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REMARKS ON INVARIANT FUNCTIONS IN MAREOV
PROCESSES
BY
K. URBANIK (WROCEAW)

I. Let X be a finite or denumerable set. By (Q(X), Byx P> we
shall denote the stochastic process satisfying the following conditions:

1° The sample functions we2(X) are X-valued step functions de-
fined for t == 0;

2° Byx, is the Borel field of subsets of £(X) generated by the class
of sets of the form

(1) At z) = {w:o(t) =a) (t>0,sX).

3° P is a probability measure in Byx).

4° There iz o continuous function p(t, w, y) of the variable 1 (t = 03
&, yeX) satisfying the following conditions:
{0) p(t, 2, 9) =0,

(8) Zp(tamr y) =1,

VeX

(1) pllatts, e, y) = 3 plt, 2, 2)p(t, 2,9),

2¢X
3 P(% {ose) = o)) = Pllo:w(0) = aof) [] p<'t7“‘ti~17 @y, 2 for
t=0 j=1

0=t <t <...<t,.
TIn the present note a stochastic process (2(X )y Bagy; P> is called briefly
a Markov process, and a function (i, @, y) is called a fransition proba-
bildty.

Let us consider a Markov process (Q2(X), Bgixy, P). In view of a the-
orem of Lévy ([2], p. 362) for every <X exists the limit

(2) Q (z) =t]imP({w:w(t) = g}).

The function @ () is called the Wmit dz'étribution of the process
{Q(X), Box,, P.
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Obviously Y Q(z) < 1. Moreover, from the conditions (y) and ()
zeX
it follows that the equality

(3) Q) = Yo, 2,9)Q()
reX
is true.

By Bgx(7) (—o0 <7 <00} We shall denote the Borel field of sub-
sete of (2(m) generated by the class of sets of the form (1) for which
t > max(0, ). Obviously, for v <0 the following equality holds:
Box)(v) = Bax)- :

We shall define the transformation 7', (—ee < v < o) for the sets
of the form (1) with ¢ > v by the formula

Tfw:o() =2 = lwra(t—7) = o}.

Putting

7, E=UTH, IFB=T5,
i 7

we obtain the definition of transformation 7', for each set belonging to
Box (7).

Tet P(B|w(l) =) (BeBax/(t), zeX) be the conditional probability
of B if w(t) =12 (cf.e.g.[1], p. 288). It is easy to prove that the equality
(#) PILE|o®) =o) =P(Ble(t+t) =a) (1> 7; BeBay(t))
is true.

A set B is called invariant under the transformation I, it FeBgix(v)
and T,.F = E.

A real-valued function 7 defined on £(X) is called an invariant func-
tion of the process (2(X), By, P) it for every Borel set U of real num-
bers the set {w: f(w)eU} is invariant under all transformations 7',
(—oo < 7 < 00).

The purpose of this note is to examine the power of sets 4 for
which P({w:f(w)ed}) =1, where f is an invariant function of a Mar-
kov process. This problem hag been raised by C. Ryll-Nardzewski.

II. From 3 theorem of Doob {[1], pp. 460, 511) we obtain the follo-
wing proposition:

If the equality
(5) Q@) =1

reX
i satisfied for the limit distribution of a Markov process, then each invariani
Junction of this process asswmes essentially X values af the most *).

!) 4. e., for each invariant function f there exists a set A, such that A< X
and P(lw:f(w)eA)) = 1 (where B denotes the power of the set B).
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Proof. Let {Q(X)}, Byx,, Py be a Markov process with transition
probabilities p (¢, 2, ¥). Let us suppose that equality (5) holds. We shall
introduce the following probability measure:

(8) P*(B) = D P(Blw(0) = ) Q(x).

re X

It is easy to verify that (Q(X), BH(X),P*‘) iy also a Markov process
with transition probabilities p (¢, 2, y). Moreover, <Q(X),B9(X),P*> is
a stationary Markov process, i. e., for each ¢ > 0 and yeX the equality
(7) P*({w:w(t) =y} = P*{ew:w(0) = 7}
is true. In fact, definition (6) implies that the following equalities hold:

Plloio) =3)) = Y plt, 2, 1)Q@), P{lo:00) =y)) =0@).

xe X

Hence, according to (3), we obtain formula (7).

Let f be an invariant function of the process (2(X), Byx), P).
Obviously, fis also an invariant function of the process {£2(X), By, P
Since for each Borel set 4 of real numbers {w:f(w)e 4} By (7) for every
7, formula (4) implies

P({w:f(w)eAHw(r) = x) = P(T,{w:]‘(cu)eA}ico(T) = )
= P zo:f(a))eAHa)(O) = .'1:)
Consequently, for each A,
Pllo:f(o)ed)) = Y Pllo:f(o)ed})|o(0) = o) P{{v:o(r) = a}).
wex

Then if T - co according to (2) and (6), we obtain

(8) P({w:f(w)zA}) = P*({w:f(m)eA.}).

We have proved that f is an invariant function of the stationary
Markov process {Q(X), BQ(X),P*)\. According to the theorem of Doob
([1], pp. 460, 511) there is a function #* measurable relative to the Borel
field F generated by the class of sets of the form [w:w(0)= @} (weX),
such that

(9) P ({wif(o) = f*(0))) = 1.

It is easy to see that there exist ab most X disjoint gets belonging
to &. There is then a set 4 of power at most X, such that
P*([w:f*(w)ed)) =1. Consequently, according to (8) and  (9),
P({w:f(w)eA}) = 1.
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The theorem is thus proved.

IIl, Let X, be an arbitrary finite or denumerable set. We ghall
prove the following proposition:

For each sequence q(x) (xeX,) of non-negative real numbers satisfying
the inequality

(10) D el <1,

T8 Xy

there is a Markov process {Q(X), By, P> such that

X oXx,,
gle) for weX,,
Q) = _ -
0 for  xeX—X,,

and there exists an invariant function of this process which assumes essentially
non-denumerably many values?).

Proof. Let us denote by X" the set of all systems (3y, 4y, ..., 4n),
where 4, =0 or L (j=1,2,...,n) and » =1,2,...

Without restricting generality we can assume X"~ X, = 0. Put
X = X"v X,. Obviously, X is a denumerable set.

‘We shall define the funetion p(t,®,y) ({ = 0;o,yeX) by the fol-
lowing formula:

e it w,yeX" and, for some n, 3= {iy,..., 0D,
. ok Y=y ooy g iy -on Juy (B2 0),
(11) pltax,y) = ll it oz =yeX,,
0 in the other case.

It is easy to verify that the function p(z,x,y) satisties the conditions

(o), (B) and (y).

Let us write

q(®) it zeX,,
(12) p@) =]1— Dl if o=,
YeXy
0 it weX® and 2 52 1.
Obviously, the following relations hold:
pi@)=0, M p@)=1.
zgX

2) A function [ asswmes essentially non-denumerably many values, if-for each
denumerable sot A the inequality P({w:f(w)eA}) <1 is true.
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Considering the cited properties of the functions p(, z, ) and p(x),
it follows from the well-known tBeorem of Kolmogorov ([3], IIL, §4)
that there is a stochastic process (@2, B,,P) satisfying the following
conditions;

(i) the sample functions w<Q are X-valued functions defined for
t = 05

(ii) Bg is the Borel field of subsets of © generated by the clags of
sets of the form (1);

(iii) P is the probability measure in B, satisfying (8) and

(18) Pllo:a(0) =) =p@) (zX).

Formula (1) implies
1) Pt 2) == ~t for  zeX”,
1 for xeX,.

Consequently limp(t,®,s) =1 uniformly in . Hence, according
0+ .

to theorems of Doeblin (cf. e. g. Doob [1], pp. 57, 266), we can assume that
the sample funetions weQ2 are step functions.
Formula (14) implies
ze X7,
Te _XO .

lim
0+ t

1—p(t, =, x) _{1 for
“lo for

Therefore, in view of a theorem of Doob ([1], p. 260, 261), we obtain the
decomposition Q = 0, v Q,v Q,, where the sample functions e,
are constants, w(t) = weX,, the sample functions wef2, are X*-valued
step functions with infinitely many jumps and P(2,) =0.

Let 7((w) << 7,(w) < ... be the sequence of all jump points of & sample
function weQ, and

0 [zl(w) for 0 <t< 1 (0),
w(t) =
la(w)  for  w (o) <t< (o), k=2,3,...

Obviously, #(w) (k=1,%,...) are X"-valued measurable functions.
Let Q, denote the set of all sample functions w e, satisfying for each %
the following condition: i #(w) = {0 (0), ..oy Gngyy (@)D, then 2., (w)
= (@), ..., Un(oy (@) fu{@), ..., iy (@)

Let {t;} be the sequence of all positive rational numbers. Then the
following inclusion holds:

Qy— 82, C!}Jt U {w:w(ti) =iy ooy, @ () = Gy, 17m>}7
<ty * .
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where () run over all systems {(iy, ..., %> # {ji, ..., jny satistying the

¥
condition # >m or n < m and j, #~ 4, for some & < n.
implies the inequality

P(2y— 1)

\<~L‘2t Zp(tk_tii iy ooy ndy TRRT j,,))P({w:(o('t,) = <i17 Tty i’/b\})'
i<ty *
Henee, according to (11), P(£2,— ) = 0. .
Finally, we have P(2,v &,) = 1. Sefting 2(X)= 2,02, we
obtain the Markov process {(X), Byx,, P
From the conditions (y), (3) and from the definition of the probabi-
lity measure P follows the formula

Pllo:o@) =a)) = Dot v, 2)p()-

This inclusion

YeXy
Hence in, view of (11) and (12),
e—tt'n—l
1__ —
j%‘qw/)) 2’"’“1(’”/—,'1)!
15) Pl{o:o()=a))= TR G B R A
g{z) it meX,,
0 i B =0,4, ... 0.
Consequently
Q@) =]ij({m:w(t) =m}) — {Q(m) for wzeX,,
o0 0 for zeX—X,.

Moreover, for each wef, there exists a zero-ome sequence r,(w),
73(®), ... and a sequence of integers m,(w) < #, (@) < ... such that

2 (w) :<"'1(‘°)a---,'rnk(m)(w)> (k=1,2,..).

It is easy to see that r,(w) (k = 1,2, ...) are measurable functions
and for each © the equality
{w:iwey, r(0) = 1}

-]

o tjg n.:LI_nJ—H 11,...,71,-1L,7Jk+1 ..... jﬂ{w:w(t,) = Gurerfuena sy e h)}

iy troe. This implies
{w:we.Qo, 73(w) = ’} «Byx,(7)

(t=0,1;k=1,2,...; — co < 7 < 00)

icm
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and
T w:we g, ri(0) = i} = {wrmey, 1p(0) = 1)

(i =0,13k=1,2,..., —occ < 7 < c0).

Thus the sebs

(16) {wrwe, ri(w) =i} (E=0,1;k =1,2,...)

are invariant under all transformations 7', (—oo << 7 <C o).
For each weR(X) we shall define

N7 (@)

3"
n=1

2 if

if weR
(17) fole) = ' "

weld,.

The set of all values of this function is equal to ¢'v {2} (C denotes
the Cantor set).
We shall prove that f, is an invariant function of the process

<-Q(X)5 B!)(X); P>
Let I be an interval of the form

Je k
i K 1 .
(18) [2%’2?+23k] (o= 0,13k =1,2,...).
=1 =1

Then

3
{@:fo(@)eI} = N{o: 0y, 15(0) = i}
i=1

From the invariance of sets (16) it follows that {w: fo(w)el} is inva-
riant wnder all transformations 7, (—oo < v << oo). From the definition
of 2, and from (17) it follows that {e:fy(w) = 2} = 2, is also invariant
under all transformations T,. Obviously, the Borel field generated by the
class of sets (18) and set {2} is equal to the field of all Borel subsets of
0« {2}. Consequently, for each Borel set U, {0,:fs(w)e T} is invariant
under all transformations T,, We have thus proved that f, is the inva-
riant function of the process {AX), Bgixy, P>-

Now, we ghall prove that f, assumes essentially non-denumerably
many values.

Let
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Then, in view of (17),

Cs

{o:fg(w) =2} =N

20 n

(@) = (iyyooey D).

1

Hence, according to (15),
* —ttw,

(19) ({“’:fo(w) = m}) < (1- Zq(y)) lim \161_4_ o=

w6 Xp

" Let A be an arbitrary denwmerable set of real numbers. Then
{'w:f,,(co)eA] C {w:fo(w) = ’)} v E}C {w:fo(w) == w}
wedC
Hence, according to (10), (15), (17) and (19),

Pl{osfy(0)ed)) < P(lo:fw) =2)) = Dgln) <1.

xe.Xg

Then f, assames essentially non-denumerably many values. The
theorem is thus proved.
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