

SOME EXAMPLES OF BOREL SETS

BY

R. SIKORSKI (WARSAW)

The purpose of this paper is to give very simple examples of Borel sets M_{α} and A_{α} (lying in the Hilbert cube H) which are exactly of the multiplicative and additive class α respectively ($0 \le \alpha < \Omega$). The definition is by induction.

Let M_0 be a one-point subset of H and $A_0 = H - M_0$. Suppose the sets M_{ξ} and A_{ξ} to be defined for all ordinals $\xi < \alpha$. If α is isolated, i.e. $\alpha = \beta + 1$, let

$$M_{n} = A_{n} \times A_{n} \times A_{n} \times \ldots \subset H^{\aleph_{0}};$$

if α is a limit ordinal, let

$$M_a = A_1 \times A_2 \times \ldots \times A_{\xi} \times \ldots = \underset{\xi < a}{\mathbf{P}} A_{\xi} \subset H^{\aleph_0}.$$

Since H^{\aleph_0} is homeomorphic with H, we may treat M_a as a subset of H. Let $A_a = H - M_a$.

It follows immediately from the definition that

(i) M_a is a Borel set of the multiplicative class a in H; A_a is a Borel set of the additive class a in H.

The following lemma expresses a remarkable property of the sets M_a and A_a :

(ii) If X is a metric space and $B \subset X$ is a Borel set of the multiplicative (additive) class a in X, then there exists a continuous mapping φ of X into H such that $\varphi^{-1}(M_n) = B$ (such that $\varphi^{-1}(A_n) = B$).

The proof is by induction. The case $\alpha=0$ is obvious. Suppose that α is isolated, i. e. $\alpha=\beta+1$, and $B\subset X$ is a Borel set of the multiplicative class α , i. e. $B=B_1B_2B_3...$ where $B_n\subset X$ is a Borel set of the additive class β (n=1,2,3,...). By the induction hypothesis, there is a continuous mapping φ_n of X into H such that $\varphi_n^{-1}(A_\beta)=B_n$. The continuous mapping $\varphi(x)=\{\varphi_n(x)\}$ $\epsilon H^{80}=H$ has the property $\varphi^{-1}(M_\alpha)=B$. If α is a limit ordinal, the proof is similar.

By passage to complements, we prove the lemma for Borel sets B of the additive class a.

COMMUNICATIONS

171

(iii) M_a is not of the additive class α in H; A_a is not of the multiplicative class α in H.

Let B be a Borel set (in a metric space X) which is of the multiplicative class α , but is not of the additive class α . By (ii), there is a continuous mapping φ of X into H such that $\varphi^{-1}(M_a)=B$. Thus the conjecture that M_a is of the additive class α would imply that B is of the additive class α .

Observe that replacing everywhere the Hilbert cube by the Cantor set or by the set of all irrational numbers, we obtain also sets M_{α} and A_{α} satisfying (i) and (iii). Lemma (ii) remains true under the additional hypothesis that X is 0-dimensional.

The defect of the above proof of (iii) is that we used the known fact that there exist Borel sets of arbitrarily high classes. I do not know any direct proof of (iii). I do not know also any solution of the following problem:

P 215. Let A_n be a Borel subset of the additive class α in a metric space X_n , but not of the multiplicative class α in X_n (n=1, 2, ...). Prove or disprove that the set $A=A_1\times A_2\times ...$ (which is, of course, of the multiplicative class $\alpha+1$) is not of the additive class $\alpha+1$ in the space $X=X_1\times X_2\times ...$

Reçu par la Rédaction le 21.8.1957