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SOME SPECIAL METRICS IN GENERAL TOPOLOGY

BY
J. pE GROOT (AMSTERDAM)

The notions to be discussed in this note lie mainly on the border-
-line between general topology and distance geometry. The problems
raised do not seem to be too difficult. The author is indebted to E. Mar-
czewski for several useful remarks.

1. Metries characterizing dimension. It has been shown [3] that
a separable metrizable space M has dimension < » if and only if one can
introduce a (topology-preserving) totally bounded metrie g in A with
the following property: for every n-+3 points &, ¥, Yoy ..vy Ynye i M,
there is a triplet of indices ¢, j, & such that

1) el u) <elw, y) (8 #14).

In particular, if M is a compactum, the condition of total bounded-
ness can clearly be omitted in this criterion.

Observe that a real segment supplied with the ordinary topology
satisfies our condition (for # = 1), but that the ordinary metric of a full
square does not.

The necessity of the condition is proved in [3] by means of a rather
complicated theorem of Nagata [9]. Hence the following problem ariscs:

P 255. Give a satisfactory proof of the necessity of the condition.

If » =0, such a proof follows easily from the possibility of the
embedding of a 0-dimensional M in the discontinuum of Cantor, in which
a non-archimedean metric is introdnced [2]. If » > 0, one has a fair
chance to solve the question by suitable remetrisizing the universal com-
pact n-dimensional space described by Menger [7] (see also Lefschetz
[6]), which generalizes the discontinuum of Cantor.

Though sometimes useful — e. g. if dimM < n, and M, i.e. the
completed Jf, ’s compact and dim # < n — the metric defined above
is very peculiar in many respects. Another way to characterize the dimen-
sion by means of a metric follows from results of E. Marczewski [10],
see e. g. [5], p. 107: '
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A separable metric space has dimension <. n if and only if one can in-
troduce a topology-preserving metric in which almost all of the spherical
netghbourhoods of any point have boundaries of dimension < n—1.

2. Finitely additive topological properties. Let the topological
space 7' be the union of a finite number of closed subspaces T;. A topolo-
gical property is called finitely additive if it holds for 7' whenever it holds
for each of the Tj.

THEOREM. Metricability is a finitely additive property.

The proof of this theorem easily follows from a metrical extension
theorem of Hausdorff [4], apparently rediscovered by Bing [1]. A purely
topological proof of this theorem and also a generalization of it has been,
given by Nagata [11]. The proof of the theorem follows clearly from the
following two lemmas:

Lemma I. If A and B are metric spaces whose metrics 04 and gp cOTN-
cide on their intersection D = A ~ B, where we assume D to be closed both
in A and B, then these metrics can be emtended to a metric o on A v B ,
t.e. on Ao B one can define o melric ¢ such that o = g, on A and
¢ = oz on B.

Levwa IL. If o finite number of meirizable spaces intersect pairwise
in sets closed in each, the union of those spaces can be defined in a natwral
way as a topological space (1), and we contend that this space is metrizable.

Observe that Lemma I fails if the intersection D is assumed to be
open instead of closed.

Proof of Lemma I. We only have to define o(a@, b) for points
aed and beB. Put, if D £ g,

o(a, b) = 21;[94(% @)+ ez (b, 4)].

It can easily be shown that ¢ is a metric on 4 v B satistying the
requirements.

It D= g, we take fixed points ped, geB and define g(a,b) by

ela, b) = ga(a, »)+es(b, ¢)+1.
Observe that both 4 and B are closed subsets of the space 4w B
with metric o.
Proof of Lemma II. Here we use essentially & theorem of Haus-

dorﬁ [4] and Bing [1], which states that a (topology-preserving) metric
defined on a closed subset of a metrizable space can be extended to a to-

(*) Indeed, the closed sets of the topologicai space will be e. g. finite unions of
closed subsets of each of the metrizable BpAaces.
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pology-preserving metric defined on the whole gpace. Suppose 4 and B
are two metrizable spaces interseeting in a set D, closed in each. Introduce
a metrie g, in 4. This p4 on D can be extended to a gz on B. Applying
Lemma I we find a metric ¢ on 4 v B. If € is a third metrizable set inter-
secting both A and B in closed sets, the intersection (4w B)~ (' is also
closed, since 4 and B are closed in 4w B.

So we can repeat the process and the proof follows by induction.

Many other topological properties are finitely additive, e.g. the
property of being a Hausdorff space, resp. a regular space or a normal
space (for normality see Mrowka [8]). The property of complete regu-
larity is not finitely additive, as has been shown by H. de Vries. Indeed,
Tychonof constructed a space which may be used to find a counter-
example. Hence the following problem arises:

P 256. Inquire systematically which important notions in general
topology are finitely additive.

3. Convexity in metric spaces. Let I} be a metric space with dis-
tance function g. A subset § C M is called conver (relative to M) if the fol-
lowing condition holds:

If z,ye8 and if there exists a ze¢M with p(2,2)+po(2,¥) = o(2, ¥),
then zeS for all such z.

If 2 is the Fuclidean space F, supplied with the ordinary metrie,
or, for example also with the equivalent distance function defined by
olz,y) = max [~y (2= (®), ¥ = (1)),
then convex sets in the ordinary semse coincide with convex sets in the

way we defined above, which justifies our definition.

E. Marezewski kindly drew my attention to the fact that for each
metric p in M, a topology-preserving metric p* can easily be defined
under which every subset is convex. In fact, put ¢* = 1/'9. This shows
that the usefulness of this notion of convexity in general topology will
be limited. However, it may be of some use in distance geometry and
in problems of a mixed character. For example, let us mention the follo-
wing problem:

P 257. Given a metrizable M and a closed subset § C M. Can every

(topology-preserving) metric. on S be extended to a (topology-preserving)
metric on M under which S is convex? (2)

(2) This problem has been solved in the affirmative by W. Nitka.
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ON CONSTRUCTIBLE FALSITY IN THE CONSTRUCTIVE
LOGIO WITH STRONG NEGATION
BY
A. BIALYNICKI-BIRULA axp H. RASIOWA (WARSAW)

This article is a continuation of paper [9] of Rasiowa, in which an
algebraic characterization of the system < of the construetive proposi-
tional caleulus with strong negation was given. The terminology and
the notation is here the same as in [9]. The knowledge of [9] is here assu-
med.

The idea of the above-mentioned constructive logic with strong
negation is dve to David Nelson, who introduced in paper [7] a new con-
structive interpretution for logical connectives of the number theory
and characterized a formal system of the number theory satisfying this
interpretation. An analogical system of the number theory was later
investigated by Markov [6]. The system of the propositional calculus
with strong negation was examined by Vorobiev [12] and [13].

TUnder Nelson's interpretation of logical connectives the strong ne-
gation of a conjunction ~(a-g) is valid in case when at least one of the
formulas ~a, ~f is valid and a formula ~[Ja(x;) is valid if and only

Tr
if there exists such an &, that ~a (zz) is valid.

We deal in this paper with the above-mentioned system o and with
the system §* of the functional calculus based on o§. The algebraic charac-
terization of < is here generalized on J*. Using algebraic and topological
methods we prove that according to the idea of Nelson a formula ~(a-g)
is provable in ¢ or in &* if and only if at least one of the formulas ~a,
~p is provable. Similarly, a formula ~[]a(x;) is provable in <* if and

I

only if for some z, the formula N(a(:z)) is provable. The above mentio-

ned theorems are equivalent to the theorems stating that a disjunction

a+f is provable in & or in J* if and only if at least one of the formulas

a, f is provable and that a formula >'a(x;) is provable if and only if for
g

some w, the formula a(:llc;) is provable. The decidability of formulas of
d* having the prenex normal form follows from the last theorem.


GUEST




