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On a closed mapping between ANR’s
by
Y. Kodama (Tokyo)

1. Let X and ¥ be topological spaces. A continuons mapping f
of X into Y is called a closed mapping it and only if, whenever A is
a closed subset of X, f(4) is a closed subset of ¥. In the present note,
~we shall show that if X and ¥ ave ANR’s for metric spaces and there
exists o closed continuous mapping 7 of X onto ¥ satisfying a certain
condition, then there exist some intimate relations between combinatorial
invariants of X and Y. In more detail, if ¥ is a finite dimensional ANR
for metrie spaces and for each point y of ¥ Y y) is an ANR for metrie
spaees having a certain acyclic property, we shall prove that there exists
a continuous mapping ¢ of ¥ into X such that fg==1. Moreover, it X
is a finite dimensional ANR for metric spaces, we shall prove that X
hag the same homotopy type as Y.

In 2, several notations and lemmas which we shall need later on
are given. We shall prove our main theorems in 3. In 4, we shall prove
some theorems strengthening the main theorems.

2. A topological space X is called an AR (resp. ANR) for metric
spaces if and only if, whenever X is a cloged subset of a metric space ¥,
there exists a retraction () of ¥ (resp. some neighborhood of X in Y)
onto X. (Cf. [1] or [13], Definition 2.2, p. 790.) A topological space X
is called an NES for metric spaces if and only if, whenever Y is a metric
space and B is a closed subset of ¥, any continuons mapping of B into X
can be extended to a econtinuous mapping of some neighborhood of B
in ¥ into X. (Cf. [13], Definition 2.1, p. 790.) A metric space X is called
an LO" space if and only if for each point @ of X and for each neigh-
borhood U of 2 there exists a neighborhood V of @ such that any con-
tinnouy mapping ¢ from an é-gphere & to V is extended to a continuous
mapping § from an (Z--1)-element 7' with the boundary & into U,
Pwms 0,1, 0,0 (CE [12], . 79.) A metric space X is called a O space
it and only if any continuous mapping ¢ from an i-sphere §° to X is

(1) By a relraction h of ¥ into X we mean a continuous mapping from ¥ onto X
such that h(w) =z for each point @ of X.
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extended to a continuous mapping § from an (¢ <4 1)-clement B with
the boundary & into X, i=0,1,2, .., (Cf. [12], p. 78.) T U= {U,}
and B = {V,;} are open coverings of a topological space X, a eovering U
is called a star refinement of a covering B if for each element U, of U
there exists an element Vj of a covering B such that St(U,, W) CV,,
where St(U., ) means the union of all clements U, of U guch that
U, AUy ©. An open covering ¥ of X is called a locally finite covering
of X if for each point » of X there exists a neighborhood of @ which
meets only a finite number of elements of W. By the order of an open
covering U of X we mean the largest number # such that there oxist
» elements of U with non-void intersection. The dimension of a normal
space X is the smallest number » such that for every locally finite open
covering B of X there exists a locally {finite refinement U of B whose
order <n+1. (Cf. [14], Theorem 2.1, p. 18, and [15], p. 351.)

Lemma 1. Let X be an ANR for metric spaces and let A be a closed
subset of X which is an ANR for metric spaces. Let U be an open neigh-
borhood of A in X. Then there exist an open neighborhood V of A contained
in U and o deformation homotopy H: VxI->TU such that

LHa, t) for aed and tel,
H(z,0) jor weV,

H(@,1)eAd for @€V,

=
=

where I is the closed interval <0, 1.

Remark. 8. T. Hu ([8], p. 30) proved this lemma in the case of X
and Y being ANR’s for separable metric spaces. For completencss we
shall prove this lemma.

Proof of Lemma 1. By Wojdystawski's theorem ([20], p. 186),
we can assume that X is a closed subset of a convex subspace B of
a riormed vector space. Since X is an ANR for metric spaces, there exist
an open neighborhood W, of X in B and a retraction h: W,—X. Put
W,=r"U). Then W, is an open set in W,. Since 4 is an ANR for
metric spaces and a closed subset of W, there exist an open neigh-
borhood W, contained in W,, of 4 in B and a rotraction ¢: W,-»A.
For each point & of 4, denote by Sy(a) a spherical neighborhood in B
with the centre ¢ contained in W,. Then we have Sya)~ X C W~ X C U.
Since g=1(Si(a) ~A) iy an open set in W, and containy a, theve oxisls
a spherical neighborhood Sy(a) in W, with the centre o such that Sy(a)
C g~ (8y(a) ~A4) ~8ia). Put V = {8y(a) n X| a e 4}. Define & mapping
H': VXI->W, as follows. Take a point # of V. There exists a spherical
neighborhood §,(a) containing #. Then g(z) € g(Sy(a)) C Si(a) ~ 4. There-
fore zu g(x) C 8i(a). Let us map »x I proportionally onto the segment

!
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g (x) in B. This is possible because 8y(a) is a convex subset in B. Since B
is a normed vector space and g is a continuous mapping, H' is a con-
tinuous mapping. Define H: VX I->U by putting H = ghH'. Then H
ig the required deformation homotopy.

Levmma 2. If X is an ANR for metric spaces, there exists an open
covering W= {U,} a e Q} with the following property: Whenever Z is a met-
rie space and fo, f, are two continuous mapping of Z into X such that for
a fized point 2y of 7 fy(2y) = fi(#s) = ®y and for each point 2 of Z there
exists an element U, of W containing fo(z) end f(2), then foe=fi: (Z,24)—
(X, o) (%)

This lemma is proved in the same way as [5], p. 363, or [9], p. 38,
and we omit its proof.

3. Tumorem 1. Let X be an ANR for meiric spaces, let ¥ be an
n-dimensional ANR for metric spaces and let xy and vy, be points of X
and Y respectively. Moreover, let f be a closed continuous mapping from
(X, @) onto (X, y,) such that for each point y of ¥ f7'(y) is an ANR for
metric spaces which is o CF space, where 8 is any integer such that n—1< 8.
Then there exists a continuous mapping g of (X, y,) into (X, x,) such that
1) fe=10): (X, y0)~(Y, yo)

(i) for each integer ©=0,1,2,..,8, the induced homomorphism g,:
(X, yo)—>my( X, ) s am isomorphism onio and the induced homo-
morphism g fe: il X, @) —>m(X, ) 45 the identity isomorphism,
where m{ X, @,) s the i-dimensional homotopy group of (X, ).
Proof. Since Y is an ANR for metric spaces, there exists an open

covering I3 with the property stated in Lemma 2. Let U, be an open

star refinement of . Suppose that we have already constructed an
open covering U, for § =0,1,..,4. We shall then construct an open

- covering U;,, as follows. For each point y of ¥, take a fixed element

Uyy) of U; containing y. Then f™'(Uy(y)) is an open neighborhood of
A, = ). By Lemma 1, there exist an open neighborhood Vi(y) of 4,
in X such that V() Cf ' (Uiy)), and a deformation homotopy H.:
Vily) x I-1"Udy)) sueh that H;(Vy(y)x1)C 4, for each y e ¥. Denote
the open covering {Vi(y)] ¥ e ¥} of X by By. Since f is a cloged mapping,
the set Quy)= Y — f(X —-Vi(:z/)) is an open set containing ¥ and con-

) Lot (X, A) and (¥, B) be two pairs of topological spaces and let f, and f, he
two continuous mappings of (X, 4) to (¥, B). By fomzfi: (X, 4)—(T, B) we mean
that there exists a howmotopy H: XxI-+¥ such that H|XX0=f,, H{Xxl=F
and H(4 xI)cB.

() We mean by “1” the identity mapping.
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tajned in Uyy). Denote the open covering {Qi(y)|y ¢ X} of ¥ by Q.
Tet i; be a star-star open vefinement (*) of L. Yor each point y of Y,
take a fixed element Tiy) of %, containing . Then ;f‘l(U,;(y)) is an open
neighborbood of 4,. By Lemma 1, there exist an open neighborhoh(,)‘d
Viy) of A, contained in f”l(f]i(y)) and a deformation homotopy Hy:
Vi) I»j”l(ﬁi(y)) such that ﬁ;’,(%(y) X 1) C 4y fof each point y of Y.
Denote the open covering {ﬁ-(y)] Y e}f} of X by ®B,. Since f is a closed
mapping, the set Ji(y) = ¥—f(X ~¥.(y)) is an open set containing y.
Denote the open covering {Gi(y)|y < ¥} of ¥ by ;. Let Uy be an
open star refinement of ;. Thus by induction we can construct se-
quences’ {U;, 2, 83 and {8y, ;) of open coverings of ¥ and X, Let
W, be a locally finite open covering of ¥ ([16], Corollary 1, p. 979) which
is @ refinement of g, and whose order is n--1. Moreover, we can as-
gume that 9B, is an irreducible (°) open covering such that the point g,
is contained in only one element of ;. Let K be the nerve of U3, with
Whitehead’s topology ([18], p. 316) and let & be a canonical mapping
([81, D. 202) of (¥, 4,) into (K, k), where %, is the vertex of K such thab
D(y,) = k. (Cf. [4], Theorem 3, . 576.) We shall constrncet a continuous
mapping § of (K, k) into (X, @). Tor each vertex » of XK, take a fixed
point a, of the set f '@~ (v). This is possible because MW, is an irreducible
covering of ¥. Define §: (K ko)—(X, @) by putting §(v) = 2, and
§ (k) = ,, where K% 1is the i-section of K. Let 7,5, be a 1-simplox. of I,
£ we denote the elements of 9, corresponding to v, and v, by W, a.nd’\Wa,
we have W,~W,#%@. Hence, there exists an olement (,)\5 () of Qg
such that W, WaC St(Wy, Wy) C Dssa(y). Therefore, we have f(v)v
o §oe) C 107 o) v £07 (o) C (W, W W) C ' {@snaly)) and  there
exist elements Vg ,(y') and Ugsa(y') of B, and Wi, such that F(v, v v)
C V') C 7 (Ts4aly"), and the deformaition homotopy S Venly') ¥
X I} {Tss1(y") such that H5P(Vsialy’) x 1) C Ay Consider the prod-
uet space 0, X I. The subspace 7= {v Wy} X Tuwmwyx 1 of GopX T is
a retract of | 10 X I whose retraction we denote by 7. Deline u; : {0y W} X
% I (D saly) by putting pem(os, 1) = Hy' (7 (v), 1) for i=1,2 and
tel. Since (o, 1) w uami(vs, 1) are two points of A, which is a oF
space, and n—1 <8, we have an extension fhg; of uiy “over 7 guch
that fam(v10s X 1) C Ay, Define §: K'—X by putting G (k) == fmyngr (e, 0)
for k e 55;. Since K iy a Whitehead complex, § is a continuous mapping
by [19], p. 224, and for each 1-gimplex v, of IC we can find an ele-

{#) An open covering U= {Us} of X is called a siar-star refinement of am open
covering B of X if the open covering {8t(Us, U)| Ua U} i3 a star refinement of .
(%) An open covering 0 = {W,} of X is called an irreducible open covering if for
each element We of 35 there exists a point e of X such that wy ¢ Wp for any Wp, f#a
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ment Dgua(y) of Ugy, such that §(v.9,) C f‘l(ffsﬁ.l(y)). Suppose we con-
struet a continnous mapping §: K'—X for i < j such that for i-simplex s
there exists an element Ugia_i(¥s) of Wgys, containing §F(s). Take a
j-simplex s of K. Consider the boundary F(s) of the simplex s. Then

fo-+1 .
F(s) =\ s;, where s are the (j—1)-dimensional faces of s. For each s;
i=1

we can find an element Ugia—¢n(s) of Wsia - sueh that §(s;) is
aine i -1 ‘\‘. 4 i7 S %
contained in f (U,g.m,(;_l)(y,,i)). Then Ugys—g-nlys) #©. Hence, there
. L F+1 .
exists an element Ugys—g-n 0of Usgpa_g—y containing U Usie-n(¥s)-
i=1

?lmrefure we can find elementy Yb ra—j(Ys) 2nd Usrailys) of Hg 2y and
Wy romy such that J(F(s)) v 4y, C Vi vag(Ws) C 1 (Usaaslys)) and the de-
formation homotopy ﬁfﬂ"““": V,gkg_,-(ys)xl»f"l(if,g.‘.g_j(y,,)) such that
5~ (Vssa—i(ys); 1) C 4y, Consider the product space sx I. The
subset F(s)xIwsxl of sxXI is a retract of sx I whose retraction
we denote by rs. Define p,: F(s)xX I— f“('ﬁs.,.._,_j(ys)) by putting
(e, £) = S (F(k), t) for T e P(s). Then ug(F(s),1) C 4y, Since 4y,
is & C° space and B—1 <8, e i8 extended to @ from F(s)xIwsx1l
to f“l.(lffs.|.2~.,~(ys)) guch that (s, 1) C 4,,. Define g: K'—X by putting
Fk) == Hyrs(k, 0) for kesC K. Obviously § is a continuous mapping
and for each j-simplex s of I we can find an element Jgpos(ys) of
Wyros such that §(s) CF (T rai(ys) . Thus we Lave a continuous map-
ping §: (K, ko)—(X, @) such thab for each simplex ¢ of K there exists an
element Usgys_n Of Wyp2n such that f§(s)C Ugpon. Define.g: (X, 4y)—>
(X, @) by putting g(y) =GP(y) for ye Y. Since 1 is a star refinement
of B, for each point y of ¥, we can find an element W of I8 such that
y o fgly) C W. Thus we have fo =1 (¥, 50) (¥, o)

Next, we shall prove that the induced homomorphism g, : @Y, ¥¢)—>
(X, %) is an isomorphism onto, ¢ < §. Sinece X is an ANR for metric
gpaces, we can find a locally finite open covering U [16] such that

(i) 1018 a star refinement of f7'(2Wy),

(ii) it N is the nerve of 1 with Whitehead’s weak topology and @, is
a canonical mapping of (X, x) into (N, no) there exists a conti-
nuons mapping o (N, me) (X, ) such that WP 1t (X, 5)~>
(X, o). ‘

Wo ghall prove that Wo|N¥ o gf Wo| N¥: (N7, ne)—(X, ). To prove this,
we construet a homotopy H: N¥% I-»X such that H(n, 0} =Vyn) and
H(n,1) = gf¥n) for n e N* At first, we define H: N¥x (0 1) w{ng} %
xI-+X by putting H(n, 0) ==Fy(n), H(n, 1) = gfPy(n) for ne N% and
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H(mg, t) = o, for tel. Take a vertex , of N°. Since the covering U ig
a star refmement of f7(M,), we can find elements V,s|1( ) and Us;l(’l/)
of gy, and Wg,; such that i)  gfPy(ns) C Vou(w) C (Usia(w), and
the deformation homotopy HSJr1 v sa(y) X I =~ (U,g 1(3 )) such that
HS“(VS 211, )C A,. Consider the product space {n} x I xJ, where J
is the closed interval <0, 1>. The subset {n,} X (0w 1)xJ v {n} X I X {1}
of {m}xIxJ is a retract of {m}X I xJ whose retraction we denote
BY . Define g, {my}x (00 1) x> (Tgsa(y)) by putting pa(n, 0,1)
ﬁ‘g“(‘]:’u(nl) #) and pu(ng, 1,1) = Hf”(qf‘f’ (n), 1) for tedJ. Since A,
ig a C° gpace and n—1<s, py, I8 extended 60 Jingt (M} X (0w 1) XeJ o {m} X
><I><{1}->j'1(Us+1 y)) such that iy, (ny, 1,1) C Ay. Define H: N°X To NY%
(0w 1)>X by putting H (ng, ) = fn,u(n, §) for {nqy t) e N"x I. Tiet ngm,
be a 1-simplex of N. There exists an clement Ug.] of Wy sach that
FH (g X (0 0 1) L (1,0 mg) X T) C S8t ( Tgrry Wepr)y Mo} Since Mgy s
a star-star refinement Qg.q, we can find an element Vg (y) of By,
such that H(ngm, X (001w (. ung) X I) CVsya(y). Suppose that : Ni-1X
%I Nx(0w1)—~X is defined such that for each (i—1)-simplex s of ¥
there exists an element Vg.o_s(ys) of Bg,.; containing H ( (s % I))
where F(sxI)=TF(s)xIusx(0uw1). Then there ecxist the clement
Ugro-iltys) of Wgioq containing Vs i(ys) and the deformation homotopy
S0 Vo o¥e) X T > Usioi(ys)) such that Ay (Vi a-i(ta), 1) C 4y, -
Take an i-simplex s of N. Consider the product space s X IXJ. The sel
FsxI)XJwsxXIx1is a retract of ex.IxJ whose retraction wo de-
note by 7,. Define pe: F(sX I) X [ (Usie-il¥s)) by pubting p(n,t,1")
= HY™H(n, 1), t) for (n,t,¢') eF(sx I)xJ. Since 4, is a C° space,
us is extended to a continuous mapping g from F(sxI)xJwsxIx1l
t0 7 (Uspa—i(9s)). Define H: Nix I N¥x (00U 1)—X by putting H(n, 1)
= Hsts(n, t, 0) for nesC N, Since ¥'x I is a Whitehead complex, ds s
a continnous mapping, and for each (¢-1)-simplex ¥, there exists an
element Vgio_gin(¥s) of Bgis iy containing H(F(¥x 1)), Thus by
indnetion we can obtain the homotopy H: N°x I-+X such that H(n,0)
= Yyn) and H(n, 1) = gf¥(n). To complete the proof of Theorem 1,
it is sufficient that g,: #( ¥, y,)=m(X, @) be & homomorphivm onto
for ¢ < 8, because fg ~1: (¥, y)-> (Y, 9o). Take an eloment « of (X, @y).
Let % be a continuous mapping of (S » Po) into (X, ) defining o. We have
hee W Boh: (S,pﬂ) (X, ). Let % be a s1mp11(*12u1 approximation to Oy
such that k(8% C N'. Obviously, the mapping ¥h: (S p(,)—>(k Xy) Te-
presents the element « of m,(X, ,). Moreover, since h(Sf) C N and i< 8
gf‘PhNW,, (8, poy (X, ). Therefore, we have g¢fh =~ g/‘lfohN Wk
ek (8, po) (X, @o). Lieb § be the element of =,(Y, y,) represented by
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the continuous mapping fh: (&, p,)— (Y, 9,). Then the element g8 of
7u{ X, @) is represented by the mapping gfh. Therefore we have o = g,8.
This completes the proof of Theorem 1.

TororeM 2. Let X and Y be finite dimensional ANR's for metric
spaces. Let | be a closed continuous mapping from X onto ¥ such that
(o) = 5o and that for each point y of ¥ f'(y) is an AR for meiric spaces.
Then | has a homotopy inverse g, that is, there exists a continuous mapping g
of Y into X such that g(y,) = @, and that gf~1: (X, 2))~(X, @,) and
foe1: (X, 90) (X, y,).

Proof. Let dim X = §. Since for each point 4 of ¥ 7' (y) is an AR
for metric spaces, it is a C¥ space. In the same way as in the proof of
Theorem 1, we can construet an open covering U of X and a continuous
mapping ¢: (Y, 9,)—~(X, 2,) such that

(i) W iy a locally finite covering and its order is §+41,
(ii} if we denote the nerve of U with Whitehead’s weak topology by N,
there exists Wo: (N, no)—(X, %) sueh that W@, =~1: (X, x,)—~
(X, @), where @, is a canonical mapping of (X, @) into (N, n,),
(iii) we have homotopies fg~ 1: (¥, yo) (X, y,) and gfF,=~=¥;: (N, ny)
'_>'(X’ m())‘

By (i), (ii) and (iii), we can prove that
fy=1: (X, y0) (¥, Yo)-

The following corollaries are consequences of Theorems 1 and 2,
([71, Theorem 3.5, p. 15, [6], Theorem 7.1, p. 195 and Theorem 5.1, p. 240
and [17], Theorem 7.4, p. 214).

CoroLLARY 1. Under the same assumptions as in Theorem 1, the homo-
topy groups, homology gr 0UPS, cohomotopy grouwps and cohomology groups
of X contain the corresponding groups of Y as a divect factor for each di-
mension. The homomorphism induced by f in an isomorphism for each
dimension 1=0,1,2, ..., 8.

gf == 1: (X, ) (X, z,) and

COROLIARY 2. Under the same assumptions of Theorem 2, the homo-
topy groups, homology groups, cohomotopy groups and cohomology groups
of X are isomorphie to the corvesponding groups of X for each dimension.

4. In this section,
form:

Tumorum 3. Let (X, A) and (X, B) be pairs of ANR’s for metric
spaces and let Aim Y = n. Let f be a closed continuous mapping from (X, 4)

onto (¥, B) such that f~(B) = A and for each point y of ¥ f(y) is an
ANR for melric spaces and a ¥ space, where S is any integer such that

we strengthen the theorems of 3 in the following
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n—1 8. Then there exists o continuowus mapping y of (Y, B) into (X, 4)
such that

i fy=1: (Y, B)-~(¥, B), ‘
(il) for each integer i=0,1, ..., 8, the induced homomorphism g,: (¥, B)

(X, A) 45 an isomorphism onto and the induced homomorphism

Gufn: (X, A)>m(X, A) is the identity isomorphism.

TrmoREM 4. Let (X, A) and (Y, B) be pairs of fimite dimensional
ANR’s for meiric spaces and let | be a closed continuous mapping from
(X, A) onto (¥, B) such that [™(B) = A and for cach point y of ¥ FHy)
is an AR for metric spaces. Then there exisls @ comiinuous MaAPPIng
g of (¥,B) into (X,A) such thal gf ==1: .(X,m(,)&()\,’,A) and fyge=1:
(Y, B)~(Y, B).

These theorems are proved in the same way as Theorems 1 and 2,
by virtue of the following lemmas:

Lemma 8. Let (X, 4) be a pair of ANR's for metric spaces. Then
there exists an open covering W= {U,} of X with the following property:
Whenever (Z, C) is a pair of meric spaces and fo, fi: (Z, 0)y—~(X, 4)

such that for each point © of X there exists an element U, of W containing

fol@)whi(®), we have fofi: (Z, C)~>(X, A).

Temua 4. Let (X, A) be a pair of ANR's for metric spaces. Then,
for any open covering W= {U.} of X, there ewist a pair of W hitehead’s
complexes (I, L) and two mappings @: (X, A)->(K, L), ¥: (K, L)y—>(X, A}
such that for each point » of X there ewists an element U, of W containing
zu PO (x). .

We prove only Lemmas 4 and 3, and we omit the proofs of Theo-
rems 3 and 4.

Proof of Lemma 3. Since (X, .4) is a pair of ANR's for metric
spaces, by Lemma 1, we can find a neighborhood V of A in X and a de-
formation homotopy H: V x I->X such that H(e, t) = « for (a,?) e A X[
and H(x,1) ¢ A for m ¢ V. For each point ¢ of 4, take an open set W(a)
containing & and contained in V. For each point » of X—4, take an
open set W(x) containing # and contained in X—4. Denote by I the
open covering {W(z)| # ¢ X} of X. We can find an open covering W == {U,}
of X such that
(i) U is an open refinement of I,

(i) “whenever Z is a metric space and gq, ¢,: Z->X such that for each
point z of Z there exists an element U, of U containing gy(#)w ¢:(2),
there exists a homotopy H,: ZxI—>X such that Hy(z, 0) = go(2),

Hyz,1) = gy(2) and for each point 2z of Z we can find an element
W(z) of I containing H (2 x I).
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We shall show that the covering U is the required one. Let f, and f;
be two mappings of (Z, C) to (X, A) such that for each point z of Z
there exists an element U, of U containing f,(2)« fi(2). By (ii), we have
a homotopy H,: ZxI—X such that Hyz, 0) = fo2), Hylz, 1) = fi(z)
and for each point z of Z there exists an element W(z) of I such that
Hyex I)C W(z). Then we have HyexI)CV for ceC. Define H;:
ZxIX0LZX(00u1)xJuOXIXJS—+X by putting

Hy(z,1, 0) = Hy=,1) ' for (2,t) eZXI,
Hi(2,0,1") = fo(z) for (2,0,t)eZx0XJ,
Hi(z, 1,t) == fi(2) for (2,1,1) eZX1xJ,

Hye, t,t) = H(Hye,1),t')  for (c,t,¥) eCxIXJ,

where J is the closed interval <0, 1). Then H; is a continuous mapping
and we have H,(0xIx1)CA. Since X is an ANR for metric spaces,
by [5] Theorem 7.1, p. 363, H; has an exfension H, over a neighbor-
hood W of ZxIxX0uZ X (0ul)XJwCxIxJ in ZXxIxJ. Bince IXJ

is compact, there exists a neighborhood U of ¢ in Z such that UXIXx

wJ C W. Since Z it normal, there exists a continuous function u of Z
into <0, 1) such that w(e) = 0 for ¢ e € and p(z) =1 for z e Z— U. Con-
gider the subset (0w 1)xJuIx0 of the set IxJ. There exists a de-
formation homotopy hy: I xdJ—I XJ for s <0, 1> such that

hy = the identity mapping,
hli, ') = (i,t) for é=0or1 and
he(t, 0) = (¢, 0) for ted,
B, t) e (0w 1) xJuIx 0 for

t'ed,

(4, 1) e IxJ .

Define a homotopy =: Z x I XxJ X by putting =(z, t,1') = Hafz, h,,(g)(t,t’))
for (2,%,%) e ZX IxJ. Then = is continuous and is an extension-of H,.
Congider the homotopy T: ZXI-Y defined by T{(z, 1) = w(z, 1, 1)
for (e,t)e ZxI. Then we have Tz, 0) = folz), T(2,1)=ful2) and
T(0x I)C A. This completes the proof of Lemma 3. :

Proof of Lemma 4. (Cf. [10], p. 96-7). By Wojdystawski’s theorem
([20], p. 186), we can consider that X is a cloged subset of a convex sub-
sot B of & normed vector space. Since X and A are ANR'S for metric
gpaces, there exist an open neighborhood W, of X in B, an open neigh-
borhood W, of A in B contained in W,, retractions hy: Wy—X and
Byt W4, Put V= Wy~ X. Let Siz) be a spherical neighborhood of
a point # of X in B such that
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() it aed, 8@)~XCV and 8y(a)C Wy,
(i) if weX—4, Sy@)nX CX—A and S(x)CW,,
(it {Sy#)~X| ® ¢ X} forms an open refinement of .

For each point @ of X, take a spherical neighborhood Sy(z) of @ in B
such that Sy(@) C hi*(84(#) A X) ~ 8y(x). Let Sy(w) be a spherical neigh-
borhood of z in B such that

(i) if wed, 84(a)C AT (8x(a) ~ A) ~ 8y(a),
(i) if & e X—4, Sy(@) C ha ' (Salm) n X) ~ Syl

Let B be a locally finite open covering of (X , 4) which is a star refine-
ment of {8y(a)~ X| #e X} and let (K’, L) be the pair of nerve of B
with Whitehead’s weak topology and let (K, L) be the barycentric sub-
division of (K',IL’). Then a simplex s whose vertexes belong to L be-
longs to L. Denote by N the closed subcomplex of K spanned by ver-
texes which do not belong to L. If % is a point of K—=N UL, we can de-
termine uniguely two points @,b of N, L such that % eopen segment
ab C E—NUL. By the same way as [9], Theorem 5, p. 39, we can con-
struct a mapping ¥: NuLl - J{Syx)| # « X} such that for each gim-
plex s of K there exists a spherical open set Sy(x) containing ¥y(s ~ (K wL).
Define ¥,: L—4 by ¥,= hW|L. Then, if §= (04, .0y U, V415 «r) ) 18
a simplex of K such that (v, ..., v;) € N and (vy41, ..., 9s) ¢ b there exists
a spherical open set Sy(#) containing ¥(vg, ..., ¥:) « P1(Vs1, ..y 00). There-
fore there exists a continuwous mapping ¥y: K- {S(%)| # € X} such
that YN = ¥,|N, ¥, L=¥, and for each simplex s of K we can find
a spherical open set S)(z) containing ¥y(s). Define ¥: (K, L)—~(X, 4)
by ¥==hy¥,. Let @ be a canonical mapping of (X, 4) into (X', L'). Take
a point & of X. Let Vy, ..., V, be all elements of B ‘containing z. Then

D (%) € (g, vy Bm) ([3], D. 202), where v, is the vertex correbponding to
the element V; of B, Since B is a star refinement of {Sy(x) ~ X| z e X},

there exists a spherical open set S,(#’) such that U Vi CBy(a') ~n X. Hence,
i=0

20 PO(x) C 82"y~ X. Since {8y(x)~X| 2« X} is a refinement of 1,
there exists an element U, of U containing v ¥®(x). This completes
the proof of Lemma 4.

Finally we have the following corollaries.

CorROLLARY 3. Under the same assumptions as in Theorem 3, the homo-
topy groups, homology groups, cohomotopy groups and cohomology groups
of (X, 4)-contain the corresponding groups of (¥, B) as a direct factor for
each dimension. The homomorphism induced by f is an isomorphism for
each dimension i=10,1,2, .., 8.

im On a closed mapping between ANR's 227

CorOLLARY 4. Under the same assumptions of Theorem 4, the homotopy
groups, homology groups, cohomoiopy growps and cohomology groups of (X, A)
are isomorphic to the corresponding groups of (¥, B) for each dimension.

Remark 1. By simple examples, it can be shown that we cannot
omit the condition “f is a closed mapping” and we cannot replace the
condition “X is an ANR” by the condition “X is a compact metric
space’ in the above theorems.

Remark 2. In Theorems 1-4, we can replace the condition “Y is
an #-dimensional ANR for metric spaces” by the condition “Y is an
n~dimension LC" metric space”. (Cf. [11], Theorem 1.)
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