

On the spaces of ideals of semirings

by

A. Bialynicki-Birula (Warszawa)

- 1. L. Gillman (see [2]) has proved that if a structural set \mathcal{I} of ideals of a ring is a Hausdorff space under Stone topology, then every prime ideal which contains the intersection of ideals in \mathcal{I} is contained in at most one ideal of \mathcal{I} . It is easy to generalize this theorem to the case when R is a semiring (theorem 3.9). The principal result of this paper is the proof of a converse theorem for semirings R which are c-regular (1) (this class contains in particular distributive lattices, commutative rings and biregular rings) and for sets consisting exclusively of prime ideals of R. Moreover we give a few theorems on some topologies of families of sets having the finite character as well as some applications of those theorems to problems concerning spaces of ideals.
- **2.** Let B be the set formed only of integers 0 and 1. Let B^1 be the set B with the following definition of topology: open subsets of B are \emptyset (2), $\{0\}$ and $\{0,1\}$. Let B^2 be the set B with the Hausdorff topology.

We shall consider an arbitrary but fixed non-empty set R and a set \mathcal{J} of subsets of R. It is known that we can treat \mathcal{J} as a subset of $P B_a$ where $B_a = B$ for every $a \in R$ (we assign the characteristic function $\chi_i \in P B_a$ to each $i \in \mathcal{J}$). Let \mathcal{J}^* denote the subset of $P B_a$ such that $x \in \mathcal{J}^* = \sum_{i \in \mathcal{I}} (x = \chi_i)$.

Let \mathcal{J}^1 and \mathcal{J}^2 denote respectively the set \mathcal{J}^* with the following definitions of topology:

- 1. a subset $\mathcal{I} \subset \mathcal{J}^*$ is open if and only if there exists an open subset \mathcal{I}_1 of $\underset{a \in \mathbb{R}}{P} B_a^1$ (where $B_a^1 = B^1$ for every $a \in \mathbb{R}$) such that $\mathcal{I}_1 \cap \mathcal{J}^* = \mathcal{I}$;
- 2. a subset $\mathcal{I} \subset \mathcal{J}^*$ is open if and only if there exists an open subset \mathcal{I}_1 of $\underset{a \in R}{P} B_a^2$ (where $B_a^2 = B^2$ for every $a \in R$) such that $\mathcal{I}_1 \cap \mathcal{I}^* = \mathcal{I}$.

⁽¹⁾ This notion will be defined later.

⁽²⁾ Ø denotes here the empty set.

249

The following definition is due to Gillman (see [2]):

A set $\mathcal J$ of subsets of R is said to be *structural* if $\mathfrak i_1 \cap \mathfrak i_2 \subset \mathfrak i_3$ implies $\mathfrak i_1 \subset \mathfrak i_3$ or $\mathfrak i_2 \subset \mathfrak i_3$ for every $\mathfrak i_1, \mathfrak i_2, \mathfrak i_3 \in J$.

It is known that if a set $\mathcal J$ is structural, then it admits the Stone topology. More exactly, if we define for every subset $\mathcal A$ of the structural set $\mathcal J$ the closure operator

$$\bar{\mathcal{R}} = \underset{i \in \mathcal{I}}{E} (i \supset \bigcap_{i \in \mathcal{A}} i)$$

then this operation satisfies the well-known Kuratowski axioms of general topology (i. e., $\overline{\mathcal{A}} + \overline{\mathcal{B}} = \overline{\mathcal{A}} + \overline{\mathcal{B}}$, $\overline{\mathcal{A}} = \overline{\mathcal{A}}$, $\overline{\emptyset} = \emptyset$, $\mathcal{A} \subset \overline{\mathcal{A}}$ for every $\mathcal{A}, \mathcal{B} \subset \mathcal{J}$).

It is easy to verify that:

2.1. If $\mathcal J$ is a structural set, then the set $\mathcal J$ with the Stone topology is homeomorphic with $\mathcal J^1$.

Following Birkhoff and Frink (see [1]) we say that:

A property Φ of the subset i of a set R is of finite character if and only if, for a set \mathcal{F} of finite subsets f of R and a set \mathcal{G} of ordered pairs $(\mathfrak{g},\mathfrak{f})$ such that $\mathfrak{g} \subset \mathfrak{f}$ and $\mathfrak{f} \in \mathcal{F}$, it is true that $\mathfrak{f} \in \Phi$ if and only if $(\mathfrak{f} \cap \mathfrak{f},\mathfrak{f}) \in \mathcal{G}$ for all $\mathfrak{f} \in \mathcal{F}$.

We shall say that a set $\mathcal J$ is of finite character if the property $\mathfrak i \in \mathcal J$ is of finite character.

Let $\mathcal{S}(R)$ denote the set of all subsets of R. For every set $\mathcal{A} \subseteq \underset{a \in R}{P} B_a$ $(\mathcal{B} \subset \mathcal{S}(R))$ and $a \in R$ let us denote by $\mathcal{A}(a)$ $(\mathcal{B}(a))$ the set $\underset{f \in \mathcal{A}}{E}(f(a) = 1)$ $(\underset{i \in \mathcal{B}}{E}(a \in i))$.

We shall prove the following:

2.2. A set \mathcal{J} of subsets of R is of finite character if and only if \mathcal{J}^2 is bicompact.

First, let us suppose that \mathcal{J} is a set of finite character. Hence there exists a set \mathcal{F} of finite subsets \mathfrak{f} of R and a set \mathcal{G} of ordered pairs $(\mathfrak{g},\mathfrak{f})$ such that $\mathfrak{i} \in \mathcal{J}$ if and only if $(\mathfrak{i} \cap \mathfrak{f}, \mathfrak{f}) \in \mathcal{G}$ for all $\mathfrak{f} \in \mathcal{F}$. It suffices to show that \mathcal{J}^* is a closed subset of PB_a^2 (where $B_a^2=B^2$ for every $a \in R$). Let $\chi_{\mathfrak{i}} \in \overline{\mathcal{J}}^*$ and $\mathfrak{f} \in \mathcal{F}$. We consider the set $\mathcal{N}_{\mathfrak{f}} = \bigcap_{a \in \mathfrak{I} \cap \mathfrak{f}} \mathcal{S}(R)^*(a) \cap \bigcap_{a \in \mathfrak{f} - \mathfrak{i}} (-\mathcal{S}(R)^*(a))$. It is a neighbourhood of $\chi_{\mathfrak{i}}$. Hence there exists an element $\chi_{\mathfrak{i}_{\mathfrak{i}}} \in \mathcal{J}^*$ such that $\chi_{\mathfrak{i}_{\mathfrak{i}}} \in \mathcal{N}_{\mathfrak{f}}$. Thus $(\mathfrak{i}_{\mathfrak{i}} \cap \mathfrak{f}, \mathfrak{f}) \in \mathcal{G}$ and $\mathfrak{i} \cap \mathfrak{f} = \mathfrak{i}_{\mathfrak{i}} \cap \mathfrak{f}$. Consequently $(\mathfrak{i} \cap \mathfrak{f}, \mathfrak{f}) \in \mathcal{G}$. Hence $\chi_{\mathfrak{i}} \in \mathcal{J}^*$.

We now suppose that \mathcal{J}^2 is bicompact. Hence \mathcal{J}^* is a closed subset of $P B_a^2$. Let \mathcal{F} be the set of all finite subsets of R and \mathcal{G} the set of $A \in R$

all pairs $(\mathfrak{i} \cap \mathfrak{f}, \mathfrak{f})$ where $\mathfrak{f} \in \mathcal{F}$ and $\mathfrak{i} \in \mathcal{J}$. It is easy to verify that $\mathfrak{i} \in \mathcal{J}$ if and only if $(\mathfrak{i} \cap \mathfrak{f}, \mathfrak{f}) \in \mathcal{G}$ for all $\mathfrak{f} \in \mathcal{F}$. Hence \mathcal{J} is a set of finite character.

As an immediate corollary to 2.2 we obtain

- **2.3.** If $\mathcal J$ is a set of finite character, then $\mathcal J^1$ is bicompact.
- **2.4.** Let $\mathcal J$ be a set of finite character. The following conditions are equivalent:
 - (a) \mathcal{J}^1 is a Hausdorff space;
 - (b) $\mathcal{J}^*(a)$ is an open subset of \mathcal{J}^1 for every $a \in R$;
 - (e) \mathcal{J}^1 is homeomorphic with \mathcal{J}^2 .

First we suppose (a) and prove (b) and (c). Since \mathcal{J}^1 and \mathcal{J}^2 contain exactly the same elements, are bicompact Hausdorff spaces and are such that sets which are open in \mathcal{J}^1 are open in \mathcal{J}^2 , we infer that \mathcal{J}^1 and \mathcal{J}^2 are homeomorphic. Hence every set which is open in \mathcal{J}^2 is open in \mathcal{J}^1 . Thus $\mathcal{J}^*(a)$ is an open subset of \mathcal{J}^1 .

The implications $(c) \rightarrow (b)$ and $(b) \rightarrow (a)$ are obvious.

- **2.5.** Let $\mathcal J$ be a set of finite character. The following conditions are equivalent:
 - (a) $(\mathcal{J}-\{R\})^1$ is a Hausdorff space;
 - (b) $\mathcal{J}^* \mathcal{J}^*(a)$ is a closed subset of \mathcal{J}^1 for every $a \in \mathbb{R}$;
 - (c) $(\mathcal{J}-\{R\})^*(a)$ is an open subset of $(\mathcal{J}-\{R\})^1$ for every $a \in R$;
 - (d) $(\mathcal{I}-\{R\})^1$ is homeomorphic with $(\mathcal{I}-\{R\})^2$.

It is clear that if \mathcal{J} is a set of finite character then $(\mathcal{J}-\mathcal{J}(a))^2$ and $(\mathcal{J}-\mathcal{J}(a))^1$ are bicompact. Thus (a) implies (b). The implications (b) \rightarrow (c), (c) \rightarrow (d), (d) \rightarrow (a) are obvious.

- **3.** A semiring is a set R of elements which are closed under two binary operations: addition + and multiplication \cdot , with the following properties:
 - 1. both the addition and the multiplication are associative;
 - 2. the addition is commutative;
- 3. the addition is distributive under the multiplication: a(b+c) = ab + ac and (b+c)a = ba + ca for every $a, b, c \in R$;
- 4. there exists an element 0 in R such that for every $a \in R$ we have a+0=a=0+a; 0a=0=a0.

A subset i of R is said to be an ideal of R provided that:

- 1. if $a \in i$ and $b \in i$, then $a + b \in i$;
- 2. if $a \in i$ and $x \in R$, then $ax \in i$ and $xa \in i$;
- 3. if a+b=0 and $a \in i$, then $b \in i$;
- 4. 0 e i.

If a, b are subsets of R, then ab denotes the set $E\left(\sum_{x}\sum_{a\in a}\sum_{b\in b}x=ab\right)$.

For every set $b \subset R$ let us denote by [b] the intersection of all the ideals $i \subset R$ such that $b \subset i$. Clearly [b] is an ideal for every $b \subset R$.

It is easy to verify that

3.1. If i_1 and i_2 are ideals in R, then $[i_1 \cup i_2] = \sum_{x \in R} (\sum_{a \in I_1} \sum_{b \in I_2} (x = a + b))$.

In the sequel, the following lemma will be useful:

3.2. If i is an ideal in R and a, b are elements of R such that $aRb \subset i$, then $\lceil \{a\} \rceil R \lceil \{b\} \rceil \subset i$.

Indeed it is an easy consequence of the definition of ideal that

- a) if $x_1Rb \subset \mathfrak{i}$ and $x_2Rb \subset \mathfrak{i}$, then $(x_1+x_2)Rb \subset \mathfrak{i}$;
- b) if $xRb \subset \mathfrak{i}$ and $y \in R$, then $xyRb \subset \mathfrak{i}$ and $yxRb \subset \mathfrak{i}$;
- c) if $x_1Rb \subset \mathfrak{i}$ and $x_1+x_2=0$, then $x_2Rb \subset \mathfrak{i}$;
- d) $0Rb \subset i$.

Hence, if $aRb \subset i$, then $[\{a\}]Rb \subset i$. A similar argument will show that if $eRb \subset i$ then $eR[\{b\}] \subset i$ for every $e \in R$. Thus $[\{a\}]R[\{b\}] \subset i$.

An ideal $i \not\subset R$ is said to be prime (2) if $aRb \subset i$ implies $a \in i$ or $b \in i$.

A set m of elements of R is an m-system (4) if and only if $0 \notin \mathfrak{m}$ and $c \in \mathfrak{m}$, $d \in \mathfrak{m}$ imply that there exists an element x of R such that $cxd \in \mathfrak{m}$.

The importance of this concept lies in the fact that an ideal i in R is prime if and only if its complement in R is an m-system.

- **3.3.** If $i \neq R$ is an ideal in a semiring R, then the following condition are equivalent:
 - (a) i is a prime ideal;
 - (b) if i_1 and i_2 are ideals in R such that $i_1i_2 \subset i$, then $i_1 \subset i$ or $i_2 \subset i$.

At first let us assume (a) and suppose that i_1 and i_2 are ideals such that $i_1i_2 \subset i$ with $i_1 \not\subset i$. Let a_1 be an element of i_1 not in i. Then for every element $a_2 \in i_2$ we have $a_1Ra_2 \subset i_1i_2 \subset i$. Hence by (a) we have $a_2 \in i$. Thus $i_2 \subset i$ and we have therefore shown that (a) implies (b).

We now assume (b) and prove (a). Suppose that $aRb \subset i$; from 3.2 it follows that $[\{a\}]R[\{b\}] \subset i$, and thus $[[\{a\}]R][\{b\}] \subset i$ (the proof is similar to that of 3.2). Hence (b) implies $[\{a\}] \subset i$ or $[\{b\}] \subset i$.

Let Q(R) denote the set of all prime ideals of a semiring R.

3.4. $\mathcal{O}(R)$ is a structural set.

This statement follows immediately from 3.3.

It follows that $\mathcal{Q}(R)$ with the Stone topology is homeomorphic with $(\mathcal{Q}(R))^1$.

Now we shall prove the following:

3.5 (5). Let m be an m-system in R, i_0 an ideal which does not meet m. Then i_0 is contained in an ideal i_1 which is maximal in the class of ideals which do not meet m. The ideal i is necessarily a prime ideal.

The existence of i_1 follows at once from Zorn's Lemma. We now show that i_1 is a prime ideal. Suppose that $a_1 \notin i_1$ and $a_2 \notin i_1$. Then the maximal property of i_1 implies that $[i_1 \cup [\{a\}]] \cap \mathfrak{m} \neq \emptyset \neq [i_1 \cup [\{a\}]] \cap \mathfrak{m}$. Thus by 3.1 there exist elements

$$m_1=i_1+b_1\,\epsilon\,ig[\mathfrak{i}_1\cup [\{a_1\}]ig]\cap\mathfrak{m} \quad ext{ and } \quad m_2=i_2+b_2\,\epsilon\,ig[\mathfrak{i}_2\cup [\{a_2\}]ig]\cap\mathfrak{m}$$

where $i_1, i_2 \in i_1, b_1 \in [\{a_1\}], b_2 \in [\{a_2\}].$

Since m is an m-system, there is an element x of R such that $m_1xm_2 \in \mathfrak{m}$; consequently $m_1xm_2 \notin \mathfrak{i}_1$. But $m_1xm_2 = (i_1 + b_1)x(i_2 + b_2) = (i_1xi_2 + i_1xb_2 + b_1xi_2) + b_1xb_2$, whence $b_1xb_2 \notin \mathfrak{i}_1$. Therefore $b_1Rb_2 \notin \mathfrak{i}_1$, whence by $3.2 \ a_1Ra_2 \notin \mathfrak{i}_1$.

Let C(R) denote the centre of R.

A semiring R is said to be c-regular if every principal ideal in R can be generated by a central element.

It follows from this definition that commutative rings, biregular rings, distributive lattices are c-regular semirings.

Let R be a c-regular semiring. Let us denote for every element $a \in R$ by c_a an element of R such that $[\{a\}] = [\{c_a\}]$ and $c_a \in C(R)$.

It is easy to verify that:

- **3.6.** If i is an ideal in the arbitrary c-regular semiring R, then the following conditions are equivalent:
 - (a) i is a prime ideal;
 - (b) $i \neq R$ and if $c_1 \in C(R)$, $c_2 \in C(R)$, $c_1c_2 \in i$, then $c_1 \in i$ or $c_2 \in i$.

As an immediate consequence of 3.6 we find that:

3.7. If R is a c-regular semiring, then the set $\{R\} \cup \mathbb{Q}(R)$ is of finite character.

It follows from 2.5. that

3.8 (*). If R is a c-regular semiring, then $(\mathcal{Q}(R))^1$ is a Hausdorff space if and only if $(\mathcal{Q}(R))(a)$ is open for every $a \in R$.

⁽ $^{\circ}$) This definition is an extension (without any essential change) of the well-known definition of a prime ideal of a ring; cf. [3]. It is also easy to verify that if R is a distributive lattice, then the definition given here coincides with the usual one.

^(*) The notion of an *m*-system was introduced by McCoy [3] for the case of rings. Our definition is an extension of McCoy's definition to semirings.

⁽⁵⁾ Proofs of theorems 3.3 and 3.5 are modelled on proofs of theorems of [3].

⁽⁸⁾ This theorem represents a generalization of a result given in [2], p. 8.

3.9 (?). Let R be a semiring. Let \mathcal{J} be a set of ideals of R. If \mathcal{J}^1 is a Hausdorff space, then each prime ideal i_0 such that $i_0 \supseteq \bigcap_{j \in \mathcal{J}} j$ is contained in at most one $j \in \mathcal{J}$.

Let i_1 , i_2 be different elements of \mathcal{J} . Let i_0 be an element of $\mathcal{Q}(R)$ such that $\bigcap_{i \in \mathcal{I}} j \subset i_0 \subset i_1$. If \mathcal{J}^1 is a Hausdorff space, then there exist two sets $\{a_1, \ldots, a_k\} \in R$, $\{b_1, \ldots, b_l\} \in R$ such that

$$\mathfrak{i}_1 \epsilon - \mathcal{J}(a_1) \cap - \mathcal{J}(a_2) \cap ... \cap - \mathcal{J}(a_k), \quad \mathfrak{i}_2 \epsilon - \mathcal{J}(b_1) \cap - \mathcal{J}(b_2) \cap ... \cap - \mathcal{J}(b_l), \\ - \mathcal{J}(a_1) \cap ... \cap - \mathcal{J}(a_k) \cap - \mathcal{J}(b_1) \cap ... \cap - \mathcal{J}(b_l) = \emptyset.$$

Hence $a_1, a_2, ..., a_k \notin i_1, b_1, ..., b_l \notin i_2$ and $\mathcal{J}(a_1) \cup ... \cup \mathcal{J}(a_k) \cup \mathcal{J}(b_1) \cup ... \cup \mathcal{J}(b_l) = \mathcal{J}$. In consequence $a_1, ..., a_k \notin i_0$ and $[\{a_1\}] ... [\{a_k\}][\{b_1\}] ... [\{b_l\}] \subset \bigcap_{i \in \mathcal{J}} j \subset i_0$. Since i_0 is prime, it follows that $[\{b_i\}] \subset i_0$ for some $1 \leq i \leq l$. Thus $i_0 \not\subset i_2$ and the theorem is therefore established.

- **3.10.** Let R be a c-regular semiring. If $\mathcal J$ is a subset of $\mathcal Q(R)$, then the following conditions are equivalent:
 - (a) \mathcal{J}^1 is a Hausdorff space;
- (b) if i_0 is a prime ideal in R such that $i_0 \supset \bigcap_{j \in \mathcal{J}} j$, then there exists at most one ideal $j \in \mathcal{J}$ such that $i_0 \subset j$.

The implication (a) \rightarrow (b) follows from 3.9.

We now assume (b) and prove (a). Let i_1 and i_2 be different elements of \mathcal{J} . It is easy to verify that if $0 \in (C(R) - i_1) (C(R) - i_2)$ the set

$$\mathbf{m} = \left(C\left(R\right) - \mathbf{i_1} \right) \left(C\left(R\right) - \mathbf{i_2} \right) \cup \left(C\left(R\right) - \mathbf{i_1} \right) \cup \left(C\left(R\right) - \mathbf{i_2} \right)$$

is an m-system. If $\mathfrak{m} \cap \mathfrak{j} = \emptyset$, then there exists a prime ideal \mathfrak{i}_3 such that $\bigcap_{\mathfrak{j} \in \mathcal{J}} \mathfrak{j} \subset \mathfrak{i}_3$ and $\mathfrak{i}_3 \cap \mathfrak{m} = \emptyset$. Hence $\mathfrak{i}_3 \cap (R - \mathfrak{i}_1) = \emptyset = \mathfrak{i}_3 \cap (R - \mathfrak{i}_2)$ (indeed, if $a \in \mathfrak{i}_3 \cap (R - \mathfrak{i}_i)$ then $c_a \in \mathfrak{i}_3 \cap (R - \mathfrak{i}_i)$ and $c_a \in \mathfrak{i}_3 \cap (C(R) - \mathfrak{i}_i)$ for i = 1, 2), and in consequence $\mathfrak{i}_3 \subset \mathfrak{i}_1 \cap \mathfrak{i}_2$. But there exists at most one ideal $\mathfrak{i} \in \mathcal{J}$ such that $\mathfrak{i}_3 \subset \mathfrak{i}$. Thus $\mathfrak{i}_1 = \mathfrak{i}_2$. This contradiction shows that we must have $\mathfrak{m} \cap \bigcap_{\mathfrak{j} \in \mathcal{J}} \mathfrak{j} \neq \emptyset$. Thus there exist elements a, b such that $a \in C(R) - \mathfrak{i}_1$, $b \in C(R) - \mathfrak{i}_2$ and $ab \in \bigcap_{\mathfrak{j} \in \mathcal{J}} \mathfrak{j}$. It follows by 3.6 that $a \in \mathfrak{i}$ or $b \in \mathfrak{i}$ for every $\mathfrak{i} \in \mathcal{J}$. Hence $-\mathcal{J}(a) \cap -\mathcal{J}(b) = \emptyset$. Moreover, since $a \notin \mathfrak{i}_1, b \notin \mathfrak{i}_2$, we infer that $\mathfrak{i}_1 \in -\mathcal{J}(a)$ and $\mathfrak{i}_2 \in -\mathcal{J}(b)$. Thus the proof is complete.

Let R be a c-regular semiring. We shall consider the set $\mathcal{Q}(R)$ with the Stone topology. It easily follows by 3.10 that the following conditions are equivalent:

- (a) $(\mathcal{Q}(R))^1$ is T_1 ;
- (b) $(\mathcal{Q}(R))^1$ is a Hausdorff space;
- (c) (Q(R))(a) is open for every $a \in R$.

Finally we note the following result:

Let $\mathcal{Q}_0(R)$ be the set of all minimal prime ideals in a semiring R. It follows by 3.10 that if R is a c-regular semiring, then $(\mathcal{Q}_0(R))^1$ is a Hausdorff space.

References

[1] G. Birkhoff and O. Frink, Representation of lattices by sets, Trans. Amer. Soc. 64 (1948), p. 299-316.

[2] L. Gillman, Rings with Hausdorff structure space, Fund. Math. 45 (1957), p. 1-16.

[3] N. H. McCoy, Prime ideals in general rings, Amer. J. Math. 71 (1949), p. 823-833.

Reçu par la Rédaction le 25.5.1957

⁽⁷⁾ This theorem represents a generalization of a result given in [2], p. 6.