generalized model of §() of a power <m” and ‘“‘there is a model of
S () of a power < m” are equivalent. For our purpose it will be conve-
nient to use the notion of the generalized model since there is no reason
to distinguish the relation of equality.

It is known that

(i) The existence of an I-filter of L(sl) containing a given element
{Bl 4 7= 0 implies that there exists a generalized model M of S(s1) in a set
J of power T, such that B is satisfiable in N,

This remark immediately follows from the known fact (see e g.
[3], {10] and [8]) that the following realization N in the set T and in
the two-element Boolean algebra By = L (o)/f (where fis an I-filter of £(s7)
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containing || ) is the required generalized model of ${=l): gy = a for every

a,e(.),, fo = f for every f<F, and if r is a symbol of an nr-argument relation
which belongs to -R, then ry, is the characteristic function of an n-argument
relation defined as follows: ry(7,...,7

L S T) = [Ty, 7)) for LITRER
«o+y Ty e'C, Where for each aeQ, [tai,;] is the element of B, determined by
]a\deﬁ(‘c’i). The valuation ¢ associating with every xe‘) the same
element zeT is valable for 5.

__*(iji) If there emists a generalized model M of 5 (- () i a set J of power
< WV, such that a well formed formula f U’ is satisfiable in M, then there
exists an I-filler of S(<l) containing 3/3[!_[‘

Let us suppose that M is a generalized model of =5 (=7) in the set J
of power < VW, such that 8 is satisfiable in SN, Clearly, i8] ; 7 0. Let ¢
be a valuation of 97 in I, which is valable for B. Since J .< C:)ﬂ, we can
assume " that ¢(VY) = J. Obviously, if vl = 18], for some y Oy, then
@ is also valable for y. Let | be a set of all [7] ;€ L(<0) sueh that ¢ is va-
Jable for y. Then f is an Ifilter od £(sf) containing 18- In fact, it is easy
to see that { is & prime filter containing 18], Let us suppose that

Sle(2)

ZET '

of

belongs to f. Hence, by (3), !Za(w)j!,{ef‘ In consequence, the valuation ¢
< :
is valable for 3a(z). Thus
x
Ny, =e,
el
where ¢’ (2) is an arbitrary element jed and ¢'(y) = p(y) for every yeY
aln(! ¥ # x. Consequently, there exists such a valuation @y that @y (2) =
= y,,eJT, ®o(y) = @(y) for every y # x, y <) and Qg = €. Since p(V) = J,
there is such a y <7 that ¢(y) = g,(2). In conseqtence,

a(y) =e¢ and a(y)
2 [y x

The following simple example shows that the theorem converse to
(ii) is not true, and that 92 cannot be replaced by Tin (1ii). Let us consider
a theory («{) containing an enumerable set 9 of individual variables
and a set © of individual constants such that @ = 2%, Among all rela-
tion signs we have the sign ¥ of equality. The set ‘¥ of predicates contains
also a subset ‘%, of unary relation signs, such that % = 2% The get o

K
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of axioms is formed from the axioms of equality and from all the well
formed formulae as follows:

(6) B(a,d) where a,b are different signs belonging to €,
(1) XYr{z) where reR,,
&

(8)  JI[lr(@)-ry(y) — —B(x, y) where ry, r, ave different signs belong-
x ¥

ing to R.

Clearly, there exists a model of this theory whose power is ¢ == 9%,
On the other hand, there is no generalized mode! of J(<7) of a power
< 2%, Let us suppose that there exists an Ifilter of £(¢). Then by
a construction analogical to that described in the proof of (ii) we obtain
o generalized model of this theory in the set T of all terms. Identifying
any two terms 7, 7, if E(7y, 7,) ¢Cn(o7) it is possible to construet a model
of $(ef) of a power at most enumerable, which contradicts the previous
remark.

It is easy to see that T cannot be replaced by 7 in theorem (ii).
In fact, it suffices to consider a theory of («/) containing an enumerable set
Y of individual variables, a set € of the power 2% of individual constants
and the gign ¥ of equality. Let the set o of axioms be formed from the
axioms of equality and from all well formed formulae of the following
form:

(9) —F(a,b) where a, b are different signs belonging to ©.

Let f be an axiom of §(«f). Clearly, there is no generalized model
of &(<l) of the power 9. On the other hand, there is a model O of (1)

in the set J of the power €, viz. it suffices to put ay, s by, for a b,
a,bed, and to interpret I as the characteristic function of equality.
‘We may assume that for every jeJ there exists such an ae¢C that gy, = j.
By a similar argument to that used in the proof of (iii) we infer that there
exists an I-filter of 2(«f) containing |B|y.

For every set o C W, let Gy and 7 be respectively the set of all
individual constants and the set of all funetors which occur in the well
formed formulae belonging to /. Theorem (iii) may be sirengthend as
follows:

(iv) I} there exists a goneralized model M of <5 (x() in a set J of a power

< q7+€—é!,,+?7 —F in which a well formed formula § is satisfiable,
then there ewists an I-filter of L(s1) eontaining 18] -

The proof is similar to that of (iif). Suppose that I is a generalized.

model of §(of) in a set J of a power < ?ﬁ—ke—ed —|—"7—:%7—»pl and. that g
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is satisfiable in ON. Let @, ..., 2, be all the free variables in B. Let
@, - Gy be all the individual constants appearing in § which belong
to E—Cy and let gy, ..., g, be all the functors occurring in 8 which belong
to F—F 4. Interpreting every ge(F—F o) —(g1, ..., g) a8 a function agsu-
ming for arbitrary values of its arguments a constant value belonging
to J, we can transform the set

(V—(@, -0; ) F(C—=Cot)—(ar, -y O +(F ~Fe)—(gs, -, gx))

onto the set J. Let v be such a mapping. It is eagy to see that the reali-
zation 9N’ such that

gy = agy for aeCy and for @ = a; where j =1, ..., m,
ay = p(a) for ae(C—Cy)—{ay, ..., ay),

g = gm for geF 4 and for g = ¢g; where i =1,..., %
Gor = w(g) for ge(F—F o) — (g1, ..., gi),

T = Ty for reR

?

ig also generalized model of f(s7). Moreover, if a valuation ¢ of < in 9N
is valable for g, then the valuation ¢’ in M’ such that ¢’ (x;) = ¢ (z;) for
j=1,...,n and ¢'(x) = p(z) for zV—(2y, ..., z,) is also valable for g.
Let us consider the set f of all |y|g, ¥, such that the valuation ¢
is valable for y. It is easy to see that f is the required I-filter of (<)
containing |f]y.

From (i) and (ii) we find that

(v) If £(A) is representable as a field of sets, then for every formula 8
non refutable in () there ewists a generalized model M of IS(A) in a
set J of a power <G such that B is satisfiable in M.

As a corollary of (i) and (iv) we find that

(vi) If for every formula peW non refutable in S(of) there ewists a ge-
neralized model M of S(A) in a set J of a power <$+(3—@ﬂ+c ~F
(in particular of a power <)) such that § is satisfiable in M, then L(<)
18 representable as a field of sets.

It immediately follows from (v) and (vi) that

(vii) If & is a system of the functional caleulus such that P =G = m,
then the Lindenbaum algebra (1) of a theory S (of) isrepresentable as o field
of sets if and only if for every §<W non refutable in S(A) there exists a ge-
neralized model M of S(A) in a set T of a power < m, such that B is sa-
tisfiable in M.

Observe that the conditions:

1° There exists a generalized model of the power m for a theory
S(a),
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2° Be )W is non refutable in of,
do not imply in general that there exists a generalized model of this theory
of the same power m, in which § is satisfiable.

The following example is due to Mostowski. Suppose that & >m
and that the set <X is formed from two signs: the sign B of equality and
the gign T of two-argument relation. The set 7 is empty and Y)Y = §,.
The set & is formed from the axioms of equality and from all well formed
formulae of the following form: I(a, b), where @, b are different signs of
individual constants belonging to (.

Clearly, the theory of(<f) has a model of the power m (more generally:
of every power > 1). Let 8 be the formula

L(w,y) - B, y).
Obviously £ is not satisfiable in any generalized model of :5(¢{) of
& power < (4, in particular of the power .
The Godel-Skolem-Liwenheim-Malcev®) theorem can be formulated
as follows:

(viii) If B "W is not refutable in a theory §(<A), then there exists a ge-

f is satisfiable in N,

It follows from (vi) amd (viii) that

(%) If o <%, then L(A) s always representable as o field of sets.

From (vi) and (viif) we obtain the following corollary:

(x) If 77 = max(Ny, o7), then £(ci) is always representable as a field
of sets.

It also follows from (vi) and (viii) that

(xi) If ﬁ—ké’iﬁ—k?}*‘ o = Max (N, 1), then £(c() is always 7re-
presentable as a field of sets.

The following theorem results from theorem (x) and from theorem
3.6. of Rasiowa [8]:

(xii) For every consistent theory .5(ol) there ewists a functionally free
generalized algebraic model of this theory in a set J # 0 and in a field F
of all subsets of a set Y.

) By the Gobdel-Skolem-Liwenheim theorom we mean the resalt slating
that for every denumerable elementary theory there exists a model of & power
<< No. Malcev [4] has considered formal systems containing a non-denumerable num-
ber of symbols in the case of formulae of the sentential caleulus and he has proved
2 theorem analogous to Godel's theorem on the existence of models. The first state-
ment and proof of the theprem equivalent to (viil) was given by Henkin [3] and later
independently by Robinson [15].
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Indeed, let <§(<f) be a consistent theory. Clearly, we can assume with-
out any restriction of the generality of this theorem that )7 3> ma.x(x.,,ﬁ)
(if not, we can extend the functional caleulus on the basis of which the
congidered theory is formalized, increasing the set of individual variab-
les). By (x), £(s{) is representable as a field of subsets of a seb ¥, Lt &
be an [-isomorphism of £(s{) into the field & of all subsets of the set Y.
Then the realization 9N in the set 7 and in the field &, defined as
follows:

ag =a for ae@, fyu=f for fec7F,

(T, eny Tn) = h(lr(-rl, Cely T,I,)]p()

for every n-argument re‘R and 7y, ..., 7,¢7, is the required funetionally
iree generalized algebraic model of (cf).
Tt is easy to show that

(xiii) There are non-enumerable theories (i.e., with a non-enwmerable
set i of amioms) such that £(<1) is not representable as a field of sets.

In faet, let us consider the theory 5(ef)- containing a denwmerable
set )’ of individual variables, the equality sign , and a non-denumerable
set of unary relation signs. The set o of axioms is formed from the axioms
of equality and from all formulae of the form (7) and (8). It follows
from (i) and (i) that £(«) is not representable as a field of sets.

We see from the above theorems and examples that () is repre-
sentable ag a field of sets whenever either the set of all variables or the
“set of individual constants not appearing in the axioms or the set of all
functors not appearing in the axioms is rich enough.

If the functional caleulus f ig enumerable, then €(<f) is also at most
enumerable and the class of all I-sums and Il-products is enumerable.
Therefore it is representable as a field of sets on account of the general
theorem on Boolean algebras: '

(xiv) Each Boolean algebra can be isomorphically mapped on o field
of sets in such a way that & given enumerable set of infinite sums and pro-
ducts 4s preserved (see [11], 9.1).

By (vii) this implies the Godel-Skolem-Liwenheim theorem. This
method of the proof of Godel’s completeness theorem and of the
Godel-Skolem-Liowenheim theorem was proposed by the authors [9,10]
and by L. Rieger [12,13,14]. The method described above can also
be applied in the cagse where § is either enumerable or nof, but &
ig at most enumerable. In fact, to prove the existence of a model for
a given consistent theory of(sf), it suffices to consider the theory with the
same set of of axioms, but formalized on the basis of the enumerable
functional calenlus -§* contdining the enumerable set of individual variab-
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les and only these primitive constants which appear in the well formed
formulae belonging to o.

It follows from (xiv) that this method of proof of the Gddel-Skolem-
Léwenheim-Malcev theorem cannot be applied in the general case of non-
-enumerable theories with a non-enumerable set of axioms, if the set
VH(C—C ) (F —~F¢) is too small. This explains the fact that other
known methods (see [3,15, 2, 6, 7]) of the proof of that theorem require
the addition of a set of constants of a sufficiently great power.

Now we shall examine the case where the set o is empty. In this case
we shall omit the letter o everywhere in the notation assumed above,
e. ¢., we shall write |a| instead of |a|y, o/ instead of ||, € instead of
L(1), £, instead of £,(A), ete.

It follows from the above remarks that the following theorem can
easily be proved by the category method of the authors (cf. [11]):

(xv) The Lindenbaum algebra L is representable as a field of sets.

Neo hypothesis regarding the power of ¢ is here assumed.

Following Marczewski [5], we say that two fields of sets &, and §,
(of subsets of spaces X, and X,, respectively) are equivalent if there is
a one-to-one mapping v of X, onto X, such that

(10) p(d)eF, if and only if AF,.
Clearly the representation
(11) h(4) = p(d) for AF,

ig then a Boolean isomorphism of &; onto &, preserving all infinite unions
and intersections. Consequently the equivalence of &; and ¥, implies
the isomorphism of &, and &, (the converse statement is not true, in ge-
neral).

In particular, if a field of sets £,(<() is equivalent o the canonical
repregentation £, (<) of € (), then 2,(A) is also a representation of (1)
in the sense defined on p. 144.

Rieger [12,14] has found a very interesting field of sets £, equi-
valent to the canonical representation £, of the Lindenbaum algebra £.
Since he has formulated his result only in the case of O = Ny, we recall
his representation in the general case. Rieger’s proof [14] (based essen-
tially on (xiii)) is not valid if O > 80 The proof given below ig based.
-on another idea.

Let € be the set of all elementary well formed formulae a of J. No-
‘tice that if a;, aye€ and o, 7 a,, then also |a;| # |ag| and consequently
loall # flecal]-
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Let D be the class of all functions « defined on ¢, assuming as values
exclusively the integers 0 and 1. In other words, D is the Cartesian pro-
duet

(12) D=PTU,

where U, is the set formed only of integers 0 and 1. Clearly U, can be
considered as a Hausdorff space. Consequently D is also a bicompact
totally disconnected Hausdorff space, the so-called Canior discontinuum.
For every aed, let

D, = B(u(a) = 1).

The canonical representation £, of € is the clags of all subsets |B]|
of the get L of all I-filters of € (see p. 145). € i a kind of free Boolean
algebra with generators |a|, where ae¢l. More exactly, for every mapping
f of the elements |a| <L, where aeé, onto a class of subsets of a space X,
there exists & Boolean homomorphism kb of £ into the field B of all sub-
sets of X such that

(a) h iz an extension of f,

(b) the equalities (4) and (5) hold.

This follows from the fact that if « is refutable in o, then ay, is
identically equal to 0B for every realization IR in B and in arbi-
trary J = 0.

By isomorphism, the representation £, of € has the same property.
Consequently, there exists a homomorphism % of £; onto a field £, of
subsets of D such that:

(a') Rh{lell) = D, for every ael,

(b’) the equalities
) LT = o)

e = ufe
hold for every a<W.

Moreover, this homomorphism % is induced (¢f. [11]) by & point
mapping, ¢.e., there exists a mapping & of D into the set L of all I-filters
of £, such that
(13) h(A) = §1(4)

The definition of & is as follows. Let %, eD. The class f, of all elements
jale £ such that u,eh(||al) is an I-filter of £, 4. e., & point of L. We define
the value of & at the point w,eD by the formula £(uy) = f,-

On the other hand, the field & of all subsets of D is a free comple-
tely additive field of sets with D, as generators, 7. e., for every mapping f

for every Aef%,.


GUEST


154 ¢COMMTUNICATIONS

of the class of all sets D, (ae¢) onto a elass of subsets of a space X, there
existy a homomorphism ¢ of &F into the field of all subsets of X such that
(e} g is an extension of f,
(d) g preserves all infinite unions and intersections, i. e.,

Q(LtJ'At.) = Lth(At)y
.(I(Oflt) = [)g(4,)

t

(14)
(15)

for every class of sets 4, C D.
Moreover, g is induced by a point mapping, . e., there exists a mapping
1 of X into D such that

(16) g(d) = n~'(4) for every A CD.

The proof of this fact is similar to that of an analogous theorem of
Sikorgki [17]. Let 7, be the characteristic function of the set f(D,) C X.
‘We define # by the formula

n(®) = {n,(@)} eD
and the homomorphism g by (16).
In particular, there is a mapping 7 of L into D such that (16) defines

2 homomorphism g of the field §F of all subsets of D into the field of all
subsets of L, such that

(¢") g(D,) = |laf for every aed,

(d') ¢ preserves all infinite unions and intersections, ¢.e., (i4)
and (15) hold.

By (a') and (c¢') we have

gh(lall) = llall
Since the clags of ail {ja] where ae¢ generates £,, we infer thab
) ’ ghillel) = llo] aeW.

This implies that % is a ome-to-one mapping, . e, an isomorphism
of £, onto €, and g restricted to £, is identical with A%, 4. e., A" = 918,.

If uy, uyeD and u; 5 u,, then there is an ¢e€ such that only one
of these points belongs to D,, for instance

tyeD, = h(lla]) = £ ([lal),

{16) for every ael.

for every

upeD—D, = h(|—al) = £ (L~ [al).

Consequently, &(u;)ellof| and &(uy)el—|al|. This proves that £ is
one-to-one.

By.a similar argument we infer that % is one-to-one.

It follows from (a’), (¢’), (13) and (16) that

(18) £7n™(D,) = D,

for every ael.

icm
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Consequently

(19) Eln(4) =4 for every ACD.

Substituting any one-point set for 4 in this equality, we infer that

(20) 7 =&,

i. €, 1 is a one-to-one mapping of L onto D and

(21) h(A) =n(A) for every Ae2,.

This proves the Rieger’s theorem:

(xvi) £, 18 equivalent to £,.

This theorem explains the structure of €., since the structure of £,
is rather obvious: £, is the least field (of subsets of D) containing all
sets D, and closed with respect to all infinite unions and intersections
corresponding to the logical quantifiers.

Let £, be the subalgebra of all |a] e £, where a is an open well formed
formule of .

For every aecW let |||al|] be the set A(|a|]) C D, where his the
isomorphism defined in the proof of (xvi). By definition |||a||] = D,
for acé. If a is an open formula, then [||a||] is both open and cloged in
the bicompact, totally disconnected space D, and conversely, each sub-
set simultaneously open and closed in D is of this form, since it is formed
from the sets D, by means of finite unions, intersections and comple-
mentations. This implies that D is homeomorphic with Stone’s repre-
sentation space constructed for the Boolean algebra £,. More exactly,
for every prime filter f, in £, there exists exactly one point u, such that

(22)

lalef, if and only if %,¢|{|all], where o is an open well formed
formula.
On the other hand, each point uyeD determines uniquely an I-filter
§ of £, viz. the filter | determined as follows:

lalef if and only it uee|llall] (ae).

Consequently:

(xvii) Every prime filter of L, can be uniquely exiended to an I-filter
of €.

Let o be any set of closed formulae belonging to 9, By the same
method as in the case of theorems (ii) and (iii) we prove that

(xviid) If there is a point u,eD such that ugel||al|| for every aesl, then
there exists a model of (<l) of a power < T.
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(xix) If there is a model of S(A) of a power <V, then there is a point
e D such that wuyel||al|| for every aed.

Obviously, D may be replaced by L in (xviii) and (xix) (of course,
[lla]|] should then be replaced by lalf).

Let us consider D as the topological space with another topology.
Previously the neighbourhoods were the sets corresponding to open
well formed formulae. Now we define the neighbourhoods as the subsets.
of D corresponding to closed well formed formulae. This topological
space will be denoted by D*. The space D" is not a T,-space, since there
are points u,, w,eD* which are not separated by any subset of D* of the
form |(la|||, where o is a closed well formed formula of .§. Tn fact, let ret)?
be a sign of a k-argument relation. Let z,, x4, ..., £, be different indi-
vidual variables of o and let f; be the formula

(%, %5, ceey '7"104-1)' — 1 (Lyy By 0y DBppp1) -

Since #, is not refutable in <§ we infer from (i) that there exists an
i-filter {; of £ such that |f,]ef,. Let 8, be the formula

—F (1) Byy o ey Bag1) T (B, Byyvers Drpr) -

Let f, be the set of all |a/<€ for which the following condition is
satisfied: a results by the change of variables #, and z, from some 3,
such that |y] f,. Then f, is an I-filter of £ containing |8,|. Since || 5 |8
and |By|+[fs| = 0 we infer that f, 54 f,. On the other hand, for every
closed well formed formula o the following equivalence holds: [aef,
if and only if |a|f,. Hence fyeflef| if and only if f,e|la]. Thus we have
demonstrated that there are points f,, f,eL which are not separated
by any subset |l of L where a is a closed well formed formula. By
(xvi) an analogical statement holds for the space D*, which proves
that D" is not a T,-space.

It is easy to see that D” is a Hausdorff space after identification
of points u,, u,eD* which are not separated by a set [|ja]||, where «
is a closed well formed formula.

(xx) If W =P, then D* is a bicompact space.

It suffices to prove that if 93 is a collection of closed well formed
formulae such that

(23) D=D"=% el +[lasl|| ... +lilanll] for any finite sequence

Opy oeey Uy eB, then
D= U ]all].
B

icm®

it and only if wuyel|laf]l. We have

157

COMMTUNIOCATTIONS

Condition (23) means that the set <7 of all formulae —a where
ae)3 18 a consistent set of formulae. By (viil) there exists a model of
$(c() of the power = @, %. €. (see (iil)}, there is an I-filter f, of £ containing
all elements |—al where a<. Let u, be the point of D such that || €f,
woelll —allt = D—|l|al]] for every
waef)i. Consequently,

¢ U |llel]],

a6"}}

which completes the proof of (xx).
(xxi) If D is compact, then for every comsistent sei cf of closed well
formed formulae of <5 the theory () posesses a model of a power < T,

Since the theory () is consistent, we have

0 # llla-..

for every finite sequence aj, ..., anesl. Since D* is bicompact, there
is a point wyeD* = D such that w,e () ||alll, 4. ¢, wel|llal|l for every

camlll = lleatl] -+ [famll]

ag .o’

aedl.
The I-filter f, of € determined by w, (i. e., the class of all |a]¢£ such
that uye||lal|[) contains all elements |a|, where aegl. Consequently, by

(xviii), there is a model of ~§(«f) of a power < C.
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THE COMPLETENESS OF THE HOMEOMORPHISMS GROUP
OF A COMPLETE SPACE
BY
A HBULANICKI (WROCEAW)

Let X Dbe any completely regular space. Tt admits a uniform strue-
ture |V} defined by all neighbourhoods V, of the set A = {(@, @) e X}
in the product topology in Xx X [2].

A filter {U,} of a space which admits a uniform structure (7.} is
called a Cauchky filter if, for each o and some ., U, xU,CV,.TIf
every Cauchy filter of the space converges, then this space will be called
complete "(in the uniform structure {V}).

Given any topological group H, one can define a uniform structure
{"3.} by saying that (z,y)e B it 2B,y ~yB, and B, are neighbour-
hoods of the unity in H. A topological group is called complete in the
sense of Raikov if it is complete in the structure {*B*} [3].

Let H be the homeomorphisms group of X. It is known bhat the
family of sets B, = {h:(w, h(z))eV, for all e V} makes H a topological
group, where B, is the system of neighbourhoods of the identity trans-
formation of H [4].

The aim of this note is the proof of the following

THEOREMY). If the space X ds complete (in the mawimal uniform
Structure of all neighbourhoods V, in XX X) and the homeomorphisms
group H of X is topologized by the system of neighbourhoods of the unity
B, then H is complete in the sense of Raikov.

The proof iy based on the following two lemmas:

Lmmma 1. Let (U,) be a Oauchy filier in H; then, for each o there is
@ v such that &, fe U, implies (h(2), f(x)) eV, for all zeX.

Proof. Since {U,} is a Cauchy filtier, %, fe U, implies, for each a
and some 7, f¢B,h or (z, f(h™ (@)« V, for all weX, thus (h(®), f (@) e V.

*) The completeness of the homeomorphisms group in the g-topology of a lo-

cally compact space was proved by R. Areuns [1]. His proof is based on the local com-
pactness of the space and cannot be transferred to our case.
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