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The class of continuous mappings 7 of a topological space X onto
a topological space Y can be ordered roughly by the amount of infor-
mation about the loeal and in the large properties of X which can be
learned from information about those properties of ¥ and the inverses
under f of points of ¥. Some of the groupings in this ordering are open
mappings, homologically regular mappings [5], mappings which' have the
covering homotopy property, homotopically regular mappings, and pro-
jection mappings of direct products.

In this paper a new type of mapping iz defined — the completely
regular mapping. It will be shown that this type of mapping occupies
a position in the ordering mentioned above just before that of the pro-
jection mapping, that under certain additional hypotheses such mappings
hecome projection mappings and that if the inverses are certain low
dimensional spaces, 0-regular maps are completely regular. Thus we will
be able to show in some cases that spaces on which certain 0-regular
maps arve defined are direct products. Some of our results of this sort
are related to results of B. J. Ball [2] and others nicely complement
a result of R. H. Bing [3]. Part of Theorem 7 is & special case of a theo-
rem of Whitney [15] proved by quite different methods.

In particular, we show that if f is-a 0-regular mapping of a com-
pact metric space onto an arc such that each inverse under f is a 2-cell
then X is a 3-cell. This answers a question raised in [7], p. 84. We also
show that if f is a closed mapping of E® onto a metrie space X such that
each inverse under f of a point of X is a compact continmum lying in
a borizontal plane and not separating that plane, then X is homeomor-
phic to E*. For information on related problems the reader is referred
to [3] and [4]. The lemma of Alexander which proves so important in
the argument for our principal theorem was called to our attention by

(*) Part of this work was done while one of the authors held National Science
Toundation grant NSF-G2577 and the other held a National Science Foundation post-
doctoral fellowship.
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J. H. Roberts in & talk given at the Summer Institute on Set Theoretic
Topology in 1955 [11].

The theorems in this paper depend on a selection theorem of E. A.
Michael ([8] and [9]). We state here, in weaker form, the selection theo-
rem we shall use.

TosorEM M. If A and B are metric spaces such that A is complefe
and the covering dimension of B <n-1, Z is o closed subset of B, F' is
a mapping of A onto B such that the collection of inverses under F is lower
semicontinuous (see Lemma 4, below) and equi-LC™ (see Definition 4,
below) and | is o mapping of Z into A such that for z e Z, f(z) e F'(z),
then there is a neighborhood U of Z in B such that [ can be extended to
a mapping 1* of U into A such that for be U, f*(b) e F7(b). If each in-
verse under F has the property that its homotopy groups of order <n vanish
then U may be taken to be the entire space B.

Hereafter in this paper, if ¥ is a space then by the dimension of ¥
we mean the covering dimension.

DrermvITION 1. A mapping f of a metric space X onto a metrie
space Y is said to be completely regqular provided that it is true that for
each point 4 of ¥ and each positive number ¢ there is a positive number &
such that if # is a point of ¥ and d(z,y) < 5, then there iz & homeo-
morphism of 77 (y) onto () which moves no point as much as &.

It is to be noted that if the inverses have sufficiently strong local
connectivity properties, then a completely regular mapping is n-regular
in both the homology and homotopy senses and that the collection of
inverses under such a mapping is continuous and equi-continuous.

In what follows we shall make use of the well known notion, the
cone of a space K, and for completeness we include a definition.

DerFinirioN 2. The cone of o space K is the decomposition space
obtained from the direct product K xI of K with the unit interval I by
identifying the set K x (1). Tet C(K) denote the cone of K.

If K is a compact metric space we may suppose that K is imbedded
in Hilbert Space in such a way that the first coordinate of each point
of K is 1. Then C(K) may be considered as the point set consisting of
the origin, P, plus the union of all line intervals PQ (Q « K). If @ is 2 point
of K and ¢ is a positive number we shall denote by (Q,¢) the point B
of the (directed) line PQ such that PR/PQ =t. Let K* denote the set
of all such points (@, ) for ¢ in K and > 0.

Let H denote the gpace of homeomorphisms of C(K) onto itself
which leave each point of K fixed. (Here, and elsewhere in this paper,
if f and g are mappings of C(K) onto a metric space the distance be-
tween f and g is defined as 1ub(d(f(m), g(a;))) for z in C(K) and is de-
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noted by d(f, g).) Let I denote the identity mapping of ¢(K) onto itself.
Let M denote a compact metric space imbedded in Hilbert Space in
the manner described above for K and define M* and (Q,¢) for @ in I/
in the manner described above. The following is a trivial extension of
a theorem of Alexander [1]. In this theorem K denotes an (n—1)-sphere
and M consists of only one point. This theorem does not belong in the
principal sequence of theorems in this paper but it is needed in their
proofs.

TuroreM 1. If f is a mapping of M into H such that for each point
p in M, d(f(p),I) <e, then | may be extended to @ mapping F of C(I)
into H such that for each point p in C(M), d(F(p), I} <z and F(p)= f(p)
for p in M.

Proof. We shall use here the device already used by Alexander.
The mapping F is defined as follows. First, F(P)= I. For each real
number ¢ such that 0 <f <1 let g; be a homeomorphism of K* onto
itself which carries each point (g, ) of E* onto the point (g, »/t). If & is
a4 homeomorphism in H we shalll use the same letter, &, to indicate the
mapping of K* onto itself which is the identity outside C(K) and is h
on C(K). For each point (p,1) of O(M)—~P let F(p,i) denote g7f(p)g;.
When ¢t =1, g;= I, so that F(p, 1) = F(p) = f(p). That F is continuous
follows from the construction of the g’s and the continuity of /. (Clearly
F(p,t) converges to I as ¢t approaches 0.) It also follows from the con-
struction that d(F(p, 1), I) < & for each point (p,t) of C(M).

DEFINITION 3. A [space Z is LC™ provided that for each point
of Z and each integer ¥ < m and each positive.number ¢ there is a pos-
itive number & such that every mapping of a k-sphere onto a subset
of S(y,d8) (the set of points » of Z such that d(z, y) < §) is homotopic
to a constant on a subset of S(y, é).

The following are obvious corollaries to Theorem 1.

CoroLLARY 1. The space H is LC™ for each integer m and all the homo-
topy groups of H wvanish.

COROLLARY 2. If f is a homeomorphism of K onio o space L then for
each integer m the space of homeomorphisms of C(K) onto C(L) which are
extensions of f is LC™ and all its homotopy groups vanish.

Note. Since these are topological properties this corollary remains
true for any metric on this space of homeomorphisms which agrees with
the topology defined by the original metric 4.

We are now in a position to state and start to prove the principal
theorem.

§*
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TueorEM 2. Suppose K, X, and Y are melric spaces, K compact,
X complete and’ Y finite dimensional, and | is a completely regular mapping
of X onto X such that (1) for each point p of Y there is a homeomorphism f,
of C(K) onto {7 (p) and (2) there is a homeomorphism h of |_Jf(K) (p € ¥)
onto the direct product Y X K such that the diagram

(1) U Tl E) 2> T E
N
Y

where 7 18 the projection map, is commutative. Then there is a homeomor-
phism h* of X onto the direct product ¥ X C(K) which is an extension of h
and is such that the diagram

(2) xSy oK)
N )

f \3(
is commutalive.

Proof. Since diagram (1) is commutative the homeomorphism &
carries fy(K) onto the set (p)x K for each point p of Y. Let h, denote
the homeomorphism of K onto f,(K) which carries each point x of K
onto the inverse under » of the point (p, %) of ¥ x K.

For each point p of ¥ let @, denote the space of all homeomorphisms
of ¢(K) onto f *(p) which coincide with h, on K. Let G denote the col-
lection of all G, and let G* demote the space of homeomorphisms which
is the union of the elements of @. Let G, denote the closure of &, in the
space of all mappings of C(K) into 7 '(p), let & denote the collection
of all G, and let @* denote the union of the elements of G.

Before proceeding with the proof of Theorem 2 we prove some
lemmas.

Lemma 1. If ¢ is a positive number and y is a point of Y there is
a positive number § such that if x is a point of Y and d(y, x) < 6, then
there is o homeomorphism of f,(C(K)) onto fo(C(K)) which coincides with

kbt on f(K) and moves mo point as much as e

Proof. There is a positive number &’ < ¢ such that each homeo-
morphism of f,(K) onto itself which moves no point as much as 14’ can
be extended to a homeomorphism of /,(C(K)} onto itself which moves
no point as much as §= There is a positive number § such that if d(y, z) < 6
then (1) there is a homeomorphism ¢ of f,(C(K)) onto f,(C(K)) which
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moves no point as much as 16’ and (2) k:hy' moves no point as much
a8 +6'. The homeomorphism ¢ h.hy" of f,{K) onto itself moves no point
as much as 3¢'. Therefore ¢ 'h.h; " can be extended to a homeomorphism ¢
of fy(C (X)) onto itself which moves no point as much as e The homeo-
morphism #¢ moves no point as much as ¢ and coincides with Akt
on f,(K).

Levua 2. The metric space G* is complete.

Proof. Since X is complete the space Z of all mappings of ¢(K)
into X is complete in the metric d. If 2, 2,, ... is a Cauchy sequence
in G*, it converges to a mapping #, and since each z; coincides with some
hy, on K, z coincides with some h, on I{. Here #; is an element of &, and
Pyy Pay -.- cOnverges to p in Y. By Lemma 1, if ¢ is 2 positive number
there is an integer N such that if n > N there is a homeomorphism f,
of f,(C(I)) onto fn,{C(K)) which moves no point as much as e and
coincides With hphy, on fp(K) and d(z,#,) < }e. For each n there is
a homeomorphism g, in G, such that d(g,,#,) < [e. The homeomor-
phism fng, is an element of @, and d{fugn, 2) < d(Fufn, gu) + d{Gn, 2n) +
+d(2y, 2) < e. Henece z is in G, and G* is complete in the metric d.

For cach integer n let H, denote the collection of all mappings ¢
in @ such that lubdiamg—*(z) > 1/n for z in g[¢(K)]. The subspace H,
of @* is closed in G*. But G*= G*—_JH, and is therefore a G, Buf
any (; in a complete metric space is complete. Hence G* is complete.

Let d* denote a metric under which G* is complete.

DeriniTioN 4. A collection G of closed point sets filling a metric
space is said to be equi-LC™ provided that it is true that if y is a point
of an element g, of & and ¢ is a positive number there is a positive
number § such that if g is an element of @ then any mapping of a k-sphere
(k < m) onto a subset of g~8(y, 6) is homotopie to a constant on a sub-
set of g~S(y, &).

It is clear that this is a topological property and hence that the
following lemma will he true in the metric d* if it is proved for the met-
rie d.

LEvma 3. The colleciion G is equi-LC™ for each integer m.

Proof. Suppose that s is an element of ¢, and ¢ is a positive number.
By Theorem 1 and its corollaries there is a positive number 8’ < $e such
that every mapping of the k-sphere S* (1 < m) onto s subset of G,~8(s, 8')
can be extended to a mapping of R**' (§* plus its interior) onto a sub-
set of G~ 8(s, $¢). By Lemma 1 there is a positive number d such that
if d(p, g) <d, g« X, then there is a homeomorphism % of f,{C(K)) onto
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fo(C(X)) which moves no point as much as 46’ and coincides with hehy"
on f,{K). Let & be a positive number such that § < }¢" and if # is a homeo-
morphism in S(s, 5) there is a point ¢ of ¥ such that r is in @, and
d(p, ¢) < d. This is the required 8. To see this let ¢ be & mapping of &
onto a subset of G,~S(s, 8). Since § < 46/, K™t carries 8% onto a subset
of G,~8(s, §'). Therefore ™" can be extended to a mapping T of RF*!
onto a subset of Gyn8(s, §¢). The mapping AT coincides with ¢ on §*
and maps R*'* onto a subset of @,~8(s, ¢). Thus G is equi-LO™

Levma 4. The collection G is lower semicontinuous in the sense that

v{f the sequence of points Py, py, ... of ¥ converges to a point p then @&, is
in the closure of ) Gy,. ?

Proof. This is a topological property so that the lemma will bhe
Frue for the metric ¢* if it is true for 4. Suppose g belongs to ¢, and =
is a positive number. By Lemma 1 there is an integer N such that if
# >N there is & homeomorphism g, of f,,(C(K)) onto f,(C(K)) which
coincides with hyhy,, on f,(K) and moves no point as much as e The

homeomorphism g%y is in &y, and (g, g7'g) < e. Thus ¢ is in the clo-
sure of ( J G,,. '

Completion of the proof of Theorem 2. It follows from Theo-
rem 1 that each G, has the property that all its homotopy groups vanish.
We have shown that the funection which carries each element G, of &
on.to the point p of ¥ is a mapping of G* onto ¥ satisfying the h;poth-
esis of Theorem M. Thus there is a homeomorphism ¢ of Y into G*
such that for each point y of ¥, g(y) ¢ G,,. For each point z of X let h*(w)
denote the point (), [g(f'(w))]'l(w)) of ¥ X ¢(K). The mapping h* is the
one reqm;eq. by Theorem 2. The mapping h* is clearly continuous. To
see that it is 1-1, suppose h*(z) = h*(w,). Then Hay) = f(z,). Therefore
9{f (ms)) = g(f(2,)) and since this is a homeomorphism and lg(F (o)) ] (n)
‘:—-[g(f(@z)}]”l(mz), @y =2, To see that 2* is onto, suppose that (y,2)
is a point of Y.X O(K). The symbol [¢(y)](z) denotes a point r of f"ll(y;?/),
]é(i;)%:g(,q aﬂjd_slnee 9() = glf (), [g(f(?))]”l(r) =2z Thus k*r)=(y, 2).
o Y,2) == ‘g/ and f(r) = y., thg diagram (2) is commutative. Tinally,

is an extgnsmn of h, for if » is a point of f(K), h(w)= [y h‘l(w))A
(Recall. that if # is a point of K then A, (2) is the point 1Yy, 2) c’>f ZY and
that diagram (1) is commutative.) But each mapping in‘ ’(}y coineides

with k, on K. Therefore h(z) = flxz) - ’
== i )}, h* ¢
the proof of Theorem 2 is comple(te. ’ [g(f( )H (m))', ends 1 and

, Wej shall I'IOW appl.y Theorem 2 to the proofs of the theorems men-
ioned in the introduction. But first we show in Theorems 3, 4, and 5
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that with certain added conditions on K and Y condition (2) in the
hypothesis of Theorem 2 may be omitited.

TaEoREM 3. Suppose that f is a complelely regular mapping of the
complete metric space X onto the finite dimensional space Y. Suppose,
Further, that there is a point set I which is either (1) discrele or (2} a simple
closed curve such that for each point y of Y, Fy) is homeomorphic to K.
Then (X, f, ¥) is a locally irivial fibre space.

Proof. If K is discrete, then, since X is complete and Fy) is closed
in X, there is, for each ¥ ¢ ¥, a positive number & such that if p, ge FHy)
(p #¢), then d(p, ¢) > 2. Since f is completely regular there is a po-
sitive number § such that if d(y, 2) < &, (¥, z ¢ ¥), then there is a homeo-
morphism of f~(y) onto f'(¢) which moves no point as much as & Let U
be @ &-neighborhood of y. Then f X U)=UV, (pef '(y)) where
Vp=F(T)~8(p,¢e). Clearly f is a homeomorphism on each V,. The
mapping b of §7Y(U) onto K x U which carries the point ¢ of ¥, into the
point {g(p), f(g)) (¢ is a homeomorphism of Fy) onto K) is a ho-
meomorphism. This shows that (X, f, ¥) is a loeally trivial fibre space.

In case K is a simple closed curve, for each point y of Y, let
S(y) denote the space of all homeomorphisms of K onto f'(y) and let
8 =S (y¢Y). The following statements are established as before:
§ can be remetrized 50 as to be complete, under this metric the collection
of all 8(y) is lower semicontinuous and equi-LC™ for each integer m
and each of the two components of S(y) is arcwise connected. To see
that these statements are true, repeat the arguments for Lemmas 2, 3
and 4, recalling that the properties of being LO™ and lower semi-con-
tinuous are topological properties and hence hold for the new metric if
they hold for the original mefric.

Let ¥ be the mapping of § onto Y which carries each S(y) onto v.
By the above remarks, F satisfies the conditions for Theorem M. Hence
if y is a point of ¥ there is a neighborhood U, of y and a mapping ¢
of U, into § such that for w in Ty, g(u) e S(u). Let h be the mapping
of U,xXK onto U, defined by h(u,x)= g{u)(z). Since ¢ is con-
tinuous, b is continuous. Sinece g(u)(x) € Fu) and g(u) is a homeomor-
phism onto, h is a homeomorphism onte. Hence (X,f, ¥) is a locally
trivial fibre space.

Notes. If it were known that the space of homeomorphisms of §"
onto itself were LCF for every %, a slight variation of the above argu-
ment would establish this theorem in case K were an n-sphere.

If ¥ is confractible, locally compact and separable then since
(X,f,Y) is a locally trivial fibre space X is the direct product KX Y.
(See [13], p. 53.)
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TarorREM 4. Suppose that fis a complelely regular mapping of the
complete meiric space X onto the 1-dimensional, contractible, locally com-
pact and separable metric space Y. Suppose, further, that for each point Y
of ¥, X (y) is a homeomorphic to point set K where K is a 2-sphere or
a 3-sphere. Then there i3 a homeomorphism h of X onto ¥ X K such that
the diagram

xLvxK
NP
/\4 Y
Y

s commutative.

Proof. For each point y of Y let S(y) denote the space of homeo-
morphisms of K onto /7\(y). 1t is known ([6], [11], and [12]), that each
S(y) is locally connected, (i. e. LC®). Duplicating the proofs of Lem-
mas 2, 3, and 4, we see that §= |J8(y) can be remetrized so as to be
complefe and that under this new metric the collection of all S(y) is
lower semi-continnous and equi-LCP these last properties being topo-
logical. The proof of Theorem 3 can now be repeated word for word,
using Theorem M in the case n = 0, to show that (X, f, ¥) is a locally
trivial fibre space. Since ¥ is conftractible, locally compact and sepa-
rable, X is, as above, the required direct producs.

THEOREM 5. If f is a completely regular mapping of a complete metric
space X onto an n-cell, Y, such that each inverse under f is homeomorphic
to a point set K, where K is a 2-sphere or a 3-sphere, then there s a homeo-
morphism h of X onto ¥ XK such that the diagram

X—h>Y><
N

K

-

18 commautative.

‘Proof.. By theorem 4, if dim ¥ = 1, Theorem 5 holds. We shall
use induction on the dimension of ¥, assuming that Theorem 5 holds

if dim¥ <% and proving it if dim ¥ = k1. But first we prove some
lemmas.

'LEM:MA A, If Y' is a contractible metric space and K’ is o compact
'{netrzc.space for which the space H(K') of all homeomorphisms of K' onto
dtself is locally connecied then the space H (Y, ') of all homeomorphisms

c?f Y' XK' onto stself which leave the set (y', K') invariant for each y'e¥
s locally connected.
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Proof. Since each of the spaces H(K’') and H(Y'xIK') is & topo-
logical group we have only to prove that H(Y'xK') is locally arcwise
connected at its identity, I*. Let I denote the identity of H(K’') and
S(I,¢) and S*(I*, &) the elements of H(K') and H(Y' x1K') respectively
which move no point as mueh as &._Suppose & > 0. Since H(K')is locally
arcwise connected there is a 6 > 0 such that if g e S({,¢) then there
is an arc from I to g in S(Z, &). Let ¢ be a homeomorphism in S*(I*, §).
Note that ¢ leaves each (y', K') invariant. For each y e Y, lot i, de-
note the homeomorphism of XK' onto itself with the property that if
t(y,x) = (¥, @), t(w) = a’. Let z be the mapping of ¥’ into H(K') such
that 2(y) =t,. Clearly =2(Y’) lies in S§(I,d). Since ¥’ is contraetible,
there is a mapping Z of ¥’ x (0, 1) info S(I, &) sueh that Z(y, 0) = I and
Z(y,1)=2(y) for each ye¥'. Let T be a mapping of (0, 1) into
H(Y'xK') such that T(s)(y,®)= (¥, Z(y, s)(w)). Clearly I'(0,1) lies
in §*(I%e), T(0)(y,s)=(y,2) and T(L)(y,2)= {,2(y)(x)) = {y,b(z))
=1y, x). Hence H(Y' xK') is locally connected.

Levna B. If X' and K’ are as in Lemma A and ¢ is a positive number
then there is a positive number § such that, in ¥' X K’ x (0, 1), #f g is a homeo-
morphism of ¥'xK’'X (1) onfo itself moving no point as much as 6 and
leaving each set (y'y K', 1) invariant then there is a homeomorphism G of
Y xE' % (0,1) onto itself which extends g, leaves each set (y'y K'y t) in-
variant (0 <t < 1), moves no point as much as & and is the identity on
T %K' X (0).

Proof. Suppose &> 0. By Lemma A there is a 6 > 0 such that if
g is a homeomorphism in the space H* of homeomorphisms of ¥’ x K’ > (1)
onto itself which leave each set (y', K', 1) invariant and g moves no point
a5 much as 6 then there is a mapping Z of (0, 1) into H* such that Z(1) =g
and Z(0) = I, the identity mapping, and Z (i) moves no point as much
as ¢ for t in (0,1). If Z(t)(y, 2, 1) = (y, 2", 1) leb Gy, x,1) = (y,a',t).
Then G(y,x,1) = gy, z,1) and G(y,®, 0) = (y, =, 0) since Z(0)(y, z, 1)
= (y,®,1). The mapping & satisfies the conditions required by the
Lemma.

Note. It is clear that if, in the statement of Lemma B, (0,1) is
replaced by (s,s’), s <s’, the Lemma still holds.

Continuation of the proof of Theorem 5. Let ¥ be a (k+1)-
cell and suppose that ¥= ¥’ x (0, 1) where ¥'is a k-celland ¥'=Y"X
% (0, 1) where ¥ is a (k—1)-cell. Let 7 be the mapping of X onto (0, 1)
which carries 77X, t) into ¢. By the induetion hypothesis there is, for
each 7 e(0,1), a homeomorphism Ay of FYY', 1) onto ¥'x K such that
the diagram
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1o N
FUY ) — Y XK

R
¥

;\;lhere m 13 thejprojection mapping, is commutative. Also, if s (0, 1)

ere is & homeomorphism f; of (¥ x sx (0, 1)) onto ¥" K
x (0,1

such that the diagram ) 0,1

- !
f 1(Y"><s><(o,1))~t-> Y7 (0,1) XK

N

Y% (0,13,

oy

where 7, is the projection mapping, is commutative.

L‘EMMA C. The mapping F iz completely regular. Moreover, if &> 0
t}uerfl -z,sr a 6> 0 such that if [t—1t'| < &, there is & mapping 2 of F"l(t;
=7 (Y, 't) onto F7Yt') = (X", ') which moves no point as much as e
azzld carries each set hy'(y,K) onto hi'(y, K) (i. e. fTy",s,t) onto
s, 1)), Y
N tI.’roof. ISuppose £> 0. Let & < /100 be a positive number such

2 1f % 8,8 ¢€(0,1), s <5, and ¢ is & homeomorphism of (¥, s’,%)
f)nto %tself moving no point as much as ¢’ and leaving each set f‘l(y"’ s’, t)
nvariant, then there is a homeomorphism & of f~'(¥”, (s, s'), t)701;to
1Eself which moves no point as much as £/100, leaves each set F iy, 8, 1)
s € (s, &), invariant, extends g and is the identity on fHY", s Kt)’ T,his’
follows from Lemma B and the facts that ¥ and K ave co,mf)a.c.t and
the space of homeomorphisms of K onto itself is locally eonnected. Fix ¢
Let 6 < 4'/100 be such that if |i—t'| < & and [s—s'| < 4, then tilP na:
tural hﬂme?morl)llisms of 7Y, s,t) onto FHY",s,#) and Fix s i)
onto f(¥",s',¢') induced by f, and by, respectively, move no ’po’int
as muglll :?:s 6'//100. Thesl,e homeomorphisms carry each set 'y, s,1)
onto f~(y",s,t') anq (", s,%) onto f—l(y”,s’,t’), respectivel;lr. ’(T’he
pa,tura.l homeomorphism of f(¥",s,t) onto FHY", 5,t) induced b f
s that ‘homeomorphism % such that fh(x) is the I,JOi’nt of Y”xt’i]é
into which fy(x) projects in the projection mapping of ¥'x (0, 1)x K
onto Y'x ¢ xK.) b

Now suppose [i—t'|<é and 0 =g, < .. = ;

‘Let g: be the natural homeomorphism of ;‘“1( Y”,<sj nt) olr;t(gs}tll(l’fi)ssté;
mduee(% by fs, and R;y, and Rf,, the natural homeomori)hisms of £ Y;’ ;Z t)
and f7(Y", s;, 1) onto FTHY", 8141, 1) and Yy, 811, '), respectivel’y,

induced by % and he, respectively. Let Fyy; = g7 hirgihisy and F,=1 -
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The mapping F;.; is & homeomorphism of I, 8;-1, t) onto itself which
leaves each set 77'(y”, si-1,1) invariant and moves no point as much
ag ¢’. Thus there is a homeomorphism &, of f‘l( Y7, (815 8i-1), ) onto
itself which leaves each f '(y",s,t) invariant, leaves (X", 8,1) point-
wise fixed, is identical with F;.. on FHY", 801, 1) and moves no point
as much as &/100.

Let =, be the homeomorphism of f‘l(Y", (8{+8;22),%) onto
F X" (81 8141), 1) defined in the following manner. Suppose & < (3”7, s, ).
Let z(x) denote the image of x in F~y", s;, t') under the natural homeo-
morphism of F7H(¥",s,t) onto U, s, t') induced by hy. Let 2’ de-
note the natural homeomorphism of F7 (¥, s;, 1) onto FYY", s,t) in-
duced by hy. Leb 2;4,(2) = G.17'97 = (). This moves no point as much as
e Tt xef Y, 5,1, 2inlr) = g7 () and (@) = g,-”"71;'!];_1IIFI}Ifgi—_],h’i_l(x)
= ¢; (). Therefore the z; can be fitted together to give 2 homeomor-
phism z of (¥ x(0,1) %) onto [ {¥"x(0,1)x1) which js 2.4 on
FHY", (51, 8001), 1) and has the required properties.

Tor each ¢ in (0, 1), let S(¢) denote the space of homeomorphisms
of ¥'xE onto F~'(t) which carry each y' XK onfo F iy, ),y e X
By Lemma A, 8(f) is LC° The mapping F is completely regular in the
sense of Lemma C, (1. e. if £ > 0, there is & 6 > 0 such that if [t—1t} < &,
there is a homeomorphism of F~'() onto F~'(#) carrying each [ '(y,1)
onto 7y, 1), v ¢ ¥', and moving no point as much as e and (0, 1) is
one dimensional, locally compact, separable and contractible. A repeti-
tion of the argument for Lemma 2 shows that § = L) S(t) can be re-
metrized so as to be complete and repetitions of the arguments for Lem-
mas 3 and 4 show that the collection of all S(#) is equi-LC® and lower
semicontinuous. (In this argument, Lemma (' is a counterpart of Lemma 1.)
Thus the mapping g of § into (0, 1) which carries each §(f) onto ¢ sa-
tisfies the conditions of Theorem M for the case n = 0. Therefore, for
each t in (0, 1) there is a neighborhood U of ¢ and a mapping g of U
into § such that for each w in U, g(u) e S{u). The mapping h of ¥’ x U XK
onto F~YU) defined by h(y,u,x)= qlu)(y, ) is a homeomorphism.
Hence (X, F,(0,1)) is a locally trivial tibre space. However, ¥'x U is
an open subset of ¥’ (0,1)=X% and the homeomorphism % carries
each y xtx I onto ¢(t)(y, K) = My, t). Thus (X, f, ¥) is a locally tri-
vial fibre space. Since ¥ is locally compact, separable and contractible,
it follows as before (see [13], p. 53) that X is the produch Y xK.

Remark. Theorem 5 remains true if K is any compact metric space
such that the space of homeomorphisms of K onto itself is locally con-
nected. Also, Theorems 3-5 show that if K, in Theorem 2, is a 2-sphere
or a 3-sphere and Y is an n-cell or a contractible one-dimensional, locally
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compact, separable metric space then condition (2) of Theorem 2 may
be omitted. This condition may also be omitted if K is a 0-gphere or
'1~sphere and Y is contractible and finite dimensional.

Dermvrrion 5. The mapping f of a metric space X onto a metric

space ¥ is said to be 0-regular provided that it is true that f i8 open .

and if  Is 2 positive number, y is a point of Y, and p is a point of )
then there is a positive number ¢ such that if z is a point of ¥ and «
and b are points of f™(x) in 8(p, 8) then there is an arc from a %o b in
_the common part of F (z) and S{p,e).

THROREM 6. Suppose that f is a 0 -regular mapping of a wmetric space X
onto & meiric space Y. Suppose, further, that there is a space I which is
etther an i-cell or an i-sphere (1 < 2) such that for each point y of ¥, )
is homeomorphic to K. Then the mapping f is completely regular. ‘

Proof. We leave to the reader the essentially elementary details
of the proof for the cases ¢ < 1. We present the details of the proof for
the case where XK is a 2-cell. If K ig a 2-sphere the proof is essentially
unaltered. ‘ )

We show, first, that if K is a 2-cell then 7 is 1-regular in the sense
that if ¢ i a positive number, ¥ is a point of ¥ and p is a point of F7Y(y)
then there is a positive number & such that if is a point of ¥ and J \is
a 1-sphere in 7 () ~8(p, 8) then J bounds a 2-cell in F ) ~8(p,e).
Supypose that f is not 1-regular. Then there are a positive numbe; é
& sequence of points 'y, y,, ..., of ¥ converging to a point y- of ¥ a,n({
& sequence Jy,dJy, ... of simple closed curves such that this sequence
converges to a point P of f(y) and for each i, J; iy & subset of ey
and th‘e interior U; of J; relative to f"l(y.;) has diameter greater than ;
fl‘here is a point @ of f~*(y) which i different from P and is in the limit-
ing seb of the U;. There is a simple cloged curve M in ) whose in-
tenor-V relative to 77'(y) contains P and whoge exterior(conta,ins Q.
(If P is on the boundary of £ (y) then P is on Jf .) It follows from a ré-
sult of Whyburn [14] that there is & sequence M, M,,
eurves which converges to i 0-regularly and is such that for each i
M is a subset of f~'(y,). (I. e. the mapping f defined on M o (\J L) i;

0-regular.) Let V; denote the interior of M; relative to f7'(y,). Tt is easy

131(; show that each convergent subsequence of the sequence M, uV,,
1-,112 (O converges 0-regularly. We assume, without loss of generality,
at 1:;he Sequence itself has this property. Tt then follows from the re-
1sul’ss l?l 1[714:] that this sequence converges to Mo V. But for sufficiently
arge ¢, V; contains U;. Since Q is a limit poi
° %, ) i point of { J U; h -
tradietion. Thus f is 1-regular. Ui e Bave & COI‘l

... of simple closed
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It follows from results in that same paper of Whyburn that the
mapping f defined on {_J Bd(f‘l(y)), y €Y, is 0-regular and hence com-
pletely regular.

Since f is 1-regular and each 7' y) is compact it follows that if y is
a point of ¥ and e is a positive number there are positive numbers &
and d sueh that if d(y, s) < d and J is a 1-sphere in /() of diameter
less than 8, then J bounds a 2-cell in f~'(x) of dimmeter less than ie.
Let 89, 81y -ovy 8p a0 By, Ty, ooy by be ares in F(y) such that (1) the union
of 8y, Sny to, and 1, is Bd(f‘l(y)) and these arcs are non-overlapping,
(2) for each ¢, ¢; has one endpoint on s, and the other on s, and separates
t;_1 from t;., in f~'(y) and s; has one endpoint on ¢, and the other on 1,
and separates s;_; from s; in f(y), (3) 8; ~1; is a point Py and (4) the
diameter of each component of 7 (y)— U (8; U t;) is less than 14, It fol-
lows from Whyburn’s results that if ¢ is an are in f7(y) and ¥, s, ...
converges to ¥, then there is a sequence i1, #3, ... of arcs converging 0-re-
gularly to ¢ such that for each i, ! is a subset of 7 '(y;). Using this result,
it is seen that there is a positive number d' < d such that if d(y, z) < &',
then in f'(x) there arve arcs s, si, ..., 8, and #3, %, ..., &, such that (1)
the union of sg, sp,, to, and f; is Bd(f (%)} and these arcs are non-over-
lapping, (2) for each i, ¢; has one endpoint on s; and the other on' g,
and separates tj, from #;,; in f~'(z) and s; has one endpoint on f, and
the other on t, and separates sj_; from si., in F ' z), (3) sj~tj is
a point Pj; and (4) there is a homeomorphism A carrying | J (fiw $;)
onto ) (tiw s7) such that h(s;) = si, h(f;) = t; and k moves no point a8
much as }4.

If U is a component of 7 '(z)— J(t5u si), its boundary clearly
hag diameter less than §. Therefore U has diameter less that le.
A homeomorphism H of §%y) onto j'(z) which is an extension of
7 moves no point as much as e. Thus we have shown that f is com-
pletely regular. -

TamoreM 7. If f is & O-regular mapping of a complete meiric space
X onto a finite dimensional, contractible, locally compact, separable metric

space Y such that for each point y of ¥, ) is homeomorphic to the point
set I, where K is a 1-cell, a 2-cell or a 1-sphere, then is a homeon.orphism I
of X onto the direct product ¥ XK such that the diagram

X —fL—> Y XK
s
fx 4
Y
is commutative. If I is 2-sphere and Y is one-dimensional and contractible
cor Y is an n-cell, then the theorem remains true.
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Proof. Since f is 0-regular, f is completely regular. If K is a 1-sphere
or a 2-sphere, Theorem 7 follows immediately from Theorems 3-5. If K is
a 1-cell or a 2-cell, the mapping f defined on \UBA(f () (y € ¥) is
completely regular. Thus, by Theorems 3-5, condition (2) of Theorem 2
is satisfied and Theorem 7 now follows.

The next theorem complements results of Bing [3]. The reader is
particnlarly referred to the final section of that paper.

TEEOREM 8. If ¢ is @ closed mapping of E® onto a metric space ¥ such
that for each point y of ¥, ¢~ y) is & compact continuum which lies in
a horizontal plane and does not separate thai plane, then Y is homeomor-
phic to E®.

Proof. Let €, and C, be concentric spheres in E?, let I denote the
set of points between C, and C, and let L denote the common part of K
and a ray terminating at the common center of C; and C,. If y ¢ L let S,
denote the sphere concentric with €, which contains y. Let f denote
a closed mapping of K onto a space X such that if z is a point of X then
either f7(z) is a point of L or there is a point y of I such that f~Y(x) is
& compact continuum which les in §,—y and does not separate S,.
Since 8, is 2 2-sphere and f(8,) is homeomorphic to the decomposition
space whose “points” are the sets f~'(z), z < f(8,), and none of these sets
separates §, it follows from the paper [10] that 7(8,) is homeemorphic to a

2-sphere, 8. Let g denote the mapping of X onto L such that gf(8,) =y
for each y in L. The space X is imbeddable as an open set in the space X’
which is the image of K o C;u 0, under a mapping ' whose inverges
are Oy, s, and the inverses under f. Since X’ is compact, X can be me-
trized 5o as to be complete. To see that g is 0-regular, suppose p is a point
of £(8,), an inverse under g, and ¢ is a positive number. Let d be a po-
sitive number such that if « is in the d-neighborhood, V4, of f(p) then
d(p,f(x)) < e. Sinee Fip) is connected, V,~ 8, is arcwise connected.
Thus there is a positive number d’ < d such that if @, beS;n Vg, where
@ is any point of L, then there is an arc from « to b in 8:AVy. Let 6 be
& positive number such that if d(p, g) < & then 7 (q) lies in Vz. Thus
it g,q €/(8,) and d(p, q) <5 and d(p, ¢') < & then there is an arc ab
.in 8,V from a point a of f~g) in V4 to a point b of Fg') in V.
By the definition of d, f(ab) is in the common part of f(8;) and the
e-neighborhood of p and since f is continnous, f(ab) containg an arc with
endpoints ¢ and ¢'. Thus g is 0-regular.
Clearly X can be metrized so as to be complete and g is 0-regular.

Thus, by Theorem 7, there is a homeomorphism % of X onto § x.I such
that the diagram
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x 8%

xt’!
Ny
I

is commutative. Also, & can be chosen so that h(f(L)) = (p) I for some
point p of §. Thus the diagram

X— fL)~—> S— p
\ R
is also commutative.

There is a homeomorphism ¢ of E* onto K'—L which carries each
horizontal plane onto some §,—y (y € L). Let 7 be a mapping of X onto
a space X such that if # is a point of X then either f(z) is a point of L
or there is a point y of ¥ such that f~*(x) = t¢ (). The mapping f sa-
tisfies the conditions required of f in the above paragraph. The space ¥
is thus homeomorphic to X—f(L) through the homeomorphism which
maps ¥ onto fig~Yy). But X —f(L) iz homeomorphic to (§—p) %L which,
in turn, is homeomorphic to E?. Thus Theorem 8 is proved.
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On simple regular mappings
by

J. W. Jaworowski (Warszawa)

1. Introduction. X. Borsuk and R. Molski studied in [3] a class

of continuous mappings, called the mappings of finite order. A continu-
ous mapping f of the space X onto the space Y is of order <% if for
every point y ¢ ¥ the set f'(y) contains at most % points (see also 9},
p. 52). A mapping of order <2 ig called by K. Borsuk and R. Molski
a simple mapping. The authors have given many examples which show
that simple mappings may have many singular properties, e. g., they
can raise the dimension. Moreover, the authors have distinguighed a cer-
tain class of mappings of finite order, called elementary mappings, and
have proved that, in particular, every elementary mapping may be ob-
tained by finite superpositions of simple mappings.
" In this paper we shall study some properties of a certain class of
simple mappings, called by us regular mappings, which contains, in partic-
ular, all simple elementary mappings. For a simple regular mapping f
of a space X we introduce the notion of so-ealled doubling of X by f,
which enables us to reduce the study of regular mappings to the study
of gimple interior mappings ().

2. Let f be a simple mapping of a space X into ¥. The union X,
of all sets f'(y), with y < ¥, containing two different points is called
in [3] the seam of f. Leb us denote, for every z ¢ X, by @(x) a point of X
such that f'l(f(w)) = {&, Ps(x)} (*). Then &; is an involution of X; it is
called in [3] “the involution assigned to f” and is denoted there by s
(see [3], Nt 3). We shall call it the involution induced by f. The set X—X,
is the set of fixed points of &,.

8. Let § be an upper semi-continuous decomposition of a compact
space X and let ¥ be the hyperspace of this decomposition. Then, by

() A continuous mapping f: XY is called interior if it carries open sets onfo

open ones.
(2) We denote by {a,, @s, ..., an} the set composed of the elements 4, @, ..., On
and by (a,, ds, ..., an) the ordered sequence of these elements.
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