

COMMUNICATIONS

158

- [12] I. Rieger, On free &complete Boolean algebras, ibidem 38 (1951), p. 35-52.
- [13] On countable generalized σ -algebras with a new proof of Gödel's completeness theorem, Cz:ch. Math. Journal 1.76 (1951), p. 29-40.
 - [14] O jedné základni věte matematické logiky, ibidem 80 (1955), p. 217-231.
 - [15] A. Robinson, On the metamathematics of algebra, Amsterdam 1951.
- [16] R. Sikorski, On the inducing of homomorphisms by mappings, Fund. Math. 36 (1949), p. 7-22.
- [17] A note to Rieger's paper "On free \aleph_{ε} -complete Boolean algebras", ibidem 38 (1951), p. 53-54.
- [18] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), p. 37-111.

Requ par la Rédaction le 28.1.1957

THE COMPLETENESS OF THE HOMEOMORPHISMS GROUP OF A COMPLETE SPACE

вт

A. HULANICKI (WROCŁAW)

Let X be any completely regular space. It admits a uniform structure $\{V_a\}$ defined by all neighbourhoods V_a of the set $\Delta = \{(x, x) : x \in X\}$ in the product topology in $X \times X$ [2].

A filter $\{U_{\tau}\}$ of a space which admits a uniform structure $\{V_{\alpha}\}$ is called a *Cauchy filter* if, for each α and some τ , $U_{\tau}, \times U_{\tau} \subset V_{\alpha}$. If every Cauchy filter of the space converges, then this space will be called *complete* (in the uniform structure $\{V_{\alpha}\}$).

Given any topological group H, one can define a uniform structure $\{{}^*\mathfrak{V}_a^*\}$ by saying that $(x,y)_{\epsilon}{}^*\mathfrak{V}_a^*$ if $x_{\epsilon}\mathfrak{V}_a y \cap y\mathfrak{V}_a$ and \mathfrak{V}_a are neighbourhoods of the unity in H. A topological group is called *complete in the sense of Raikov* if it is complete in the structure $\{{}^*\mathfrak{V}^*\}$ [3].

Let H be the homeomorphisms group of X. It is known that the family of sets $\mathfrak{V}_a = \{h: (x, h(x)) \in V_a \text{ for all } x \in V\}$ makes H a topological group, where \mathfrak{V}_a is the system of neighbourhoods of the identity transformation of H [4].

The aim of this note is the proof of the following

THEOREM¹). If the space X is complete (in the maximal uniform structure of all neighbourhoods V_a in $X \times X$) and the homeomorphisms group H of X is topologized by the system of neighbourhoods of the unity \mathfrak{V}_a , then H is complete in the sense of Raikov.

The proof is based on the following two lemmas:

LIEMMA 1. Let $\{U_{\tau}\}$ be a Cauchy filter in H; then, for each a there is a τ such that $h, f \in U_{\tau}$ implies $(h(x), f(x)) \in V_{\alpha}$ for all $x \in X$.

Proof. Since $\{U_{\tau}\}$ is a Cauchy filter, $h, f \in U_{\tau}$ implies, for each a and some τ , $f \in \mathfrak{V}_a h$ or $\{x, f(h^{-1}(x))\} \in V_a$ for all $x \in X$, thus $\{h(x), f(x)\} \in V_a$.

¹⁾ The completeness of the homeomorphisms group in the g-topology of a locally compact space was proved by R. Arens [1]. His proof is based on the local compactness of the space and cannot be transferred to our case.

LEMMA 2. Let $U_{\tau,x}$ be the set $\{h(x): h \in U_{\tau}\}$. If $\{U_{\tau}\}$ is a Cauchy filter in H, then $U_{\tau,x}$ is a Cauchy filter in X relative to the structure $\{V_{\alpha}\}$. Moreover, for each α , there exists such τ that $U_{\tau,x} \times U_{\tau,x} \subset V_{\alpha}$ for every x.

Indeed, we have $U_{\tau,x} \times U_{\tau,x} = \{(f(x), h(x)): f, h \in U_{\tau}\}$. Thus it remains to apply Lemma 1.

Proof of the theorem. Let $\{U_{\tau}\}$ be a Cauchy filter in H (relative to the uniform structure $\{^*\mathfrak{D}_a^*\}$). By Lemma 2, $\{U_{\tau,x}\}$ ist a Cauchy filter in X. By the completeness of X, $\{U_{\tau,x}\}$ converges, say, to y. We are going to prove that for the function $g:x\to y$

1º for each a there exists such a r that

(1) $f \in U_{\tau}$ implies $(f(x), g(x)) \in V_{\alpha}$ for every $x \in X$,

 2° g(x) is a homeomorphism of the space X.

Proof. 1° Let any V_a be given. There exists such a V_{τ} that $\overline{V}_{\tau} \subset V_a$. By Lemma 2 for some τ and for each $x \in X$ we have $U_{\tau,x} \times U_{\tau,x} \subset V_{\tau}$. Consequently $\overline{U}_{\tau,x} \times \overline{U}_{\tau,x} \subset \overline{V}_{\tau} \subset V_a$.

Since f(x), $g(x) \in \overrightarrow{U}_{\tau,x}$, our assertion follows.

2° The continuity of g is reached by the following simple reasoning: For each a we take λ such that a

$$(2) V_{\lambda} \circ V_{\lambda} \circ V_{\lambda} \subset V_{\alpha}.$$

For each λ and some μ

160

(3) $(x, y) \in V_{\mu}$ implies $(f(x), f(y)) \in V_{\lambda}$

and by 1° there exists such a τ that

(4) $f \in U_{\tau}$ implies $(f(x), g(x)) \in V_{\lambda}$ and $(f(y), g(y)) \in V_{\lambda}$.

Hence, by (2), (3) and (4), $(x, y) \in V_{\mu}$ implies $(g(x), g(y)) \in V_{\alpha}$. If $\{U_{\tau}\}$ is a Cauchy filter relative to the uniform structure $\{{}^{\bullet}\mathfrak{A}^{\bullet}_{\alpha}\}$ so is also $\{U_{\tau}^{-1}\}$. Consequently $\{U_{\tau,x}^{-1}\}$ converges, say, to y'. The function $g': x \to y'$, like the function g, is continuous, i. e., for each α and some v

(5) $(x, y) \in V_{\nu}$ implies $(g'(x), g'(y)) \in V_{\alpha}$.

By lemma 2 for each V_a there exists such a U_{τ_1} that

(6) $f \in U_{\tau}$, implies $(f^{-1}(x), g'(x)) \in V_{\alpha}$ for every $x \in X$.

We take any V_a and we choose V_r from (5) and U_{τ_1} from (6). For V_r we take U_{τ} from (1). If $f \in U_{\tau} \cap U_{\tau_1}$, then, by (6),

(7) $(x, g'(f(x))) \in V_{\alpha}$

and, by (1), $(f(x), g(x)) \in V_r$; consequently, by (5)

(8)
$$\left(g'(f(x)), g'(g(x))\right) \in V_{\alpha}$$

From (7) and (8) we have $(x, g'(g(x))) \in V_a \circ V_a$. In view of the free choice of V_a , (g'(x)) = x, or $g' = g^{-1}$, which completes the proof.

COMMUNICATIONS

REFERENCES

[1] R. Arens, Topologies for homeomorphisms group, American J. of Math. 48 (1946), p. 593-610.

[2] N. Bourbaki, Les structures fondamentales de l'analyse, Livre III. Topologie générale, Paris 1940.

[3] М. И. Граев, Теория топологических групп I, Успехи мат. наук 5.2 (1950), р. 1-55.

[4] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris 1940.

Recu par la Rédaction le 5, 11, 1956

²⁾ By $V_a \circ V_\beta$ we mean the class of all pairs (x,z) for which there is an element $y \in x$ such that $(x,y) \in V_a$ and $(y,z) \in V_\beta$.