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Rings with Hausdorff structure space *
by ’ ‘
L. Gillman (Lafayette, Ind.)

This paper is motivated by the possibility of extending o more
general settings some of the results obtained by Henriksen and the
author in [3] and [5] for rings ¢ (X) of continuous real-valued functions.
As an illustration, we cite the following: it is shown in [3], Theorem 3.3 £f.
that every ideal N® in C(X) is contained in exactly one maximal ideal,
namely, M (notation as in [3]); for an arbitrary ring, the corresponding
statement turns out to be equivalent to the statement that the strueture
space of the ring is a Hausdorff space (Theorem 8.1). (The structure
space of O(X) is the Stone-Cech compactification fX.)

Section 1 containg preliminary remarks. Section 2 introduces the
ideals N (8), which play an important role in the sequel. Section 3 deals
with Hausdorff structure spaces. The results here include generalizations
of some theorems about C(X) (e. g., Theorem 3.16), the theorem that

. every proper prime ideal in a biregular ring is primitive (Theorem 3.13),
and a characterization of strongly regular rings (Theorem 3.14), as well
as some other purely algebraic results (e. g., Theorem 3.10). Finally,
section 4 contains some simple results about ordered rings.

1. Preliminary results. Let 4 be an arbitrary ring, and G— S(4)
a seb of (two-sided) proper ideals in 4. The elements of G will be called
S-ideals. We say that S is a structure set of A if whenever I , J are infer-
sections of &-ideals, and § is an &-ideal, then

(1) I~JCS implies that IC8 or JCS.

The structure sets of chief interest are
P=P(A)=rset of all primitive ideals in 4,
Q= Q(A)=set of all proper prime ideals in 4. .

* Research sponsored (in part) by the National Science Foundation (U. S.A.).
The author iy indebted to Mr. Carl W. Kohls for many valuable suggestions regarding
the preparation of this paper.
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i i i ime if and only if for arbitrary

‘We recall that an ideal § in 4 is prime I X .
ideals T and J in A, IJCS implies that ICS8 or JCS (see [1_4]); obviously,
then Q is a structure set. Since BCQ ([9], Lemma 4), P is also a strue-

ture set [10]. )
Tet & be a set of ideals in 4. For AC &, we define

AU=M 8.
Sen
Jacobson [10] showed that the Stone topology can be defined on _33;
he called the resulting space the structure space of 4. The e.()nstru‘etl?n.
and many of the results are valid for % as wgll [14.], and, in fa,ct3 1.01
any structure set © [15]. The Stone topology i8 defined as follows: for
any ACS, the closure A of A is given by

A={8eS: §D490}.

Additivity of the closure operation follows from (1). Any st:rqcture seb i,
equipped with the Stone topology, will be called a structure space of A.
Bvery such € is a T,-space, but need not .be 1.’1 ([101, [a1y.

Let 9t denote the space of all prime maximal ideals in 4; then P ~ piits
is a T,-space [10]. If A has an identity element,_ then every 'ma.xmla,l
ideal is primitive, and P is compact [10]. If A is commutatw‘e, t]?en
P=M [11], so that I is a T'-space; hence if 4 is a commutative ring
with identity, then P=I, and M is a compaqt T,-space. (When A is
commutative, we shall always write I in place of P.) ,

TEEOREM 1.1. Let B be an ideal in A, and let @ denote the natural
homomorphism from A onto A[B. Given any structure space S of 4, let
S/B denote the set of all S-ideals that contain B, and define

®(S/B) = {p(8): S<G/B}.

Therr; @(G/B) is a structure space of the ring A/B, and is homeomorphic
with ©/B. Moreover, the mapping D is one-one from the set of all structure
spaces S|B onto the set of all structure spaces of A[B. . ‘

The proof follows readily from the fact that the mapping ¢ is one-
one and inclusion-preserving from the set of all ideals in A that con-
tain B onto the set of all ideals in 4/B.

In particular, we have @ (P/B)=P(4/B) [10]; a similar proof shows
that &(Q/B)==Q(4/B).

CoroLLA®RY 1.2. Let B be o subset of &, where SDP. If the ring A/AB
has an identity element, then B (= closure in &) is compact.

Proof. By Theorem 1.1, $(S/4B) is a structure space of A/4%B.
Since SOP, we have D(S/AB)DD(P/AB)=P(4/4B). Since 4/4%B has
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an identity elemens, it follows that D(5/4B) is compact {{11], Corol-
lary 3.4). Therefore, by Theorem 11, /48 is compaet, i. e., B is com-
pact. (Cf. [1], p. 460.)

Lemwa 1.3. A one-element subset {8} of © is closed if and only if
for all T« &, T8 implies T=8. Hence S is a T -space if and only if
no G-ideal contains another.

The proof is immediate from the definition of closure. (Cf. [10].)
As an example, in the ring of integers, Mt is a T,-space, while Q is not.

THEOREM 1.4. If A has an tdentity element, and if SOP, then S is
a Ty-space if and only if every S-ideal is maximal.

Proof. If every S-ideal is maximal, then no S-ideal contains an-
other, whence, hy Lemma 1.3, G is a T;-space. Conversely, suppose that
there exists an G-ideal S that iz not maximal. Since 4 has an identity
element, § can be imbedded in a maximal ideal I #8; also, every max-
imal ideal is primitive. Therefore, I« PCS. Hence, hy Lemma 1.3,
© is not a T,-space.

For all ae 4, we define

S(a)={8¢S: ael},

which we call the G-set of a. Evidently, every &-set is closed. For AC S,
we write

=&

(set union),
Seu

CA== complement of A in S.

Lemma 1.5. If a ¢ ZU, then there emists a netghborhood W of A such
that a¢ ZN.

Proof. ZACES(a), and this latter is open.

Lemwva 1.6. If U is closed and § ¢ U, then there ewists b e AW such
that b ¢ 8; in other words, the S-seis are a base for the closed sets.

Proof. 8§ 4%.

COROLLARY 1.7. If U is closed, S ¢ A, and A[S is a division ving, then
(2) for all w,ve A, there emists ¢ce A such that e=u{AN) and c=v(A).

Proof. Put ¢=ab -+ u, where b is as in Lemma 1.6, and b =v—u(8).

In connection with this corollary, we may introduce the following
terminology: & is copipletely regular in A if whenever 9 is closed and
8 ¢ U, then (2) holds. In particular, if 4 is commutative, then P=Nt,
whence 9t is completely regular in 4. For g ring with identity, the de-

fining condition may be expressed in terms of the specific elements =0,
v=1 (or u=1, v=0).
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2. The ideals N(§). DerixizIon 2.1. For 8¢ &, we define
N(S)=1{aeA: there exists a neighborhood U of § such t;bat o e AU},

A more complete notation is Ng(8), but the simpler one will suffice here.
TREOREM 2.2. For every 8« S, N(8) is an ideal in A, and N(8)CS.
The proof is obvious.

More generally, one could introduce the notion of “3-ideal” as
in [12]. Many of our results concerning N (S) will be seen to hold for this
more general type of ideal.

TaEoREM 2.3. For every 8eS, we have N(8)24E.

Proof. Since & itself is a neighborhood of §, ¢ ¢ A& implies @ € N (8).

‘We recall that an ideal @ in A is prime if and only if awb @ for
all © implies that ae@ or be@Q ([14], Theorem 1).

TEROREM 2.4. If §2QDAG, where 8 ¢ G and Q is prime, then QIN (8).

Proof. Let o ¢ N(8), and let 2l be a neighborhood of & such that
a e A. By Lemma 1.6, there exists b such that b ¢ ACY, & £.8. Then

for all z, we have
aih e AU~ ACU = AGCQ,

4. 6., axb e Q. But b ¢ Q, since QCS and b ¢ 8. Therefore 4 ¢ @, since @ is
prime: Thus, N (8)C¢. (Cf. {3], Lemma 3.2.)

Levwa 2.5. Let N be an ideal in a commutative ring, and let I be
a subset closed under multiplication. If N does not meet K, then there exists
a prime ideal contatning N that does not meet K.

This is a well-known consequence of Zorn’s lemma (see, e. g., [13],
ch. 3).

THEEOREM 2.6. If A is commutative and SCQ, then for every § e &,
N(8) is an intersection of prime ideals.

Proof. Evidently, all powers of an element a belong to the same
prime ideals as a. Hence if a ¢ N (8), then N (8§) does not meet the multi-
plicative system. {a": n=1,2,...}. By Lemma 2.5, there is a prime ideal
containing ¥ but not «. The result follows.

I do not know whether the corresponding result holds in a general
{non-commutative) ring.

THEOREM 2.7. Every & -set is open if and only if N (8)=S8 for all § ¢ &,

Proof. a « §¥(8) if and only if there iz a ne1ghborhood U of 8 such
that a e AU, 4. e, SeUCS(a).

‘We close this section with two lemmas that will be used later.
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Lenva 2.8. Let A, B be disjoint subsets of &, with A closed and B
compact, such that AJAW has an identity element, and such that A /S is & di-
vision ring and N (8)=S8 for every 8 ¢ B. Then
(3) for all u,v e A, there exists ¢ e A such thot c=u(AN) and c=v{A4B).

Proof. Let ¢ be an identity element modulo A9 (that is, ex=uwe,
=g (4) for every « ¢ 4). By Corollary 1.7, for every 8; ¢ B, there exists
dy ¢ 4 such that dy=e(AA) and d;,=0(S,). Then d;=0 (¥(81), so there
is a neighborhood U, of §; such that d; e 411;. Since B is compact, there

exist indices A,...,4, such that (JMN;,D®. Define d—dj,...d,,. Then
k=1

d=¢(4%M) and d=0(AB). The element ¢=d (% —v)+ v is then as required.

In connection with this lemma, we may introduce the following
terminology: %A, B are completely separated by A it (3) holds. Clearly,
two arbitrary subsets of & are completely separated by 4 if and only
if their closures are. For a ring with identity, the condition may be ex-
pressed in terms of the specific .elements w=0, v=1. We may call &
normal in A4 if every pair of disjoint closed subsets of & are completely
separated by 4. Clearly, if S is a 7-space and normal in 4, then & is
completely regular in A (Corollary 1.7 ff.). In particular, if 4 is a com-
mutative ring with identity such that every Wt-set is open, then M is
normal in A4.

Lemma 2.9."Let A be a compact subset of S such that A/AN has an
tdentity element, and such that 4|8 is a division ring and N (8)=48 for all
S eW. Then every element a ¢ XU has an inverse modulo AY.

Proof. Let ¢ be an identity element modulo AU. If a¢ XU, then
for every 8; ¢ %, there exists z; ¢ A such that az,=e(8;). Since S, =N (8),
there is a neighborhood U; of 8, such that am;—e ¢ AW;. Since ¥ is com-

pact, there exist indices A;,...,4, such that L") U, ON. Then

n(aw&—e) e Uuhcmu

k=1
which reduces to the form awx==e(A%).

3. Hausdorft structure spaces. TumorEM 3.1. The following
statements are equivalent.

(a) S(4) is a Hausdorff space.

(b) For any two distinct elements 8, T of S, there exists an element
aed such that a e N(S), a¢T.

(¢) For every 8 e S, N(8) is contained in exactly one G-ideal (name-
Ty, 8).
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Proof. The equivalence of (a) with (b) is an immediate consequence
of Lemma 1.6. Since N (8)CH (Theorem 2.2), it is evident that (b) is
equivalent to (c).

It every A/8 (8 ¢®) ix a division ring, then, clearly, (b) is equiv-
alent to

(A) For any two distinet elements S, 1" of &, and arbitrary v e A, there
ewists ce A such that ce N(8), e=v(T).

If (b) holds, then, clearly, § 547" implies N (8)s£N (71'). If every proper
jdeal in A can be imbedded in an &-ideal, then the conditions of the
theorem are also equivalent to

(¢) For any two distinet elements 8, T of &, we have (N (8), N (1)) =A.

For if (N (8),N(T)) 544, then there is an G-ideal that contains both
N(S) and N(T), contradicting (c). Conversely, if N(8)CT=48, then
(¥ (8),N(T))CT, contradicting (e).

In particular, if 4 is commutative and SCIR, then the properties
(a), (b), (e), (d) are equivalent; if 4 has an identity element and SO,
then (a), (b), (¢), (e) are equivalent.

As an example, consider the ring of integers. As pointed out by
Jacobson [10], M is not Hausdorff: the nonempty open sets are the com-
plements of finite sets. Note that N (M)=(0) for every M ¢ M. (As for Q,
we have already observed in seetion 1 that it is not even a T, -space.)

If ©(4) is & Hausdorff space, we call 4 an Hg-ring. Since every
subspace of a Hausdorff space is Hausdorff, Theorem 1.1 #f. yields

THEOREM 3.2. Bvery homomorphic image of an Hey-ring [Hg-ring]
is an Hy-ring [Hg-ring].

The corresponding theorem for 7'-spaces is also valid.

In particular, the ring of integers is not a homomorphic image of
any Hg-ring.

TuroreM 3.3. If every S-set is open, then & is a Hausdorff space.

Proof. If 8+#T, then there exists an element @ ¢ 4 such that, say,
a8, a¢T. Then &(a), €S(a) are disjoint neighborhoods of &, 7,
respectively.

The following theorem generalizes [3], Lemma 3.2 and Theorem 3.3.

TerorEM 3.4. If € is o Hausdoyff space, then every prime ideal
that contains AG is contained in at most one G-ideal; if, in addition, ¢ can
be imbedded in an €-ideal, then QCS (¢ G) if and only if QDN (K).

Proof. Theorems 2.4 and 3.1 (a, ¢).

If A8=(0), we say that 4 is &-semi-simple. For S=, this co-
incides with Jacobson’s semi-simplicity.
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COROLLARY 3.5. If A is a semi-simple integral domain contairing at
least two mazimal ideals, then I is not a Hausdorff space.

This also follows from Kohls’ characterization of Hausdorff struc-
ture spaces ({11], Theorem 4.1 ff.). Examples include the ring of integers,
other rings of algebraic integers, the ring of entire functions, and various
other rings of analytic functions.

CoROLLARY 3.6. If A is a commutative Hg-ring, with GCR, and if
every Q-ideal containing AS can be imbedded in an & -ideal, then for every
8 e, N(8) coincides with the intersection of all the prime ideals Q such
that 82Q246.

Proof. Theorems 2.6 and 3.4.

In particular, the hypotheses of this corollary are satisfied if 4 is
a commutbative &-semi-simple Hg-ring with identity, and MCSCRQ.
{Cf. [5], Theorem 1.4.)

THEOREM 3.7. -If © is a Hausdorff space conlwined in Q, then the
following are equivalent.

(a) Bvery Q-ideal comtaining AS is an G-ideal.

(b) Every [Q-ideal containing AS is an intersection of & -ideals.

{¢) (1) Bvery Q-ideal containing AS is imbeddable in an S-ideal; and

(i) for all 8 ¢ S, 8 is the unique proper prime ideal containing N (8).

If in addition, every N(8) (8 € ©) is an intersection of prime ideals,
then (ii) may be replaced by

(ii') every G-set is open, that is, N(8)=S8 for all §eG.

Remarks. In particular, this additional hypothesis will be satisfied
in case the ring is commmutative (Theorem 2.6). The equivalence of the
two statements in (ii’) was pointed out in Theorem 2.7.

Proof. Trivially, (a) implies both (b) and (i). Now let & be any
S-ideal. If @ is a proper prime ideal containing N (8), then @24& (2.3).
By (a), @ is an ©-ideal, and Theorem 3.1 now shows that S=@. This
establishes (ii). Thus, (a) implies (c).

By Theorem 3.4, (b) implies (a). Next, we deduce (a) from either
form of {¢). Let @ be any Q-ideal containing AG. By (i), ¢ is contained
in an S-ideal §; hence QIN(S), by Theorem 3.4. Each of (ii), (ii') now
implies that =48, and this yields (a).

PFinally, it ¥N(8) is an intersection of prime ideals, then obviously (ii)
implies (ii").

If =1, then (a) (or (b)) is trivially satistied. Hence from (¢) and
Theorem 3.3, we obtain the following rather interesting result.
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COROLLARY 3.8. If A is commutative, then Q s a Hausdorff space
if and only if every Q-set i8 open.

We next prove two general theorems that do not deal with strue-
ture spaces.

TuroreM 3.9. For any family N of prime ideals in a ring A, the fol-
lowing are equivalent.

(a) For oll BCYU, the ideal MQ is prime.

(b) For any P,Q e, the ide;l PAQ is prime.

(e) U s totally ordered under set inclusion.

Proof. (a) implies (b). Trivial.

(b) implies (e). Consider any P,¢ . Since PQCPAQ, and P~Q
is prime, by hypothesis, we must have either PCP~Q or G@CPAQ.
Hence either PCQ or QCP.

(¢) implies (a). Suppose that (a) fails. Then there exists a subset B

of U such that the ideal B-="¢ is not prime. Hence there exist ele- ’

eB
ments a,b e 4 such that aéB,%eB, but axbeB for all zed. Since « ¢ B,
there exists P e B such that a¢ P. Likewise, there exists ¢ ¢ B such that
b ¢Q. By hypothesis, PO@, say. Then a¢€, b¢Q. But axb @ for all z,
contradicting the fact that @ is prime. (Cf. [7], Theorem 4.)

THEOREM 3.10. Let A be a commutative ring with identity, let U de-
note the family of all prime ideals in A that are contained in a given proper
ideal I, and suppose that every finitely generated ideal in A that is con-
tained in I is o principal ideal. Then W is totally ordered under set inclu-
ston, and the intersection of any subfamily of W is a prime ideal.

Proof. By Theorem 3.9, the two conclusions are equivalent. Sup-
pose that they fail. Then there exist P,Q ¢« U such that neither containg
the other. Hence there exist elements p,q e A satisfying p e P, p ¢ @,
ge€@Q, g¢P. Since (p,q)C(P,Q)CI, the ideal (p,q) is principal, by hypo-
thesis. Let (p,q)={a). Then there exist elements b, ¢, s, t such that p=ba,
g¢=ca, and a=sp+-tq. Then a ¢ P, a ¢ . Since sp=sba=0(P), and P is
prime, we have sb=0(P). Also, a==sp +1g=sp==sba(f)), whence sb=1(¢),
since ¢ is prime. Thus, sb e PC(P,Q), and sb—1e¢QC(P,@). But then
1e(P,Q)C1, contradicting the hypothesis that I is proper.

A particular consequence of this theorem is [7], Corollary to Theo-
rem 4.

TueorEM 3.11. If A is a commutative Hg-ving with identity, where
MCESCQ, and if

(4) every findtely generated ideal in A ds principal,
then for every 8 ¢S, the ideal N (8) is prime.

icm

Rings with Hausdorff structure space 9

Proof. Since 4 has an identity element and SO, every proper
ideal is imbeddable in an &-ideal. The result is now an immediate con-
sequence of Corollary 3.6 and Theorem 3.10.

The hypothesis that & be a Hausdorff space (or even T,) is not ne-
cessary, as shown by the example of the ring of integers.

In [5], Theorem 2.5, it is shown, using an entirely different argu-
ment, that if 4 is a ring C(X) (of continuous real-valued functions),
then the condition (4) is equivalent to the condition that every N (M)
(3 ¢ M) be prime. In this connection, we have:

ExaMprE 3.12. Let A4 denote the ring of all formal power series
in two indeterminates xr and y, with coefficients in a field, and consider
the space Mt(4). It is not hard to see that M= (w,y) is the only maximal
ideal in A. Hence N (M)=DM, so that N (M) is prime. Thus, 4 is a com-
mutative Hoy-ring with identity in which every N (M) (M ¢ R) is prime.
But the finitely generated ideal M is not -prineipal.

A ring is regular [16] if for every a, there exists x such that ave=a;
biregular [1] if every principal ideal is generated by an idempotent in
the center; strongly regular [1] if for every a, there exists » such that
@r=a. Strong regularity implies both regularity and biregularity, and
for commutative rings, the three concepts coincide ([1], Theorem 3.2).

Every regular ring is semi-simple [9]. A commutative ring is regular if
and only if every ideal is an intersection of prime ideals ([13], Theorem 49).

Fvery biregular ring A is semi-simple; its primitive ideals coincide
with its maximal ideals, and every ideal is an intersection of primitive
ideals; P is locally compact and zero-dimensional, hence Hausdorff,

and P is compact if and only if 4 has an identity element ([1], § 2).

T A is strongly regular, then every A/P (P ) is a division ring
({11, Theorem 3.2).

THEOREM 3.13. In a biregular ving, every proper prime ideal is pri-
mitive, and every P-set is open.

Proof. As just pointed out, AP=(0), and all the hypotheses and (b)
of Theorem 3.7 (with S=%) are satistied; (a) and (ii') of that theorem
yield our present conclusions.

THEOREM 3.14." A necessary and sufficient condition that a ring 4 be
strongly vegular is that (i) A be semi-simple, (ii) every AP (P eP) be a di-
vision ring, (iii) every P-set be open, and (iv) every A[ACP(a) (a ¢ A) have
an identity element.

Proof. Necessity. (i) and (ii) have been noted above, and (iii) is
given in Theorem 3.13. Finally, given a ¢ A, let satisty a?z= a; it fol-
lows easily from (i) and (ii) that az is an identity element modulo 4€B (a)
(see [1], p. 463).
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Sufficiency. Consider any a e 4. By (iil) and (iv), CP(a) is com-
pact (Corollary 1.2). Now by (iii), N (P)=P for every P (Theorem 2.7).
Thus (iv), (ii) and (ili) imply that the hypotheses of Lemma 2.9, with
Y= EP(a), and S=1P, are satisfied. We conclude from that lemma that
there exists z such that ax is an identity modulo ACP(a). It follows
easily, using (i), that a®w=a.

From Lemma 2.8, we get.

COROLLARY 3.15. If A is a strongly regular ving with identity, then
B is normal in A.

A commutative ring 4 with identity is adequate if it satisfies (4) and
(5) given a, b, with az£0, there exist #, s such that a=rs, (r,s)=4,

and for every non-unit divisor s’ of s, we have (¢',b)#A.

Bvery commutative regular ring. with identity is adequate ([4],
Theorem 11). (Further discussion and references are also given in [4].)

The following theorem is a generalization of parts of [3], Theo-
rem 5.3 ff., and [5], Theorems 6.2 and 6.5.

TaEOREM 3.16. If A is a semi-stimple commutative Hap-ring with
identity, then the following are equivalent.

(ay A 18 regular.

(b) Every ideal is an intersection of marimal ideals.

(6) Every prime ideal is an intersection of maximal ideals.

(d) Bvery proper prime ideal is maximal.

(e) A 13 adequate. )

(f) A satisfies the condition (5).

(g) Every IM-set is open, i. ., N(M)=M for all M <Dt

Proof. In view of the preceding discussion, Theorem 3.7 (and re-
marks), and Theorem 3.14, all that remains fo be shown is that (f) im-
plies (g). The proof of this fact is an exact analogue of the proof of [5],
Theorem 6.5 (reference being made, at the appropriate places, to the
hypothesis that 9 is a Hausdorff space, and to Theorem 2.7, Lemmas 1.6
and 1.5, and Corollary 1.7, above).

In particular, under the given hypotheses on A, each of the above
properties implies (4).

The example of the ring of integers shows that these properties
need not be equivalent in case M is not a Hausdorft space.

4. Ordered rings. All rings considered in this section are com-
mutative. We recall that a partially ordered group is a commutative
group A on which is defined a partial ordering relation > that is inva-
riant under translation — that is, 4 is a commutative group, and for
all a,b,ce 4, we have
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Axiom O. (i) aza; (i) if a=b and ba, then a=1b; (iil) if a=b
and b>c, then az=¢;
and

Axrom G. If a>b, then a+c>b+c.

Alternate forms of G, evidently equivalent to it, are:

G,. a=b if and only if a—b>0.

G,. If a=b and ¢>d, then a+c¢=b+4d.

By a partially ordered ring is meant a commutative ring 4 whose
additive group is a partially ordered group, and that satisfies

Axtom R. If a0 and b0, then ab>0. ‘

"The discussion that follows is stated for rings, but the considera-
tions up to and including Theorem 4.5 apply equally well to groups
(“subgroup” replacing ‘“ideal’).

As usual, the symbol sup(a,b) denotes an element ¢ such that ¢=a
and ¢>b, and such that, whenever « >4 and #>b, then z>>c. The symbol
inf(a,b) is defined correspondingly. The symbol |a| denotes sup(a,—a):
By O (ii), any such elements are necessarily unique. Clearly,

(6) if \a| emists, then 2(a|>0;
(7) i 2030, then |x] exists and |o|=1x.

It follows from G that sup(a+¢,b+c)=sup(a,b)+¢, if either side
exists. Hence we have:

(8) sup(2a,2b)=a-+b+|a—D|, if either side ewists.

Furthermore, we have a3>b if and only if —b>—a. It follows that
inf(a,b)=—sup(—a,—b), if either exists.

We now congider some additional axioms for partially ordered rings.

Axtom L. If |a| emists, then |a]>0.

Alternatively:
1,. If 20>0, then £2>0.
L. If 2a>2b, then a>b.
The equivalence of T with I, follows from (6) and (7); that of I, with I,
is evident. .
Axrom T1. |a| exists for every a.
Alternatively:
IL,. sup(2a,0) exists for every a.
IL,. sup(2a,2b) exists for all a and b.
The equivalence of these with I is immediate from (8).

THEOREM 4.1. If the partially ordered ring A satisfies 1 and XN, then

the relation > is mazimal in A.
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Proof. By Gy, any relation x>y is equivalent to one of the form
a >0, Suppose that the relation ¢>0 is consistent with the given ones.
Then |a| must exist and satisty |a|=a. But by II, |a| exists in any case,
and by I, |a|>0. Therefore the relation a>0 is already known to hold.

If the partially ordered ring 4 is a lattice (4. e., sup(e,d) exists for
all ¢ and b), then A satisfies both I and I (see, e. g., [2], p. 15, Prop. 9).
The following simple example to show that the converse need not hold
was supplied by M. Henriksen.

BxampLE 4.2. Let B denote the direct sum of the ring of integers
with itself, define (a,b) >0 if and only if both o and b are non-negative,
and let 4 denote the subset of B consisting of all pairs of integers whose

sum is even. Then A is a partially ordered ring with identity, and sat-

isfies both I and II. But 4 is not a lattice: ¢. g., sup{(2,0), (1,1)) does
not exist.

TurOREM 4.3. Let A be o pawrtially ordered ring satisfying X and IL.
If for every ae A, there exists z ¢ A such that a=2x, then A is a lattice.

'Proof. Let a,b.eA be given. By I, sup(2a,2b) exists. By hypo-
thesis, we may write sup(2¢,2b)=2x. It*follows easily from I, that
x==sup(a,b). .

Lgt S be any ideal in 4. For a e A, the image of ¢ in the residue
class ring 4/§ (under the natural homomorphism) will be denoted by as.

Axiom Mls. If a>b>0, and a=0(8), then b==0(3).

. It is well ].mown (see, for example, [2], p. 23, Ex. 4) that the par-
t}ally ordered ring A satisfies IMls if and only if 4/S is a partially ordered
ring under the following definition: a5>0 if and only if there exists # ¢ A
\\.'1th 2>0 and zg=ag. We shall refer to this as the natural order on A/8
(induced by the given order on A).

. Let 6 be a set of ideals in 4, with 48=(0), and suppose that 4/§
is a p:fu‘mally ordered ring for every S e G. Then, evidently, 4 becomes
a partially ordered ring under the following definition: a >0 if and only
lyfv ag iolflor allll 8 ¢ @. (The condition 4S=(0) is used to obtain axiom O (ii).)
e shall call this the natural order on A4 (induced by the giv 'S
on the rings 4/8). ( v the given onders
Axionm IVs. For each ac A, if

= —_ [ a[(S )

TeroREM 4.4. If the partially ordered vin, .
and IVs, then Y ing A satisfies 1, X1, ILg

(i) the residue class ring A/8 is totally ordered;

_9{;‘1Ii(15v)(13>0 if and only if as=|a|(8), and if and only if sup(2a,0)
=g ;

la] exists, then either a=|a|(8) or

icm
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(i) as< 0 if and only if a=—|al(8), and if and only if sup (2a,0)=0(8).

Proof. (i) is evident; (i) and (iii) follow from (8).

If the partially ordered ring A satisfies Iy [IVs] for all 8¢&,
we say that A4 satisfies IIls [IVs]. It A satisfies I, II, XIs and IVs;
we call 4 an Lg-ring.

THEOREM 4.5. A necessary and sufficient condition that an &-semi-
-simple commutative ring A be an Lg-ring is that

(i) for every S¢S, A[S be totally ordered, and

(i) for every ae.A, there exist an element a' € A such that as=|a|s
for every SeS (in fact, a'=|al|), the induced order(s), in each case, being
the natural one(s). Furthermore, the composition in either direction of the
two operations of inducing order(s) yields the order(s) originally given.

Proof. Necessity. (S-semi-simplicity is not needed here.) We have
already observed that (i) holds. To prove (ii), define a’=|a|. Consider any
8« @, It a=|al(8), then as>0, so that as=|as|. But if a=la|(8), then
as=|als, i. €, as= ’s. Therefore ak==|as|. The case a=—[a|(8) is similar.

Sufficiency. We have already observed (using S - semi-simplicity)
that A is a partially ordered ring. Verification of axiom Ilg is trivial
in view of the fact that every A/S is totally ordered. Likewise, for each
acAd, it is clear that a’=sup(a,--a); consequently, we have |a|=a’,
and axioms I and I are verified. Since for each 8, we have |a|s=|as|=as
or —ag, axiom IVg also holds.

Next, suppose that the rings 4/S are totally ordered. Let us refer
to their ordering relations collectively as . Let >>, denote the partial
ordering relation that these induce on A, and let >, denote the order
relations induced by >, on the rings 4/8. We wish to show that >
coincides with >>,. Since both are total ordering relations, it suffices to
show that one contains the other, e. g., that as>,0 implies as >0,0 (8 eG).
Let ag be given, with as>,0, and let a denote any pre-image in 4 of as.
By definition of >,, there exists an element z of A sach that x>;0 and
wg=ag. By definition of >;, we have s>>,0. Thus, as>,0.

Finally, let 4 be partially ordered by >, let >, denote the order
velations induced by >; on the rings 4/8, and let >, denote the order
velation induced by >, on 4. We are to show that >, coincides with >;.
Let @ < 4 be given, with a>,0. Then as>,0 for every S. Therefore a>,0.
Thus a>>,0 implies @>,0. This shows that >, is contained in >;. It now
follows from the maximality of >, (Theorem 4.1) that >4 coincides with >;.

This completes the proof of the theorem.

Remark 4.6. Tf 4 is G-semi-simple and satisfies II and IVg, then
jajt=0* for every a ¢ 4. In the opposite direction, if |al*= a* whenever laj
exists, then A satisties IV for every prime ideal S.
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‘ Lmmma 4.7. Let A satisfy I and I and have an identity element. 1 f():
A is S-semi-simple and satisfies WV g, then (i1): 1=0. If (ili): GOM
ang A satisfies both IMlg and (i), then (iv): a>1 implies that a is o um'.t,‘
(whence A contains the rationals ). Finally, if 2 is @ unit, then A is o lattice.

Proof. Remark 1.6 shows that (i) implies (ii). If ¢ >1, then by (i)
a belongs .to no maximal ideal; it follows that (a) cannot be 1;r01)61"
whence ais a unit; thus, (iii) implies (iv). The final statement of the’
theorem is an immediate consequence of Theorem 4.3.

On referring to Theorem 4.4, we obtain:

. T]zEOB,EM 4.8. Every semi-simple Lay-ring with identéty is o lattice,
|af?=a? for gvery a e A (whence 1>0), and for every M < MM, we have ay 0
or <O according as sup(a,0)=|a| or =0(M). v

In any Lg-ring, we define

SHa)={8e¢B: ag>>0!.
We assmume now that & is a structure space.

( f)HEOREM +.9. If A is an Lg-ring, then G+a) is an open set 1391,‘6
€ .

Proof. From Theorem 4.4 (iii), we find that G+a)= €S (sup (2a,0)).

- j - 77’bp - l 1 1]
'H BEOREM 4 10, 1 A 8 @& semr-8i 1,6 2, g with de'nyt’l,t’l then ]

; ]]:I.'OOf' Given distinet elements AM,, M, of M, there exists aed
satistying a=0(2,), a=2(M,). Then M+(a—1 1 — re separati
it 1y 2) (@—1), M1 —a) are separating

TrrorREM 4.11. If A s o semi-simple L ; ith i :
; -1ing with identit y
8 normal in A (see Lemma 2.8 ff.) P s wdentity, then M

Pro‘of. Let U, B be disjoint closed subsets of M. For avery M;e B
tl}ere exists a; e A such that a;=2(M;) and a;=0(4U) (Corollary 1 7)’
Bince MH(a,—1) is open, there is a neighborhood W; of M, such tixai;
(#2)rr>1 for every M e ;. Since B is compact (Corollary 1.2), there exist

indices 2,,...,4 3 " i
1934, sueh that kL=J1H1kD§B. Define a=|a;|+...+]ay,|. Then

ap>1 for a1.1 M eA.iB, and ¢=0(4%). Since 4 is o lattice (Theorem 4.8)
we may define b=inf(s,1). Then b=1(4B) and b==0(4N)

WhET;E}SEEIOCRGE% 412, If A is an 5—3emi-simple Lg-ring with identity,
8, then for every a < 4, the following are equivalent. ‘

(a) The sets &+ {(— ¥ ] 11
Lomma 28 £ (@), &%(—a) are completely separated by A (see
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(b) There exists an element k¢ A such that a=kia| (whence |a|=ka).

(e) The ideal (a,|al) s principal.

Furthermore, a necessary and sufficient condition that every a ¢ 4 have
these properties is that N (8) be o prime ideal for every 8e©.

The proof is analogous to those of [5], Theorems 2.3 (¢, d, e) and 2.5
(reference being made, at the appropriate place, to Theorem 4.8 above).

THEOREM 4.13. Let A be a partially ordered ring satisfying I and I (*),
and having an identity element. If M is o mawimal ideal in A that con-
tains no element =1, then A satisfies amiom Ilag, whence A[M is partially
ordered.

Proof. Let a,b satisfy a>b>0, e, and suppose that b¢ M.
Qince M is maximal, there exists 2z ed such that bz=1(M). Then
1+ aja|--br e M. But

1+a|z|—bo=1+(a—b)a|+b(|a| -z} =1,

a contradiction.

This result is essentially due to Stone ([17], p. 458). Our proof is
somewhat simpler than his, in that we do not make use of axiom IVy,.
Using Theorem 4.4 (i), we get:

COROLLARY 4.14. Let A be a partially ordered ring sotisfying I, 11
and IVgy. If A has an identity element, and every element >1 is a unil,
then every residue class field A|M (M ¢ 3M) is totally ordered.

In particular, this corollary applies to any ring CO(X) (continuous
real-valued functions) or C*(X) (bounded continuous real-valued fane-
tions): see Remark 4.6. Of course, in these cases, more specific informa-
tion is also known. For example, criferia are available to determine when
C(X)/M is or is not archimedean ([8], Theorems 41, B0, et al; [6], §§ 2
and 3); and C*X)/M is always archimedean {[17], Theorem 76; sce also
[6], § 1)- .

The preceding results yield the following theorem regarding the
ideals N (S).

Traaorem 4.15. Let A be a partially ordered ving. If every A8 is
partially ordered, then every AN (8) is partially ordered (8 € &). If 4 sat-
isfies T and X1, A has an identity element, and every element >1 is a unil,
then every AN (M) is partially ordered (M e IN).

T¢, in addition, |a|t=qa? for every a4, then AJN(M) is totally
ordered whenever N (M) is prime (Remark 4.6). The result in the case
A=0(X) was first observed by Kohls [12].

(*) M. Jerison and I have since observed that it is sufficient that 4 be directed,
i. e., for every wed, there exists @ ed such that >z and »’'>0.
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Added in proof. The following is due to M. Jerison.

) Turzorem. Let 4 be an S-semi-simple ring with identity, where SoP; if an tdeal
I is contmined in a unique G-ideal S, then I> N (8). ’ l
Proof. If beN(S), then be ACS(a) for some a ¢ S. Every @-ideal containg a or
b, and hence any product in which both are factors; so every such product iz 0
Every proper ideal is imbeddable in an S-ideal; hence (I,a) = 4. Thus .1 == 4 7 a—}:
+arg+rar, for suitable i¢1, 7, e 4; 50 b=ibel. '
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The space of prime ideals of a ring*
by
C. W. Kohls (Lafayette, Ind.)

1. Introduction. Jacobson showed [4] that the set of primitive
ideals of an arbitrary ring may be made into a topological space by means
of & closure operator defined in terms of intersection and inclusion rela-
tions among ideals of the ring. It was observed by McCoy in [11] thab
the set of generalized prime ideals defined therein may be treated in
exactly the same way.

In the present paper, we shall primarily consider subspaces of this
latter space, among which the space of primitive ideals is the most im-
portant. In section 2, we review the Dbasic results of the subject and
establish notation and terminology. In section 3, we present some simple
extensions of the discussion of Jacobson [4] on the connection between
compactness of a general space of ideals and restrictions on the ring.
The following section treats the relation of other topological properties
on appropriate spaces of prime ideals to algebraic conditions on a com-
mutative ring. Section 5 is devoted to an examination of the connection
between the prime and primitive ideals of an ideal of an arbitrary ring
and those of the whole ring. These results are applied in the last section
to the situation in which the ideal is viewed as given, and the containing
ring is a ring with identity into which it has been imbedded by a stand-
ard process.

Several of the results of sections 3 and 4 (in particular, 3.1, £.1 and 4.7)
were obtained independently, in a slightly different form, by McKnight [12].
Since none of his results have been published, we have included a com-
plete discussion.

2. Preliminary concepts. Throughout this paper, the word “ideal”
always means “proper two-sided ideal””. For the definition of a primitive
ideal, see [4], and for the notion of prime ideal in an arbitrary ring,

* This paper, which was prepared while the author was a Predoctoral Fellow
of the National Seience Foundation, U. 8. A., constitutes a section of a doctoral dis-
sertation, written under the supervision of Prof. Leonard Gillman. The author wishes
to express his gratitude to Prof. Gillman for the-adwice and encouragement given during
the preparation of this paper.

Fundamenta Mathematicae, T. XLV, 2


Artur




