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The problems of the theory of diophantine approximation concern
in general the solvability and non- solvability of systems of inequalities
in rational integers (or integers of an algebraic extension R(#) of the ra-
tional field). However, in the case of solvability, not very much is known
about the localization of the solutions. The significance of this point of
view concerning the classical theorems of Dirichlet and Kronecker was
shown recently in a book [2], by the third of the present authors. In
this note we shall discuss the localization-problem concerning the in-
equality

(1) la—wmfy] < Ay
where A4 is a positive constant,
(2) 0<a<1

®

and #, y are integers subjected to
(3) (,y) =1, y>1.

At a given 4, as we know, even in the case of solvability, no-inter-
val I on the half-line ¥ > 1 can be preassigned in such a way that the
system (1)-(3) has certainly a solution with y in I for all «’s ho<a<1.
However, if we drop the requirement (»,y) = 1, the situation changes.
As the second of us proved (see [1]), there is & constant ¥y > 1 such that
the inequality |a—a/y| <y~ has a solution with ¥ <y < N* for all
o’s in 0 < a < 1 if only N > N, and this is the best-possible in the sense
that N2 cannot be replaced by o(N?2). Here we shall make the first step
towards the solution of the

Problem I (P 241). For fized A > 0 and ¢ > 1 we denote by S(N, 4, ¢)
the set of those o’s for which with an integer N > 2 the system (1)-(3) s
solvable with an integer

(4) N<y<ozv;
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‘I>f IS(N,A, c)| srmnds for the measure of S(N, A, ¢), does
(5) AlrimIS(Ny 4,0 =7f(4,0)
exist and, if it exists, what is its ewplicit form?

If we take into account the previous remarks, the localization (4)
seems to be very strong and one might guess that f(4, ¢) == 0. It is some-
what surprising that this is not the case. We shall prove

TeEOREM L. We have for A >0, ¢> 1

lim |8(W, 4, ¢)| =

N-+oa

3
) (1—- vz;)min(l, 24).

TuEoREM II. For A =1 and ¢ > 2 we have the stronger estimation

3 (5 2
a2 \e &

TrEorREM III. For 0 < A < ¢f(1+¢?) the limes exist and

lim |S (X, 4, ¢)] >

N—>c0

124
f(.A’ 0) = ';ZT].OgC.

TemoREM IV. For 4 > 10, ¢> 10 saJ, we have for all sufficiently
large N

1
404’
1. €. if the hm[S(N A, ¢) ewists, it 45 < 17

ISV, 4,¢) <1—

A proof thaﬁ f(4,¢) exists for 4 >0, ¢ > 1, scems to be mther
difficult. Theorem I for A = 1/2 gives the flrst; step towards the solution
of the following problem of the metrical theory of continued Imcfaons
which was the startmg point of the present investigations:

Problem 11 (P 242). Denoting the set of those a’s in 0 < a <1, for
which with an integer N > 2 and ¢ > 1 the interval N <y < eN containg

at least one demominator g, of the regular continued fraction of a, by
R(N;¢), does

® lim [R(N, o)) = (o)
exist and, if it ewists, what is dts explicit form?
Namely, since any fraction @/y with (2,y) =1 and
la—afyl < 1/[2y®

is & convergent of «, theorem I gives Immediately the following
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CoROLLARY. For the above defined R(INV, c)-set we have

R .3 13-
Im [R(N, o) > ;,?(1"?‘)'

_ Next we pass to the proofs of the above theorems. In cuder to prove
theorem I let g be an integer with
(7 N<yg<

and h an integer with

[eN]—1 .

(8) ' I<h<yg—1, Mg =1~
First we assert that for two different pairg of such integers we have
: hy ke
9 L
® g1 ga |

For if not and we had

1
> '[C—N]—{.

(10)
then we had

halgy < Bafg2s
[hyga—Tagy] < g12/[eNT <1

which contradicts to (10). Then we construct open intervals I (% /g a.round
each of our fractions R/g as centres of the length . ' oo

min(1, 24)
o[NP

It follows from (9) that no two of these intervals have _common
points; further for all o’s in each I(L/g) we have :

la—h/g]

)-(4) are satisfied as well. Hence

< AJ[eNT <A/g,‘
i e. (1)

[eN]~1 :
min (1, 2:4)
)| > — -
ISV, 4, 0] > — 2 ”ZA ?(0);
where ¢(g) stands for the usual Euler number-theoretical function. Since,
a3 we know,

gm —2¢(n) “z,

= e e RS
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we have

1
mr > plg) = o (A1),

Nsoo N<g<[eN]—1
and theorem I follows.
In order to prove theorem II we start from the following remark.
Let Iy,...,I; be finitely many intervals, which might have common
parts, J the union of all I,’s and I® the subset of J, which is covered by
the I,’s at least I times. Then we have I <k and

ke
(12) NN}
v 1=2

We again consider the points h/g with (7) and (8) and construet
around each h/g as centre the open interval I"(h/g) with the length
2/[cN 2. For the o’s of I"(h/g) we bave

la—hjgl < 1/[eNT < Alg

-owing to (7) and 4 >1; from (8) it follows that

(13) I'(hjg) C 8N, 4, 0).

The intervals I'(k/g) may now have common parts; we assert,
however, that no three of them have a common point. Indeed, if /g,
< holgs < hylgs are any three consecutives of our fractions (7)-(8), then’
we have from (9)

hs My 2

95 g [NT'

e I'(lyfg) and I*(hy/gy)
and (13) give

cannot have common points. Hence (12)

(14) ISV, 4, o)l = 3 |I* (hfg)|—|I®].
R .

In order to es’mma,te the right-hand side of (14) from below let our
fractions be

h’1'~|~1 —..,.Z‘l_’i —
gv—l—l 9y

0 < hyfg <Myl <...<1 and

Obviously, the intervals I"(h,[g,) and I*(h,.1/g,,,) have a common
part if and only if 8, < 2/[cN] and their contribution to I® ig
2/[eNF—4,. Thus from (14) it follows that
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" the condition 8, >

DIOPHANTINE APPROXIMATION 128

> (wr—)

S<2/[eN]?

=Z%+Z¢,.

H=2/[eN1?

2
SOV, 4,01 > D) e =

dy<2/[cN)2

_ From (9) we have 4, > 1/[eN]* and therefore

[eN]—1
1 1
(15) IS, 4,0 > ;N' POty D b

v
8>2/[eN)?

~ As to the second sum in (15) we may observe that for all fractions
h,/g, with
N <yg, < [g N] —1

2[[eNT is fulfilled. Indeed, owing to

c [eN]—1  {[eN]
— I, I e L
[2 N] 2 T2
we have the inequality
. h, ! 1
b B 1 2

= > > > -
O ([gN]_l)[cN] [eN]

Thus the second sum in (15) is greater than

1

W ®(9)-

No<[eN[2]-1

Using this and (11) theorem II follows from (15).

Next we turn to the proof of theorem III. Around each of our /g’s
with (7) and (8), as centres, we construct an interval of the length 2.4 /¢
If we can prove that no two of these intervals have a common point,
then we obviously have '
(16) IS(V, 4, 0) =24 2 _?L{Zl.

: N<o<[eN] =Y
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In order to show that mo ‘two intervals of the above type have
a common point, let k,/g, < B, 104 be two consequmve ones ‘ol our
fractions; then there is no overlapping mdeed if we can prove that

LT L (hv+1 ___W:_i;) — (Zqi + _A;) > 0.
' ; : %41 9”1 9% 0

But thls is true indeed, since the difference on the Io[ﬁ is not smaller than

1 4 a1

[/
).
4on & Gn % grial )
further g,/g,JrL is certainly between ¢ and 1/o and the quadmtio function

y—A—Ay* is non-négative for 1 /c < y < ¢. Since pa.ltml summa,‘mon from
(11)-gives at: once

for # — oo, theorem III follows from (16).
Finally we prove.theorem IV. We shall:prove it in a twofold sharper
form; denotmg by & (N A c) the seL of a’s Wlth the property that

(1 Cla—ojyl <A,

is solvable with integer o and y satisfying

(18) . . N<y<eN

(i. e. droppmg the restmctlon (%, y) =1). We obvmusly ha,ve S (V,4,0
C R*(¥,4,0) and ‘we assert; that the inequality

oo it b e T e e
(19) . 8 (N7 4,0l < 1“‘M‘

holds for all sufficiently Iarge N 5. To prove (19) we congider the inter-
vals : :

& - At a A¥E
20 - <7 T
) b Taow SOSy Ty
“where e o
f21) Nj24'¢ <b < N|A%
and ‘ "

(22) Cliga<b, (a,b)=1.
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If afb < a'[b' are two consecutive. ones of “our. fractions, we.. have

from (21) R e
,“_,£~2=“_'+(q_i) s "._a.' v
b TN T T\ ) T Sy b ’+101v2', B

< o AS¢f | A a' A%

b N\z 10.N2 <_": + — 20]\72’

1 e. the mtervznls (20) (10 not ovcr]&p '[‘helr total length 1s for sufﬁmently
arge s : ,

o e L e - Ty

3
T 201\72 } 40nA4‘ &

using (21) and (11). Hence, if we succeed in proving that for the o't in
(20) the inequalities (17)-(18) are not solvable, the proof of theorem IV
will be finished.

In order to prove this assertion we show first that fixing « in (20)
the solution «/y of (17) cannot be chosen as a/b. The assumption
@ly = afb would yield owing to (20) and (17)

A a @

O - ==

S0 ST T4y

4
'

.z
o — —

Y

<

which is false owing to 4 > 10, ¢ > 10. If finally a/y s afb, then owing
to (18), (21) and (17) we have

Ade? B 1 1 r  a
N T (eN)(N[AYF) <§5\(3 ’b’)
@ a A A%
4;-“ L R STy

which is again false owing to 4 > 10, ¢ > 10.

Added in proof. We can prove the following theorem: Let 4
and & be arbitrary posittve numbers. Then there ewist ¢, = ¢y(4, &) and
Ny = Ny(4, ¢) so that for ¢> c, and N > N,

S(N, 4, ¢) > 1—e.

As a corollary we obtain: for each &> 0 there is a ¢, and an N
such that the set of those numbers in (0,1) to which there is a con-
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vergent with denomin:tor g s tisfying
F<qu<eN (6<6 N<N)

has a measure grester th'm 1—-—6:.
We sh_1l return to this subject elsewhere.
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ON THE APPROXIMATE SOLUTIONS
OF FUNCTIONAL EQUATIONS IN IP SPACES
BY
M. ALTMAN (WARSAW)

In papers [1] and [2] we have suggested an iterative method for
solving non-linear functional equations in Banach spaces. This method
may also be regarded as a generalization of Newton’s well-kknown clagsical
method. But this generalization is essentially different from that given
by L.V. Kantorovitch [5].

The present paper contains a specification for the case of the real
I7-spaces and a real Hilbert space of the iterative method defined in
paper [2]. An application to approximate solutions of operator equations
in this space is also given. In particular we consider in the IP-gpaces an
analogue of the method of steepest descent for non-linear operator equa-
tions.

The iterative process for solving non-linear functional equations
is defined in papers [17], [2] as follows:

Let X be a Banach space and let F'(z), zeX, be a non-linear conti-
nuous funectional which is differentiable in the sense of Fréchet. Then
the approximate process for solving the non-linear functional equation

1) F(z) =0
is defined by the formula
' F(z,) F(x,)
2 Xy = Ly ——e @, = (I, —— e
(2) 1 0 1) Yo, 41 n Ta(¥n) Yny

where , is the initial approximate solution, f, = F'(a,) for n =0,1,2,...
denotes the Fréchet differential of F'(z) a5 the point & = &, and y, are
elements appropriately chosen in X, 4. e |y, = 1, faltm) = lIfalls
n=0,1,2,..., provided that such a choice is possible.

The specification for the case of the real IP-spaces and the real
Hilbert space consists in the appropriate choice of the elements Yy It
appears that in this case the choice of the elements y, is effective and
may be realized in a simple manner. :
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