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in which denumerably long atomic formulas may occur, and disjunctions
and conjunctions of systems of formulas with the power of the continuum
may be formed(5).
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(®) Wo should like to indicate here some other publications in which logical
systems with infinitely long expressions are dirootly or indirectly involved, in fact,
[1]. [2), [3], and [4]. In particular, the obinrvations in this note are related to some
results in [2]. While the discussion in [2] is lacking a precisely defined logical and
set-theoretical basis, it seems that tho rosults of this discussion could be (and probably
ought to bo) interpretod as helonging to tho theory of models for prodicate logic Pg
with arbitrarily long infinite exprossions.

Tae scminar in the foundations of mathematics condunoted by L. Ilenkin and
A. Tarski at the Univorsity of California at Borkeloy in the fall somester of 1956
was entiroly dovoted to tho discussion of predicate logies with infinitely long ex-
préssions. In particular, Henkin and Tarski communicatod some new rosults in this
field (not yet publishod), and Mrs. Carol Karp gave a detailed report on hor investi-

‘gations into the syntax of such logics.
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1. Introduction. The algebraic study of homology theory may be
said to have originated with Poincaré who associated with every compact
polyhedron certain numerical invariants, the so-called Betti numbers
and torsion coefficients of the polyhedron ('). Emmy Noether is credited-
with the observation that these numerical invariants were in fact inva-
riants of certain finitely-generated Abelian groups, the homology groups
of the given polyhedron.

More precisely, given any simplicial complex K triangulating a poly-
hedron |K|, one considers, for each dimension #», chains of n-simplexes
of the triangulation K, such an n-chain being abstractly an element of
the free Abelian group freely generated by the n-simplexes. The boundary
of any (oriented) w-simplex is a well-defined (n—1)-chain (consisting
of the suitably oriented (n—1)-faces of the simplex) and one obtains in
this way & homomorphism 4, from C,, the group of n-chains, to 0,_; (?).
The n-cycles of K are the n-chaing in the kernel of 8, and the n-bounda-
ries of K are the n-chains in the image of 9, ;. The fundamental relation
83,10, = 0 (homomorphisms are here written on the right, 50 05,0,
means d,,, followed by 0,) implies that the group of n-boundaries B, (K)
is a subgroup of the group of n-cycles Z, (K) and so a factor group H, (K)
= Z,(K)|B,(K) iz defined. This factor group is the n-th homology group
of K and it may be shown that’if &, I are triangulations of homeomorphie
polyhedra then their homology groups are isomorphic; briefly the homology
groups are topological invariants. Moreover, the Betti numbers and torsion
coefficients of dimension # of the polyhedron |K| are the rank and inva-
riant factors of the finitely-generated Abelian group H,(K).

To-day the scope of homology theory is very broad. There are various
homology theories for general spaces (e. g. singular theory, Cech theory);
there is a dual theory of cohomology in which additional elements of alge-

(4 It is believed that Heegard pointed out to Peincaré the possibility of tor-
sion in homology relations of cycles.

(3) We may put 0_3 =0, dy = 0.
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braic structure make their appearance (e¢. g. cohomology ring, Steenrod
powers); there are homology and cohomology groups with respect to ar-
bitrary Abelian coefficient groups and even gencralizations of these (e. .
local coefficients, coefficient sheaves); and there are abstract homology
and cohomology theories in which the underlying objects for the theory
are not topological spaces but are themselves algebraic structures (e g.
(non-Abelian) groups, associative algebras, Lie algebras).

It is thus necessary considerably to widen the definition of homology
theory in order to include its various aspects. In [3], Cartan and Rilen-
berg describe a purely algebraic theory, called homological algebra, in
which the algebraic constructions and operations employed in the
various applications of homology theory are presented within a wuni-
fied framework. In this paper we are concerned with the question of pre-
senting certain fundamental notions of homological algebra.

At the first level of generality it appears that a basic concept in ho-
mology theory is that of a differential group; that is, an Abelian group ¢
together with an endomorphism §: O — € such that 8% = 0. If Z is the ker-
nel of § and B = C0 then B C Z and H (C), the homology group of (0, d),
is defined as Z/B. If C is graduated as 30, and €,0 C C,_,, then ¢ is called

n

& chain complex and H (C) inherits a graduation from ¢. A map $:0 — 0’
of differential groups is homomorphio if it preserves the differential group
structure; that is, if it is & group homomorphism and satisfies @9’ = 9.
Then @ induces in an evident way a homomorphism &,:H (C) -~ H(C").
The tranformation (C, @) (H(C), ®,) may be called the homology
functor H ; it passes from the category (*) of differential groups and (dif-
ferential group-) homomorphisms to the category of Abelian groups and
homomorphism. If 0, " are chain complexes and & preserves graduation,
then so does @,.

In the classical homology theory of polyhedra we have essentially
the following situation. Let (*) K be the category of simplicial complexes,
let P be the category of polyhedra, let € be the category of chain comple-
xes and let Ag be the category of graduated Abelian groups. Then there

are functors
PrERScE 4,

w:here P.associa,tes with & complex its underlying polyhedron and ¢ asso-
ciates with a complex the chain complex generated by its simplexes.

(*) The notions of category and funclor are to be found, e.g. in [4].

(%) For the sake of simplicity, we omit the descripti £ {; i
categories K, P, C, Ag. ription of the maps in the .

__iom°®
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Then the invariance of the homology groups is expressed by saying that
if, for two objects K, L of K, P(K) and P(L), are equivalent in P, then
HC(K) and HC(L) are equivalent in Ag.

If we are not concerned with the graduated structure of the chain
complex we may replace C, 4g by D, A, where D is the category of diffe-
rential groups and A is the category of Abelian groups; several results
and concepts associated with the homology functor € — A, are speciali-
zations of corresponding features of the homology functor D — 4 (e. g.
exact homology sequences). At the next level of generality it appears
undesirable and unnecessary to restrict the underlying algebraic structure
of the category D to that of an Abelian group. Maclane [6] and Buchs-
baum [2] have given axioms for a category, called by Maeclane an Adbelian
category and by Buchsbaum an exact category, which are sufficient to
enable the passage to homology to be effected within the category. That
is to say, if E is any exact category, then the maps of ¢ have kernels and
images and quotients of objects by subobjects may be taken; thus it
is meaningful to assert that a map 0:F — F in E satisfies 92 = 0 and it
iz possible to define the homology object associated with any such pair
(E,0).

In many aguments in present-day algebraic topology (and, more
generally, in homological algebra) diagrams play an important role. A sim-
ple case of such a diagram is a square

AL 4
,La \sz'
B3 B

where, for example, each of 4, A’, B, B’ is an Abelian group, each of
@, ¥, a, a’ is & homomorphism and the diagram is commutative in the sense
that ap = go’. In the arguments to which we refer it is noteworthy that
the fact that the objects 4, 4', ... possess elements appears to play a sub-
sidiary role, the main role being.played by such facts as that the maps
¢y P, ... possess kernels and images, that the maps (homomorphisms)
A — B, for fixed 4, B, may be “added” and that maps 4 — B, B = C,
for fixed A, B, C, may be “multiplied”. These observations have pro-
vided 2 strong motivation for the axioms of an exact category. It may
be said, roughly speaking, that Maclane and Buchsbaum proceed by
“throwing away” the elements, retaining only the objects and the maps
and insisting on certain important properties exhibited by the category
A of Abelian groups. . ‘

In our approach we are guided by similar considerations to those
of Maclane and Buchsbaum; again speaking approximately, we. attempt
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in our treatment to throw away both the elements and the objects, re-
taining only the maps. More precisely, the objects remain as suppressed
indices for the maps but do not appear in the notation(*); thus we do not
at this stage attempt to broaden the scope of homological algebra beyond
exact cabegories, but change the emphasis by notational and conceptual
simplification.

The algebraic object which we study is a ringoid in the sense of M, G.
Barratt [1]. This is a ring except that the ring operations are not always
defined. Then the maps of the category A form a ringoid and we intro-
duce axioms, derived from those of Buchsbaum (Axioms I-IV of [2]),
which imitate certain essential features of the ringoid of maps of 4. How-
ever our axioms are expressed in terms of the classical notions of ring
theory. It appears to us that, when presented in this way within the cadre
of ring theory, many of the notions of homological algebra take on an
appearance familiar to the algebraist and the arguments are, as we have
said, in some places conceptually simplified. We stress particularly that
the strict duvality present in an exact category, which is an important
feature of Buchsbaum’s treatment, iy also given a central position in our
axiomatization.

An application of homological ringoids to the classical theory of fini-
tely generated chain complexes (not necessarily free Abelian) is to be found
in [5]. Details of the general theory will be published later.

2. Homological ringoids. Before presenting the axioms of a homo-
logical ringoid in an abstract form, we return to the concrete case of the
category A of Abelian groups. For maps in thig category (7. ¢. homomor-
phisms) addition and multiplication are sometimes defined if a; and a,
are maps from 4 into B, then 80 is a;+ a,; and if « maps 4 into B and B
maps B into C, then of is the resulting map from 4 into 0, consisting of

a followed by f. The set of maps then forms a ringoid in the sense that
the usual ring axioms, namely

ety = aytay, (aytay)tay = ay+ (ag -+ ay),
(2.1) (aB)y = a(fy),
(ay+ap)ff = wh+af, Blagt as) == fay-}- foy

are satistied whenever the compositions of maps oceurring in them are
defined. Moreover, for fixed 4, B, the set of maps A -» B forms an addi-

(®) Abelian group theory customaxily employs 3 alphabets: one (capital
Roman) for groups, one (small Roman) for group elements, and one (small Girook)
for homomorphisms, Maclane and Buchsbaum dispense with small Roman letters
and use 2 alphabets. We dispense with large Roman. letters, tool
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tive Abelian group. The conditions under which maps are composable
for multiplication are just those satisfied by the maps of any category.
Similarly, we postulate the existence of identities in a ringoid, that is
of maps ¢ such that

(2.2) =& =1,

whenever the products £ and i are defined. When there is no danger
of confusion, identity maps may indiscriminately be denoted by 1. The
zero map from A to B in A4 is the map which sends every element of A
into the zero element of B. No confusion arises if the zero map between
any two groups is simply denoted by 0, since the ferminals of each parti-
cular zero map can eagily be deduced from the context.

Apart from the general laws governing composition and the existence
of identities, the collection of maps of Abelian groups possesses certain
typical features which coxrrespond to the fact that every map (i. e. homo-
morphism) has & kernel and a cokernel. In any ringoid, the set of elements
& which annihilate a given element o on the left, so that £a =.0, forms
& left ideal L°a which we call the left annihilator of a. It turns out that in
the present case these annihilators are always principal ideals, that is,
there exists a map p such that pwa = 0, and & = gu whenever &u = 0.
We then write Lo¢ = L(,u).'Moreover, 4 is a monomorphism or, as we
shall say, is left-reqular; that is, &u = 0 implies that & = 0. In fact, if
a maps A into B, u is the map which embeds the kernel of o in 4.

Similarly, in any ringoid, the right annihilater of an element o is
a right ideal R%q, but in this special ringoid it is always a principal right
ideal; thus . '

R'a = R(e)

where & is an epimorphism or, righi-regular, which means that ¢£ =0
implies that & = 0. If B, is the exact image of 4 under a, then ¢ is the
map which projects B onto B/B,.

The concept of a homological ringoid is derived by abstraction from
the collection of maps between Abelian groups. Since we wish to empha-
size the algebraical structure of such a ringoid, we shall henceforth speak
of elements rather than maps. Nevertheless it will still be convenient
at times to employ diagrams such as

e f
>

to indicate that the product af is defined.

We say then that a seb H of elements a, 8, ... forms a homological
ringoid if it is a ringoid and if, in addition, the following axioms are
satisfied:


GUEST


182 P. J. HILTON AND W. LEDERMANN

Axtom I. (i) For every left-regular u there ewisis a right-regular & such
that Ry = R(e).

(il) Por every right-regular &, there emists a left-reqular p such that
Loe = L(p).

Axyom II. For every right-regular &, there exists a left-regular u such
that R(e) = R .

(i) For every left-regular p, there exists o vighi-regular & such that
Lp) = L. ' v

Axtom IIT. Every a is ewpressible in the form a = eu, where e s vight-
reqular and p is left-reqular.

Let us first draw attention to some purely algebraical consequences
of these axioms. Axiom I ensures that the annihilator of a left- or a right-
regular map is always a prineipal ideal. But by Axiom IIT this statement
is seen to hold for any o. For example, consider the right annihilator
of o. This consists of all & such that a& = euf = 0. Since ¢ is right-re-
gular, this is equivalent to & = 0; thus R'e = Ry = R(¢') where
¢ is a suitable right-regular element.

By & combination of Axioms I and II it can be shown ([5], Propo-
sition 2.1) that the relations R'u = R(z) and L'e = L(u) imply each other
where p and & ave left and right-regular respectively. We then eall pand ¢
mutual annihilators and write -

(2.3) ule.

Thus this symbol expresses the following facts: (i) pe = 0, (i) p& =10
iroplies that & = ex and (i) &s = 0 implies that & = Au. Of course, to
verify (2.3), it is sufficient to verify (i) and (i) or (i) and (iii).

The factorization postulated in Axiom IIT is not unique, but if
a = ¢ep = &'y’, there exists a wnit O, that is an element which is both
left and right-regular, such that & = 0, u = Ou'.

We should remark that in order to avoid exceptional cases we have
assumed that among the zeros of H there are some, 8ay &, that are right-
regular and therefore admit only zeros as right factors. Similarly, there
are left-regular zeros u,. These two types of zeros correspond in A4 to the
zero maps 4 — 0 and 0 — B respectively. ' ‘

The concept of ewactness is formulated as follows: let o = & tay
B = ezu; be two elements, each factorized in accordance with Axiom III.
We then call the pair a, 8 exact, and we write alp if ues. Note that the
exactness of a, f does not depend on the factors Up OF &,.

As an example of a type of argument which frequently occurs in

this' wark, we consider the following proposition, to which reference will
be made in the next section:
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PRrROPOSITION 2.4. If Ally and Alno, then o is left-regular.

Let no = eu be the factorization of ne. Then Alno means that Ale.
But we are given that A||n. It follows that ¢ = %0 where 0 is a unit. We
now have 79 = nfu. Since 7 is right-regular, we may deduce that ¢ = 6,
whence it is evident that o is left-regular.

One of the commonest situations in homological algebra is a commu-
tative square, that is a set of 4 elements «, f, o, o satisfying ao = of,
ag is illustrated by the diagram: )

N

(2.5) e; ¢

=~

Now let a = eu, f = n» be the factorizations of « and . We shall
show that (2.5) splits as follows:

L3 »
Ye dr do
7 v

that is, there exists a unique element v such that ev = on, po = v
Proof. Let u'lle. On multiplying the given equation

(2.6) Epc = pny

on the left by u’ we obtain that 0 = u'pnv. Since » is left-regular, it follows
that u’ on = 0. Now the relation u’|le implies that there exists = such that
on = ve; and 7 is unique, because ¢ is right-regular. Substitutir.lg for gn
in (2.6) we find that euo = ey whence, by the right-regularity of e,
uo = v, which completes the proof.

An extension of this argument leads to the more complete commu-
tative diagram

vd e dr o Yo

v n

.

AURIR A

where ulle’, ¥'|lp and »|ln’, and where ¢ and y (and ) are determined up
to units by (2.5).

3. Applications. In this section we indicate by simple examl‘)les
the techniques which may be employed to generalize to homologvl_cal
ringoids classical theorems of Abelian group theory and homological
algebra. )

Consider the classical isomorphism theorem: if X,¥,Z are Abeha,.n
groups with ZC Y C X, then X|Y ~ X|Z/Y|Z. We first elabqra.te this
theorem, putting greater emphasis on the homomorphisms involved.
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Let
04573 R0,
0>25X5Q -0,
0>Y5Xx5P >0
be exact sequences such that p = Ay’.
TrEoREM 3.1. (Isomorphism Theorem). There is an. exact sequence

0+R3QOSP >0
such that the diagram
LY 4R
Y e
(3.2) X—->Q
B\ ¢0’
P
s commutative; moreover, o and o are uniquely determined.

‘We {first remark that 3.1 constitutes a precise statemant of the iso-
morphism theorem: we may write R = Y/Z, Q = X/Z, P = X|¥, and
we prove that o induces an isomorphism @ /R = P.

‘We prove the theorem without any appeal to the structure of the
Abelian groups themselves, merely using the homological-ringoid struc-
ture of the homomorphisms. Thus the problem is this: given elements
Aypyp'ymy &8 e with Ay, plle’, w'lle and Ap’' = p, to establish the exis-
tence and uniqueness of elements ¢, ¢ with np = p's’, ¢'c = ¢ and glo.
Thus we start with a diagram

Ao

RN,
wN M
(3.3) C
&
&N Q/U

The existence of ¢ follows from the relation AMu'e')y = ug’ = 0, since
Mn; the uniqueness of p follows from the fact that 7 is right-regular.
The existence of o follows from the relation pe = Au'e =0, since ulls’;
the uniqueness of ¢ follows from the fact that ¢ is right-regular. Thus
we have the complete diagram

A 7
N e
(3.4) D

N o

=

icm
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and it remains to prove that oljc. First we prove that o is left-regular;
as observed in 2.4 it is sufficient to show that Ajno or Aju’e’. Suppose
then that &u's’ = 05 since pll¢’, we have £u' = sy = »Ap’. But u’ is left-
-regular so & = xA and Alne. Thus ¢ is left-regular. From the relation
¢'c = ¢ it follows that o is right-regular, since ¢ is right-regular. Next
noo = pu'e’'c = pu'e = 0; but 5 is right-regular so go = 0. Finally let
& = 0; then u'e'§ = 0, whence &' & = ex = &'ox. But ¢ is right-regular,
80 £ = ox and the proof is complete.

We may immediately pass to the dual theorem; this asserts that,
given elements g, u,u’,0,¢,¢ e H with gllo, ufle’, p'lle and &' ¢ = ¢, there
are unique elements 4,y with 5o = p'e’, Au" = u, and A||n. Translating
back into the category of Abelian groups we find the theorem that if
0:Q P, ' X >0Q, e:X—P are epimorphisms with kernels R, Z, Y
respectively and if &'c = ¢, then &' induces an epimorphism Y —> R with
kernel Z. This theorem is not, of course, deep; we mention it to emphasize
that by proving 3.1 in the ringoid H we have obtained a proof of the
dual theorem.

The diagr. m (3.4) is particularly relevant to homology theory. 4 chain
complex in H is a sequence of elements {d,} such that (°) 5,0, =0.
Decompose 0, as &,u,_;- Then ¢, corresponds to the (boundary) map
of m-chaing on (n—1)-boundaries and u, corrcgponds to the embed-
ding of n-boundarics as n-chains. The relation 0,,,8,= 0 is equivalent
t0 wne, = 0. Let whllen, palle,. Then u, embeds m-cycles as n-chains
and g, = A,u, where A, embeds n-boundaries as n-cycles. If Ay,
then 7, associates with each n-cycle its homology eclass. Let g, o, be de-
fined as in 3.1. The diagram

N gy, "
>
MmN Hy, sjz?n
3.5 ‘ M
Y enxlxdn
1™

is called the n-th homology diagram of the chain-complex. The duality
to which we have drawn attention shows that we should obtain the same
diagram (up to multiplication by units) by proceeding from the relation

Unllen (instead of pplley). IE {04}, {0} are two chain complexes a chain
map {DBp}: {0n} — {0} is 2 sequence of elements satisfying @, ,;0ny1 = Opyq Ppe

(%) We may allow —oo < n < --oo; usually dp == 0 for n<g 0.
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Then {@,} induces a map (in an evident sense) of the homology diagram
of {3,} to that of {0}.

As a second example we prove a ‘“3-lemma’, so-called by analogy
with the well-known ,,5-lemma’ of homological algebra. Indeed it is easy
to prove the 5-lemma, in its strong form, from the 3-lemma and the split-
ting procedure described at the end of section 2.

THEOREM 3.6. Given the commutative diagram
A
Vo dv
PR,
n

}

=) T )=

with ulle, »||ln, then

(a) if ¢ i8 right-reqular, v is right-reqular,

(a') if @ is left-regular, 0 is left-regular;

(b) if 0 is right-reqular and ¢ is left-regular, then vy 1is left-reqular,

(b’) if vy is left-regular and @ is right-regular, then 0 is right-regular;

(c) if 0 and y are right-regular, so is @,

(¢") if 0 and y are left-regular, so is g. !

We remark that (a'), (b’), (¢’) are dual to (a), (b), (¢) and thus do not
need separate proof. We prove (a) by remarking that ey == gy, which
is right-regular since ¢ and 7 are right-regular; thus y is right-regular.
To prove (b) we remark that 0 is a unit by (a’); the assertion is thus equi-
valent to the assertion, following (3.4), that g is left-regular. To prove
(¢) let @& = 0; then Gv& = upé = 0, 50 »& = 0, 0 being right-regular.
Thus £ = nx, 50 0 = gyx; bub gy = ey is right-regular, so » = 0, & = 0,
and ¢ is right-regular, :

COROLLARY 3.7. If any two of 0, ¢, v are units, so is the third.
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SUR LES ENSEMBLES DENSES DE PUISSANCE MINIMUM
DANS LES GROUPES TOPOLOGIQUES
PAR
5. HARTMAN =t A. HULANICKI (WROCLAW)

Dans les espaces non métrisables, méme g'ils sont compacts, les
deux axiomes de dénombrabilité, I’existence d’un ensemble dénombrable
dense ou bien la non-existence dun cnsemble indénombrable isolé, ou
encore, par exemple, la, non-existence d*une famille indénombrable de voi-
sinages disjoints présentent des propriétés essentiellement différentes.
Néanmoins, quelques implications mutuelles non friviales ont lieu dans
le cas d’un groupe topologique soumis, §’il y a besoin, & des conditions sup-
plémentaires. Ainsi par exemple, selon le théoréme connu de Kakutani, le
premier axiome de dénombrabilité entraine dans tout groupe topologi-
que Pexistence d’une métrique invariante; dans un groupe compact en
résultent, par conséquent, toutes les autres propriétés mentionnées ci-
-dessus. De plus, on sait que, si ’on admet ’hypothése du continu, un grou-
pe compact abélien de puissance 28 est pourvu d’un systéme fondamental
dénombrable, et A. Hulanicki a démontré récemment [3] que c'est en-
core le cas des groupes localement compacts non-abéliens.

Dans cefte note, nous nous proposons d’établir les conditions qui,
imposées & un groupe topologique, assurent I’existence d’un sous-ensemble
dénombrable partout dense et dont le nombre cardinal est aussi petit que
possible. Parallélement, nous allons considérer I'existence de ,,grands”
gous-groupes isolés.

LEMME 1 ([7], p. 138) (V). Si un sous-groupe invariant fermé H d'un
groupe topologique G- et le groupe quotient G[H contiennent chacun un ensem-
ble dense dont la puissance ne surpasse pas-m = 8,, il en est de méme pour
le groupe G.

LEMME 2. Un groupe topologique comtenant un sous-groupe isolé de
puissance m contient un systéme de puissance m de voisinages disjoints (2).

(1) Co lemmo y est démontré pour m = §o, mais la démonstration est la méme

quel que soit m = No.
(2) Cetto implication ost fausse pour un espace topologiquo quelcongue, lo mot

,,s0us-groupe” étant rTomplacé par ,sous-ensemble™; cf., par exemple, {5], p.-133.
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