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On the spaces of ideals of semirings
by

A. Bialynicki-Birula (Warszawa)

1. L. Gillman (see [2]) has proved that if a structural set J of ideals
of a ring is a Hausdorff space under Stone topology, then every prime
ideal which contains the intersection of ideals in J is contained in at
most one ideal of J. It is easy to generalize this theorem to the case
when R is a semiring (theorem 3.9). The principal result of this paper
is the proof of a converse theorem for semirings R which are ¢-regular (1)
(this class contains in particular distributive lattices, commutative rings
and biregular rings) and for sets consisting exclusively of prime ideals
of R. Moreover we give a few theorems on some topologies of families
of sets having the finite character as well as some applications of those
theorems to problems concerning spaces of ideals.

2. Let B be the set formed only of integers 0 and 1. Let B* be the
set B with the following definition of topology: open subsets of B are
9 (?), {0} and {0, 1}. Let B2 be the set B with the Hausdorff topology.

We shall consider an arbitrary but fixed non-empty set R and
a set J of subsets of R. It is known that we can treat J as a subset of

1132 B, where B,= B for every a ¢ E (we assign the characteristic func--
a€

tion g ¢ P B, to each iej ). Let g* denote the subset of P B, such
aeR aeR
that ze J*= 3 (# = 7).
ey

Let J* and J? denote respectively the set J* with the following de-
finitions of topology:

1. a subset JC g* is open if and only if there exists an open sub-

set J, of P B (where Bi= B' for every a e R) such that , ~J*=7;
well

2, a subset IC g* iy open if and only if there exists an open sub-

set J, of P B: (where Bi== B for every aeR) such that J,~n J*=J.
aelR

(*) This notion will be defined later.
(*) @ denotes here the empty set.

17*
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The following definition is due to Gillman (see [2]):

A set J of subsets of R is said to be structural if i ~ 1 Cis implies
t, Ci; or 1, C 1, for every i, i, iged.

Tt is known that if a set J is structural, then it admits the Stone
topology. More exactly, if we define for every subset H of the structural
set g the elosure operator

A=EGENDH
ey jeA
then this operation satisfies the Well—knownwI(umtowvaki axioms of gen-

A=HA, G=0, ACA for

eral topology (.6, A+B= A+ B,
every A,BCT).

It is easy to verify that:

2.1. If 9 is a structural set, then the set g with the Stone topology is
homeomorphic with J*.

Following Birkhoff and Frink (see [1]) we say that:

A property @ of the subset i of a set R is of finite character if and
only if, for a set & of finite subsets of B and a set G of ordered pairs
(g, ) such that g Cf and f ¢ &, it is true that j e @ it and ondy if (j ~f,f) e G
for all f e &.

We shall say that a set J is of finite character if the property ied
is of finite character. :

Tet S(R) denote the set of all subsets of R. For every set AC P B,

aeld
(BC S(R) and a ¢ R let us denote by A(a) (B(a) the sotj!f‘;l(f(a) = 1)
(' Flae t)) .
ieB

We shall prove the following:

2.2. A set G of subsets of R is of finite character if and only if J? is
bicompact, .

TFirst, let us suppose that J is a set of finite character. Henceo there
exists & set & of finite subsets f of R and a set G of ordered pairs (g,f)
such that i e J if and only if (inf,f) ¢ G for all f ¢ &. It sulfices to show
that J* is a closed subset of P BZ (where B:= B* for every a ¢ R). Lot

as

7 € J* and f ¢« . We consider the set N; ==“Q” S(R)*(a) nM(;L (—S (R ().

Tt is a neighbourhood of x. Hence there exists an element xi, ¢ J*
such that g, ¢ N;. Thus (i, ~f,f)e G and inf=1~f Consequently
(inf, ) eG. Hence g ¢ J*

We now suppose that J? is bicompact. Hence J* is a closed subset
of PB2. Let & be the set of all finite subsets of B and G the set of

aeR
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all pairs (i~f,f) where { e & and ie J. It is easy to verify that iedJ if
and only if (i~f,f) e G for all f e &. Hence J is a set of finite character.

Ags an immediate corollary to 2.2 we obtain

2.8. If J is o set of finite character, then G is bicompact.

2.4. Let I be a set of finite character. The following conditions are
equivalent: .

(a) * is a Hausdorff space;

(b) J*(w) is an open subset of ' for every a ¢ B;

(€) g* is homeomorphic with J*.

First we suppose (a) and prove (b) and (e). Sinee J* and * contain
exactly the same elements, are bicompact Hausdorff spaces and are such
that sets which are open in J* are open in 2, we infer that J* and J2
are homeomorphic. Hence every set which is open in J? is open in J*.
Thus J*(e) is an open subset of JL.

The implications (¢)—(b) and (b)—(a) are obvious.

2.5. Let J be a set of finite character. The following conditions are
equivalent:

(a) (J—{B}) is a Haousdorff space;

(b)Y F*—J*(a) is a closed subset of J* for every acR;

(€) (F—{BY*a) is an open subset of (J—{R} for every a e R;

(d) (J— (R} is homeomorphic with (J— {B})2

It is clear that if § is a set of finite character then (J—J(a))* and
(g-9 (a))1 are hicompact. Thus (a) implies (b). The implications (b)—(c),
(e)—(d), (d)—(a) are obvious.

8. A semiring is a set R of elements which are closed under two
binary operations: addition -- and multiplication -, with the following
properties: .

1. both the addition and the multiplication are associative;

9. the addition is commutative;

3. the addition is distributive under the multiplication: a(b+e)
= ab+a¢ and (b+c)a = ba+ca for every a,b,c e R;

4. there exists an element 0 in R sneh that for every a ¢ B we have

A subset i of R is said to be an édeal of R provided that:
1.if aei and b ei, then a--befi;

2, if ael and 2 e R, then arel and za i;

3.if a-+b=10 and aei, then bei;

4. 0 el.

If a,b are subsets of R, then ab denotes the set E(3 Sa=ab).

z aea beb
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For every set BCR let us denote by [b] the intersection of
all the ideals iCR such that BCi. Clearly [b] is an ideal for
every bCR. i

It is easy to verify that

3.1. If i, and i, are ideals in R, then [f o b] = F(Y ) (@=a+b).

zeld aely beip

Tn the sequel, the following lemma will be useful:

8.2, If i is an ideal in R and a, b are elements of R such that aRb C 1,
then [{a}]R[{b}] C1i.

Tndeed it is an easy consequence of the definition of ideal that

a) if #,8b Ci and z,Rb C1, then (2, + ) B C i ’

b) it @R Ci and y ¢ R, then ayRb Ct and yaoRb Ci;

¢) if @, RbC i and x;+2,=0, then x.Rb Ci;

d) OR C 1. )

Hence, if aRb C1i, then [{a}]RbCi. A similar argument will show
that if ¢Rb C 1 then cR[{p}]C 1 for every ¢ e R. Thus [{e}]R[{p}]Ci.

An ideal iR is said to be prime (%) if aRbCi implies aei
or bei. -

A set m of elements of R is an m-system (¢) if and only if 0 ¢m
and cem, dem imply that there exists an element 2 of R such that
cxd e .

The importance of this concept lies in the fact that an ideal tin R
is prime if and only if its complement in R is an m-system.

3.3. If iR is an ideal in a semiring R, then the following condition
are equivalent:

(2) 118 a prime ideal;

(b) if i, and i, are ideals in R such that 4i, C1, then , Ct or {,CHL.

At first let nug assume (a) and suppose that 4, and i, arve ideals such
that i,i, Ci with i, ¢ 1. Let a, be an element of #;, not in i. Then for every
element @, € i, we have a,Ra, C i;i, C i. Hence by (a) we have a, ¢ i. Thus
i, Ci and we have therefore shown that (a) implies (b).

We now assume (b) and prove (a). Suppose that aRbCi; from 3.2
it follows that [{a}]R[{b}1C i, and thus [[{a}]R][{b}]Ct (the proof is
similar to that of 3.2). Hence (b) implies [{e}]C1{ or [{p}]CH.

Let Q(R) denote the set of all prime ideals of a semiring R.

(%) This definition is an extension (withoul any essential change) of the well-
known definition of a prime ideal of a ring; cf. [3]. It is also easy to verify that if B
is a distributive lattice, then the definition given here coincides with the usual one.

{*) The notion of an m-system was introduced by McCoy [3] for the case of rings.
Our definition iz an extension of McCoy’s definition to semirings.
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3.4. Q(R) is o structural sei.

This statement follows iromediately from 3.3.

Tt follows that Q(R) with the Stone topology is homeomorphic
with (Q(R))"™

Now we shall prove the following:

8.5 (). Let m be an m-system @ B, iy an ideal which does not meet m.
Then i, ts contained in an ideal i, which is mazimal in the class of ideals
which do not meet m. The ideal t is necessarily a prime ideal.

The existence of i, follows at once from Zorn’s Lemma. We now
show that %, is a prime ideal. Suppose that a, ¢t and a, ¢ i;. Then the
maximal property of i, implies that [, [{a}]] Am #0 # [tz o [{a}]] A
Thus by 3.1 there exist elements

my= i +be[iwl{ed]]nm  and  my=dptbye [t v [{ae}]] ~Am

where 4y, % € i1, by € [{m}], be € [{@}].

Qinee m is an m-system, there is an element 2 of R such that
mymy e m;  consequently myom, ¢ . Bubt  mgmmg == (i, + by)@(d + bs)
= (4,01, -+ @by -+ by ®is) + byahy, whence bywhs ¢ 1, . Therefore b Rb, ¢ i, whence
by 3.2 @ Ra, ¢ 1.

Let C(R) denote the centre of R.

A semiring R is said to be ¢-regular if every principal ideal in R
can De generated by a central element.

Tt follows from this definition that commutative rings, biregular
rings, distributive lattices are ¢-regular semirings.

Tet R be a c¢-regular semiring. Let us denote for every element
a R by ¢, an element of R such that [{a}] = [{c.}] and ¢, e O(R).

It is easy to verify that:

8.6. If i is an ideal in the arbitrory o-regular semiring R, then the
following conditions are equivalent:

(a) 1 s @ prime ideal;

() i % R and if ¢, ¢ C(R), ¢z e C(B), 10 ei, then ¢, et or G el

As an immediate congequence of 3.6 we find that:

8.7. If R is a c-regular semiring, then the set {R}w Q(R) is of finite
character.

It follows from. 2.5. that

3.8 (". If R is a c-regular semiring, then ((:2(1?7))1 is o Hausdorff
space if and only if (Q(R))(a) is open for every < R.

(%) Proofs of theorems 3.3 and 8.5 are modelled on proofs of theorems of [3].
(*) This theorem represents a generalization of a result given in [2], p. 8.


Artur


252 A. Bialynicki-Birula

8.9 ("). Let B be a semiring. Let § be o set of ideals of R. If Jrisa
Hausdorff space, then each prime ideal i, such that ioD_(} i ts contained
j&

in at most one {eJ.

Let 1,1, be different elements of J. Let i, be an element of Q(R)
such that M jCi, Ci. If J* is a Hansdorff space, then there exist two
jed
sets {ay, ..., ax} € R, {by, ..., b} e B such that

he—Jla)n—F(a) e n—=F(a), be=Jb)n—=Fl) o n —=Fb),
—Jayeon—Flog)n =FB) o~ — Gy =0 .

Hence iy, gy ooy @ 6 b1y Dyy ooy b 1o and F(a) o oo o Jlaw) v F (b)) v
wuJh) =Y. In consequence dy, .., o ¢ i, and [{o}] ... [{ex}][{0}] ...
B} C i Ci,. Since i, is prime, it follows that [{b;}]Ci, for some

jed

1< i<l Thus i, ¢ i, and the theorem is therefore established.

8.10. Let B be a c-regular semiring. If 5 is a subset of Q(R), then
the following conditions are equivalent:

(a) g is a Hausdorff space;
(b} if iy 48 @ prime ideal in R such that i,D (M) ], then there ewists at
jef

most one ideal i e J such that i, Cj.

The implication (a)—>(b) follows from 3.9.
We now assume (b) and prove (a). Let i, and i, be different elements
of J. It is easy to verify that if 0¢ (C(R)—1,) (C(R)—1y) the set

m = (0 (R)—1)(C (R)—1y) v (0 (R)—1) v (C(R)—1)

is an m-system. If m ~ (M = @, then there exists a prime ideal i, such
jed
that‘(;/j Ciand ty~nm = @. Hence iy~ (R—1;) == @ = iy ~ (R—1,) (indeed,
Je

if aelyn (B—1;) then ¢y efyn (R—1) and ¢, e iy~ {C(R)—1) for 4= 1, 2),
and in consequence i Ci, ~1,. But there exists at most one ideal iedJ
such that i, Ci. Thus i, =1,. This contradiction shows that we must
have m n'(} i# . Thus there exist elements a, b such that ¢ ¢ ¢(R) -1y,
jed
be C(R)—1i, and ab e'(}j. It follows by 3.6 that aei or bei for overy
. Jed
teJ. Hence — J(a) ~ —J(b) = @. Moreover, since a ¢ i;, b ¢ i,, we infer that
t e —J(a) and i, e —F(b). Thus the proof is complete.

(*) This theorem represents a generalization of a result given in [2], p. 6.
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Let B be a ¢-rvegular semiring. We shall consider the set @Q(R) with
the Stone topology. It easily follows by 3.10 that the following condi-
tions are equivalent:

(a) (QR) is Ty

(b) (Q(R))* is a Hausdorff space;

(¢) (Q(R))(a) is open for every aeR.

Finally we note the following result:

Let @Qy(R) be the set of all minimal prime ideals in & semiring K.
Tt follows by 3.10 that if R is & c-regular semiring, then ((,‘2[,(1!%))1 is
a Hausdorff space.
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