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by
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1. Introduction. Let X be a completely regular Hausdorff space.
In this paper, we study several problems about ideals in the ring ¢(X)
of all continuous real-valued functions on X, and in the ring C*(X) of
all bounded continuous real-valued funections on X.

Familiarity with the main regults of {3], [5] and [8] will be assumed.
However, a brief review of some of the concepts needed is given in sec-
tion 2. We also make use of the results of the preceding paper [13], which
will be referred to throughout as [K].

In sections 3 and 4, we are concerned with certain ideals of O%X),
namely, the ring of functions ‘“vanishing at co”, the subring of functions
with compact supports, and the ideals of ¢*X) which are contained
in the first ring and contain the second. In section 4, we obtain an alge-
braic characterization of a certain subclass of this eollection. In these
sections, we usually assume that X is a locally compact Hansdoxff space.

Section 5 is devoted to an investigation of the ideals contained in
a given maximal ideal, and the quotient rings obtained from some of
these ideals, under the hypothesis that the prime ideals in this family
intersect in a prime ideal. The study of rings of functions satisfying this
requirement was initiated in [4]. .

The last section contains miscellaneous results connected with some

algebraic questions raised in [K], and with the concept of P-gpace in-
troduced in [3]. :

2, Preliminary remarks. Throughout this paper, X denotes
a completely regular Hausdorff space. The letter R is reserved for the
tield of real numbers. We are primarily concerned with the following
rings: C(X), the ring of all continuous real-valued funetions on X ; OMX),
the subring of all bounded functions of C(X); CO,(X), the subring of all
m, which was prepared while the author was a Predoctoral Fellow
of the National Science Foundation, U. 8. A., constitutes a section of 2 doctoral dis-
sertation, written under the supervision of Prof, Leonard Gillman. The author wishes
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funetions of C(X) with compact supports; and Cw(X), the subring of all
funetions of C(X) which ‘“vanish at o0”’: f e 0o(X) if and only if e C(X)
and for each £>0, the set {x e X: |f(x)|>¢} iz compact. This last con-
cept can be generalized. We define the subring of C(X) of functions which
sgpproach a Hmit at oo’ to be all functions of the form f-4-r-1, where
feOu(X), »e R and 1 is the identity of C(X).

As is well known, with each space X there is associated a compact
Hausdorff space X, the Cech compactification of X, having the prop-
erties: (1) X is (homeomorphic to) a dense subspace of X; (2) every
f € C*(X) hag a continunous extension # over pX. The space X is um'qge
(up to homeomorphism). The closure in X of any set 4CX will be writ-
ten ag 4; and in X, as AP. The space vX is the largest subspace of fX
over which every function in C(X) (whether bounded or not) has a con-
tinuous extension. Furthermore, if fe 0(X) is regarded as a function
from X to the one-point compactification of R, designated by Ru{oo},
then f may be extended to a continunous funetion f from X to Ru{oo}.
As observed in [5], this follows from a theorem of Stone. (See [5] for
further discussion of the function f).

For every f ¢« ¢(X), the set Z(f)={z e X: f(z)=0} is called the zero-
-set of f. For any subset I o;f C(X), we let Z(I)={Z(f): felj}.

Let 4 be a commutative ring. The set of primitive (i. e., prime max-
imal) ideals of A is denoted by Mi(4). If this set is g.rivgn ?he Stone
topology (cf. [KJ, § 2), it will be written M(4); and if 1.13 is given some
other topology 7, this will be indicated as Mr(4). When 4 is a spbrmg of B,
'and the mapping y defined by y(M)=M~4, M eWM(B), is into M(4),
+then it is continnous. This statement follows from the discussion in [9], § 3.

Tt is. well. known that (0*(X)) and M(C(X)) are both homeo-
morphic to X. In the first case, M e BJ?S(C*(X)) if and oqu it M =3M*?
={f e O*(X): ffp)=0} for some p e fX. The correspondence in the sec-
ond case is given explicitly in:

LemmA 2.1 (Gelfand-Kolmogoroff). For every point p in BX, the set'
MP={feC(X): peZ(ff} is a maxrimal ideal of C(X). Conversely, ft;?
every magimal ideal M of O(X) there is a unique p « BX such that M=M".

For a proof, see [51. '

Furthermore, in either ring, the suhspace of all fixed ideals (i. e.,
such that p ¢ X) is homeomorphic to X.

. B__ 8 o
For any ideal I of C(X), we define A(I) =fQ Z(f) _ZQ(I)Z ._Eqmv

alently, A(I)={pepX: M*DI}. As noted in [B5), p. 453, the .eqniv.-
alence is a consequence of the Gelfand-Kolmogoroff lemma. It is evi-
dent that A(I) is a closed subset of AX.
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An ideal of C(X) of particular interest to us, which was introduced,
in [3], i8 N” (p e X). This is defined to be all fe O(X) such that Z(f)
contains the intersection of X with a neighborhood of p in pX.

In the terminology of [K], for any commutative ring 4, and any
o e A, the set M(a)={M « M(4): a e M} is called the M-set of a. Let I
be an ideal of A. We shall say that I is a 3-ideal if whenever M(a)
=M (b) and b eI, then a 1. It is useful to examine Ghis definition for
the rings O%(X) and O(X). If fe O*(X), then IM(f) is the zero-set of £,
regarded as an element of ¢/(5X). Thus, an ideal I of 0*(X) is & J-ideal
if whenever Z()=%(¢®) (in fX), and geI, then jel. On the other
hand, if fe O(X), then Mi(f) is the set Z (f. Wow it is easily shown
that Z(f)=Z(g)" it and only if Z(f)=Z(g). Thus an ideal I of O(X)
is a 3-ideal if whenever Z(f)=Z(g) and geI, then fel.

LuvMA 2.2. Bvery 3-ideal of C(X) is an intersection of prime ideals.

The proof is almost identical with the first part of [4], Theorem 1.4.

It was shown in [8], that if ¢(X)/M” is not isomorphic to E, then
it is isomorphic to a non-Archimedean ordered field containing FE. In
section 5, we obbtain a similar result for other quotient rings.

We conclude these remarks with a lemma of MeKnight [16] about
topologies on MW(A4): »

Lmvmra 2.8. If T is a topology on IN(A) such that each a e A is a con-
tinuous funetion from MM(A) to a (1) topological ring, then T is at least
as strong as the Stone topology.

Proof. The inverse images of zero by elements of A ave closed;
these are precisely the Pt-sets. Bub the I -sets form a base for the closed
sets of the Stone topology on M(4) (see.[K], §2).

8. 04(X), Cx(X) and related ideals of C*X). As is well known,
it X is compact, the space Mi(C(X)) is homeomorphic to X. The first
part of the section is devoted to a study of a generalization of this stat-
erent. .

The following lemma and proof are taken from [16], with some
minor expository modifications, and a slight generalization.

Lemwa 3.1 (McKuight). Let X be a completely regular Hausdorff
space. Let A be any closed subset of BX. Then the set 1 consisting of all
f € O(X) for which Z(f)f contains a neighborhood of 4, is the smallest ideal
of C(X) such that A(I)=4.

Proof. If f,g <1, then there exist open subsets V, W of X such
that ACVCZ(), ACWC Z(g)%; thus

ACVAWCZ(N ~Z(gfCZ(f—9).

And for any heC(X), we have AQV_C_Z(hf)". Thus, I it é,n ideal.

-
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Obviously, 4(I)2 4. For any p ¢ 4, there is an f e (¥ X) such that
Fip)=1, (A)=—1. Yet g=max{f,0}. Then gel, and p¢ Z(g)’. It fol-
lows that A(l)=4.

Finally, let J be any ideal satisfying A(J)=.21. Given fe I, there
is an open subset U of pX such that ACUCZ(f. For each point
pepX—U, there is a non-negative function g, eJ~ C*X) such that
¢¥(p)>>1. The open sets U,={g: ghlg)>1} cover X — U; by compactuess,
there is w finite subcover, say {U;,...,U,}. The sum g=g,+...+ s,
where ¢; is the defining funetion of U;, is in J~O0%(X); and ¢f(p)>1
for all p e BX —U. Since SX is normal, there is an % e C*(X) such that
B(d)=0, B¥(BX — U)=1. Define m e C(X) by: m(x)=h{(z)/g(x) if g(x)=>1,
and m(z)==h(z) if g(@)<1. Let e=mg. Then eed; and e(z)=1 for
xeX—Z(f); so ef=/, which implies that feJ. Thus, 1CJ.

We recall that an ideal [ of any subring of C(X) is said o be free
if for each pe X, there is an fel such that pe Z(f).

Levma 3.2, Let X be a completely reqular Hausdorff space. The ring
CuolX) s the intersection of the free maximal ideals of O X).
Proof. The intersection of the free maximal ideals of C*(X) ¢oin-

 vides with the set I=={f ¢ C%X): (X —X)=0}. Now it is easily seen

that the following statements are equivalent: fe Cw(X), i e., for every ‘
¢>0, the set F,={w e X: |f(2)|>>¢} is compact; for every >0, =T,
for every £3>0, |ff{p)] <« for all pefX—X; and fel.

TaEorEM 3.3 (1). Let X be a locally compact Hausdorff space, and
let A be an ideal of CHX). Then the following statements are equivalent.

(8) C4(X)CAC0u(X).

(b) For all M eﬂJTS(O*(X)), MDA if and only if M is o free ideal.

(¢) The mapping p->M*~4 (peX) is a homeomorphism from X
to M(A). )

Proof. (b)«s(c). Since the mapping p—>M* (peX) is a homeo-
morphism from X to the space of fixed maximal ideals of O*X), this
follows without difficulty from [K], Theorem 5.2 (for the spaces sm,(o*(x )
and M, (4)).

(a)->(b). Let M « M,{C*(X)) be a free ideal. Then by Lemma 3.3,
ACC(X)CM.

(1) The statement (a)—(¢) has been obtained independently by J. G. Horne, using
the concept of 0-ideal. For 4=0,(X), this result was apnounced by M. E. Shanke
in [17]. His proof (which has not been publighed) is also based on a viewpoint which
is different from ours. For A=0_(X), (and Lemma 3.4}, of. Loomis [14], p. 60.
{Added in proof: See also Théordm 1 of K. Fujiwara, Sur les anneaus des fono-
lions comtinues 4 support compact, Math. J. Okayama Univ. 3 (1954)- p. 175-184.)
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Now suppose M e M;{C*X)) is a fixed ideal, 4. e. M=MP for some
p e X. Since X is locally compact, there is a neighborhood V of p with
compact closure. And since X is completely regular, there is an fe CXX)
such that f(p)=1, {X—V)=0. Thus f ¢ 0,(X), and f ¢ M”, so O(X)¢ M".
Henee AGM. p ) :

Before concluding the proof of Theorem 3.3, we state and prove
3 lemma.

The one-point compactification X v {oo} of a loeally compact Haus-
dorff space X will be denoted by X*. )

Lva 3.4, Let X be a locally compact Hausdorff space. Then
(Gm(X);R) (notation as in [KJ, § 6) 4s isomorphic to C(X*).

Proof. By Theorem 3.3, (a)—{c), whose proof has been completed,
the mapping p—+M*~ Ox(X) (peX) is 2 homeomeorphism from X to
M;(Coo( X))- Thus, Coo(X) may be regarded as the ring Cw(iﬂts(Om(X))).
By [K], Theorem 6.3, (OW(X);R) iz a subring of C(X*). But it is evidenst
that in this case, all of O(X*) is obtained.

‘We return to the proof of 3.3.

(b)—(a). Since 4 C M for every free ideal M e BJZS(O*(X )), it follows
from Lemma 3.2 that ACC«(X).

By 3.4, we imbed Ou(X) in O(X*). Now 0(X*) is isomorphic to
the subring of O*(X) consisting of all functions which “approach a limit
at co”. Thus, A may be viewed as an ideal of C(X*) contained in M™.
Now for each p e X, there exists an fe.A such that f{p)~0. Hence
A{4) = Z(f)={cc}. By Lemma 3.1, the ideal of all functions van-
ishing i)f: 3 neighborhood of co is contained in 4, i. 6., CJX)CA.

Before stating the next theorem, we point out that it was shown in
{3], Theorem 3.3, that every prime ideal of ((X) is contained in a unique
maximal ideal.

THEOREM 3.5. Let X be a compact Hausdorff space; P, a prime ideal
of C(X); and M, the unique maximal ideal containing P. Then every maz-
imal ideal of P has the form P~M?, where g p, M* e M(C(X)).

Proof. Suppose not, and let I be a maximal ideal of P which is
not of the form indicated. There is a non-negative function g e P—I.
For let f e P—I be arbitrary. The relations max{f,0} min{f,0}=0¢ P,
max {f,0}+min{f,0}=f ¢ P—I imply that both max{f,0}, min{f,0} are
in P but not both are in I; hence, either max{f,0} or —min{f,0} is in
P—1. Now we have also }/ge P—I. Thus P/I is not a zero-ring; so I
must be a prime ideal of P, It follows that P is isomorphic to an ideal
P’ of C*(X—{p)) satisfying Cy(X —{p})CP'CCe(X—{p}) and having
a free primitive ideal. This contradicts Theorem 3.3.
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COROLLARY 3.6. Let X be o locally compact Hausdorff space. Then
C(X) is an ideal of Coo(X) which is contained in no mazimal ideal.

Proof. M™ ig a prime ideal of ((X*); by Theorem 3.3, every max-
imal ideal of M® has the form M%~M? where gstoo, M? e M(C(X*)).
But C,(X)¢M%

CoROLLARY 3.7. Let X be a compact Hausdorff space; F, a closed sub-
set of X; and A, the subring of C(X) consisting of all funciions which vanish
on F. Then every maximal ideal of A has the form A~ MY where q¢F,
M7 e MO (X)).

Proof. Form a quotient space by reducing F to a point.

ExamrLe 3.8. The ring Co(R) is a ring in which to every maximal
ideal there corresponds an element in its complement having a relative
identity (so that every maximal ideal is primitive [K], § 4), but not every
clement has a relative identity. For, it is clear that any maximal ideal
failing to have this property would necessarily contain Cy(E). By 3.6,
there are no such maximal ideals. And, the function f in Cu(R) defined
by f(®)=1/(z*+1), for all # ¢ R, is an element with no relative identity.

It has been noted that we may view Cuo(X) a8 the ideal M™ in C(X*).
It is easily seen that, similarly, Cy(X) may be considered as the ideal N °°
of C{X*) (see section 2 for the definition of N*). In fact, ((X) and Cw(X)
are the minimal and maximal ideals associated with the closed set {co}
in X*, in the sense of Lemma 3.1. If I is a proper ideal of Cw(X), it fol-
Jows from Theorem 3.3 that I is contained in no primitive ideal if and
only if A(I)~X is empty, or, regarding A(I) as a subset of X*, if and
only if A(I)=/{cc}. Thus, by Lemma 3.1, O,(X) is the minimal ideal
contained. in no primitive ideal.

Now N®=M> if and only if co is a P-point of X*; equivalently,
every countable union of compact subsets of X is contained in a ecompact
set (cf. [8], 4.2). 1t is easily seen that if X is a o-compact non-compact space,
or a non-countably compact space, then NO£EM®, i. e, O(X)# Cu(X).

According to Lemma 3.2, Ow(X) is the intersection of the free max-
imal ideals of O*(X). We consider now the intersection D of the free
maximal ideals of C(X). The ideal D must be a subring of C*(X); for
if ¢ C(X) is unbounded, there is & p e X —X such thab flp)=o0 (cf.
section 2), so that f¢ M". But D is Ghen a subring of Cu(X), because
(M”nO*(X))_C_M*” for every p. Since D is an ideal of C(X), it is an
ideal of C*(X).

It X is a locally compact, o-compact space, then D is contained
properly in Coo(X). For, pX —X is clearly & Gs-set of fX, and it is closed
in BX (cf. [11], p. 163, Bxer. G); hence there is an f ¢ 0% X) such that
Z(y=pX —X (ct. [11], p. 134, Exer. J). Thus, fe On(X), but f is in

Fundamenta Mathematicae, T. XLV. 3
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no maximal ideal of 0(X), since it is a wnit of C(X). It follows that in
this case, Cw(X) is not an ideal of C(X).

By Lemma 2.1, D coincides with {fe 0(X): Z(ffDpX —X}. Now
it feO(X), then pX=X'=(X—Z(Hfv2(if=E-Z()v2Z(); so
Z({fDpX —X, i. e, feD. Thus C(X) CD. We next give two sufficient
conditions that Cy(X)=D.

TrrorEM 3.9. If either (a) X is a P-space (not necessarily locally com-
pact), or (0) X is @ locally compact Hausdorff space and o018 @ P-poim of X*,
then Ci(X) coincides with the intersection of the free mawimal ideals of C(X).

Proof. (a) Let feD. Since X is a P-space, Z(f) is open ([3], Theo-
rem 5.3). Hence X — Z(f) and Z(f) are completely separated; so (X —z(p)
and Z(f)f are disjoint subsets of fX. Now Z(f’28X—X implies that
(X—Z(5)’CX. Since TZ(HC(X—Z(), and (X—2Z(j)f is & com-
pact subset of X, it follows that X ~Z (f) is compact, 4. e., that fe O(X).
Therefore D C Cy(X). Combining with the remark preceding the theorem,
we have O(X)=D.

(b) It has been shown that Cy(X)C D C0x(X). Thus, if cois a P-point
of X*, we have OJX)=Cw(X)=D:

Note that the two cases considered in 3.9 are mutually exclusive
in all spaces with an infinite number of points. For, if X is a locally com-
pact P-space, and oo is a P-point of X*, then X* is a compact I-space;
so X*, and hence X, is finite ([3], Cor. 5.4).

‘We designate by W (a) the space of all ordinals less than the ordinal o,
with the interval topology. The space X =W (@, + 1) X W (wq+1) —{(e:, we)}
shows that it need not be true that Oy(X)=D. Every continuous func-
tion of this space is bounded, so D is identical with the intersection of the
free maximal ideals of O*(X), . 6., D=0Ow(X). But Cy(X)+# Ceo(X), in
other words, co is not & P-point of X*, since X is evidently not countably
compact. ~

A famitar question related to these matters is, for what spaces X
is it true that X*=p8X (cf. e. g., [8], p. 62-63)? It is of course necessary
that X be locally compact Hausdorff. And for this class, X*=pX if and
only it every function in ¢(X) has a continuous extension to X*, which
ig clearly equivalent to the condition that C(X) coincide with the seb
of functions which “approach a limit at co’. Thus, it certainly suffices
that every function in C'(X) be constant outside a compact set; this is
equivalent to the statement that each fe ¢(X) has the form g¢g-+-1,
" g e C(X), r ¢ R, and that oo is & P-point of X*. That this is not neces-
sary is shown by the space

W (w,+1) X W (w4 +1) — {1, )} -
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The final result of this section indicates that an interesting condition
on C(X) (see [3], Theorem 5.3) is 00 restrictive when applied to Cwo(X).

TEROREM 3.10. Let X be a locally compact Hausdorff space. Then
Co(X) 15 @ regular (%) ving if and only if X is finite.

Proof. If X is finite, then X is discrete; 80 Cn(X) is the direct sum
of a finite number of fields (each isomorphic to R), and hence is regular.

Conversely, suppose that Ou(X) is regular. Now C(u(X) is an ideal
of (Coo(X); R), which by Lemma 3.4, is isomorphic to ¢(X*). It follows
from [12], Theorem 1, and the fact that R is regular, that C(X*) is reg-
ular. Thus X* is a P-space ([3], Theorem 5.3). But X* is compact;
so X*, and hence X, is finite ([3], Cor. 5.4).

4. Algebraic characterizations. In this section we give ring
characterizations of the 3-ideals of C*(X) (cf. section 2) containing ¢(X)
and contained in Cu(X), where X is a locally compact Hausdorff space.
Characterizing conditions are given separately for the ideals of greatest
interest, OJ(X) and Co(X).

Before giving these theorems, we state in 4.1 an essentially known
resulf, which will be needed in the proofs. We include a proof of 4.1 based
on a different viewpoint, which we believe to be interesting in itself;
it is developed from the method used by Heider in his characterization
of the lattice of all continuous real-valued functions on a compact Haus-
dorff space [6]. i

Let 4 be a subring of a commutative ring B. If the mapping o de-
fined by a(M)=M~ A is one-to-one from I(B) onto IMN(4), we shall
say that B is an M -extension of A. Throughout this section, the symbol a
will denote & mapping defined as above for the pair of rings under dis-
cussion.

There are many examples of It-extensions which are proper ex-
tensions. The ring C([0,1]) is a proper Mi-extension of the ring of con-
tinuous rational functions over B defined on [0,1], as well as of the ring
of differentiable real-valued functions on [0,1]. More generally, C([0,1])
iy a proper IM-extension of any subring 4 of C([0,1]) having the prop-
erties: (1) For each p e [0,1], {r e R: f(p)=r for some fe A} is a field;
(2) if f e A and Z(f) is empty, then f is a unit of 4. For, (1) evidently
implies that for each p €[0,1], {f e A: f(p)=0} is a primitive ideal of 4;
while it follows from (2), by & familiar argument of Gelfand and Xol-
mogoroff, that every primitive ideal of 4 is fixed. Many proper sub-
rings of CO([0,1]) satisfying (1) and (2) can be constructed merely by
restricting the functions at a single point p. For instance, the collection
of rings 4,,4,,4,,4,,..., consisting of all functions f in C€([0,1]) such

(*) For the definition and simple properties, see [15], p. 147-149.
3*
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that f(p) lies in Ra, Ra(/2), Ra(y2, V3), Ra(y/2,V3,¥B), .., respectively,
(where Ra denotes the rationals) is a sequenee of subrings such that
Ay, is a proper M-extension of 4; (1=1,2,3,...). Also, 0([0,1]) is a prop-
er M-extension of each 4;. In every example given above, the map-
ping o is actually a homeomorphism if the two spaces are given the Stone
topology.

Any ring A satisfying (R) of 4.1, (1) possesses an induced partial
order defined as follows: Given a ¢ A, we set « >0 if and only if the image
of ¢ in A/M is non-negative for each M ¢ M(A). The symbol < used
in the statement of condition (B) of 4.1, (1) and in condition (%B,) of 4.6,
signifies this partial orvder.

It would be incorrect to say that Theorem 4.1 is merely a trans-
lation of Heider’s result on lattices into the terminology of rings. If the
tmaximality” condition is omitted from [6], Theorem 5.1, the analogue
of our 4.1, (1) is not obtained. For example, the rings of rational func-
tions and differentiable funetions mentioned above satisfy all the hy-
potheses of 4.1, (1); but they do not satisfy the remaining conditions of
[6], Theorem 5.1, since they are not lattices.

Whenever it is convenient, we shall identify a ring with any ring
with which it is known to be isomorphic, without further notice.

THEoREM 4.1 (%). (1) Let A be a commutative ring satisfying

(R) 4 is a semi-simple algebra over B such that for each M e IMM(A),
we have A]M~R.

(3) A has an-identity (denoted by 1).

(B) For each aed, there ewists an re R such that a<r-1.

Then A is isomorphic to a dense subring of € ()ZRK(A)), where K is
a suitable compact Hausdorff topology.

(2) If, in addition, A satisfies

(€) Any M-extension of A satisfying (R), (I) and (B) coincides
with 4,

then A is isomorphic to C(Mx(4)).

(3) Conversely, if X is a compact Hausdorff space, then CO(X) sai-
isfies (M), (I), (B) and (E).

(* The author is indebted to J. E. Kist for pointing out the similarity of 4.1 to
the ordered algebra theorem of Stone (see, e. g., {10], Theorem 3.1). (Added in
proof: Stone’s theorem is more general than our 4.1; but we have since obtained
a substantial improvement in 4.1, which is almost the same as Stone’s theoxem. The
rest of the section can be correspondingly improved. In effect, we assume that 4
ig an “almost Archimedean” ordered algebra (rather than Archimedean);in compen-
sation, only an algebra isomorphism can be obtained — the order is not necessarily
preserved, The additions and changes in the proofs are too lengthy to be indicated
here.)
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Proof. (1) By (R), A is a ring of functions from M(4) to B; and
by (3) and (B), each function is bounded. Thus, A is @& subring of
(;’*(JJI(A)) (where Wt(4) has the discrete topology). We form SIi(A),
and extend each ae A to @, an element of O(ﬁﬂJt(A)). Now for each
z e fM(A)—TM(4), there iz an M e M(4) such that ab{w)=a?{ M) for
all a4, namely, the kernel of the homomorphism 7: 4R defined
by v{(a)=afx). Furthermore, there iy not more than one A3/ correspond-
ing to x. For, if M, M, e M(4), M,+M,, then there is an ae A such
that a(M;) = a(M,); so if M, corresponds to , af(IL,)768(x).

We partition g0t(4) by identifying all points which are not distin-
guished by elements of A4, 4. 6., we stipulate that for any =, y ¢ fIR(4),
x=y if and only if a®(z) =af(y) for all ¢ ¢ 4. It has just been shown that
the points of the resulting quotient space are in one-to-one correspond-
ence with the points of M (4). It can easily be shown that the quotient
topology is compact Hausdorff. From this, a compact Hausdorff topol-
ogy K may be given to IM(4) in the natural way. Thus, 4 is a sub-
algebra of O’(J.TZK(A)). Furthermore, A separates points of M (4). By the
Stone-Weierstrass Theorem, 4 is dense in C(Mx(4)).

(2) Let X be a compact Hausdorff space. It is well known that C(X)
satisfies (R); and it is evident that C(X) satisfies (JI) and (B). Thus,
O(DJ?K(A)) is an M-extension of A satistying (R), (I) and (B). From (),
A=C(Mx(4)).

(38) Let X be a compact Hausdorff space. It remains only to show
that C(X) satisfies (€). Suppose B is an IM-extension of C(X) satisfying
(R), () and (B). It follows from (1) that B is a subring of C(Mx(B)),
where K’ is a compact Hausdorff topology. Since the elements of B are
continuous, K’ is at least as strong as the Stone topology (Lemma 2.3).
Thus, « is continuous from Mix(B) to %S(G(X)). Since « is also one-
to-one and onto, it is a homeomorphism.

Now X is homeomorphic to 9%(C(X)) under the natural mapping
p—+M" (p e X). Since u: SHIK/(B)—A]RS(O(X)) is defined by o(M)=M~ 4,
M e MgAB), it is clear that X and Mx(B) are homeomorphic under
the natural mapping. Thus, B may be identified with a subring of (X).
Since also B2 C(X), we have B=C(X).

Let A bhe a commutative ring satisfying (R). As in [K], § 6, we may
imbed 4 in the ring with identity (4; R). From [K], Theorems 6.1 and 6.3,
it follows that (4; R) also satisties (R). Thus, as above, (4; B) possesses
an induced partial order. The symbol < used in the statement of (B'),
4.2, signifies this partial order. ‘
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TamorEM 4.2. Let A be a commulative ring sadisfying (R) and

(B') For each a<cA, there ewists an s ¢ R such that (a,0)<s(0,1)
in (A; RB).

Then A is isomorphic to a dense subring of Coo(Mr(4)), where L is
o suitable locally compact Hausdorff topology.

Proof. Tmbed A in (4; R). As observed above, (4; K) satisfies (R);
and it is evident that (4; R) satisties (3). Finally, (B') implies that (4; R)
satisfies (B). For let (a,f) e (4; R) be given, and let s ¢ R be such that
(2,0)<s(0,1). Then (a,t)< (s+1)(0,1).

We conclude that (A4;R) is isomorphic to a dense subring of
O(QRK(A; R)), where K is some compact Hausdorff topology. Let L de-
note the relative topology on Wi(4,); then Mi(4,) is locally compach
Hausdorff, and Me(4; R) is its omne-point compactification, with co=4,
(notation as in [KJ, § 6). Given fe O(Mx(4; R)), the elements of (4; k)
which approximate f may always be chosen so as to coincide with f at co.
(If f(oc)=7, and |(@,s)—f] <&/2, then l(a,r)—f| <&, since |(@,r)—(a,s)|
=|r—s|<s2). In particular, every element of Ooo(Mr(4o)) may be ap-

proximated by elements of (4; R) that vanish at oo, i. e., by elements
of A,. Thus, 4 is isomorphic to a dense subring of Ow(IMe(4y)), or, of

O’w(SIRL(A)).
We shall now utilize the concept of 3-ideal which was introduced
in gection 2. Tt is clear that every intersection of 3-ideals is a J3-ideal.

LEvmA 4.3. If A is a subring of Coe(X), there is a smallest J-ideal
3(4,X) of CHX) such that AC3(4,X)CCx(X).
Proof. (x(X) is & 3-ideal, since it is the intersection of the free

maximal ideals of *(X) (Lemma 3.2). Therefore the desired ideal 3 (4 ,X)
is simply the intersection of all the 3-ideals containing A.

TeEoREM 4.4. (1) Let A be a commutative ring satisfying (R), (B') and

(&) Any IM-extension of A satisfying (R) and (B') such that
of{Mt(a): @ € 3(B,MMB)}) = {M(a): ae3(4,D(4))} coincides with A.

Then A is isomorphic to a 3-ideal of O*(MML(4)) containing Os(Mx(4))
and contained in Cm(BJtL(A)), where I is a suitable locally compact Haus-
dorff topology.

(2) Comversely, if X is a locally compact Hausdorff space, then every
3-ideal of CXX) containing C«(X) and contained in Cuw(X) satisfies (R),
(B') and (E').

Proof. (1) Let X be a locally compact Hausdorff space, and let H
be a 3-ideal of C*X) such that OfX)CHC Uw(X). Then H satisfies
(R) and (B'). For, by Theorem 3.3, each ideal of M,(H) is the intersection
of H with a fixed-ideal of C*(X). Condition (R) then follows immediately.
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Now imbed H in (H; R). Since M(H; E) is compact, every element of
(H; R) is bounded, so H satisfies (B’).

Suppose A satisfies (R), (B’) and (§'). By Theorem 4.2, 4 is iso-
morphic to a dense subring of Om(ﬂﬁL(A)), where L is a suitable locally
compact Hausdorff topology. In view of Theorem 3.3, it follows that
3(4,My(4)) is an IM-extension of 4 as in (§'). From (€), we have
A=3(4,M(A)).

(2) Let X Dbe a locally compact Hausdorff space, and let H be such
that Oy X)CHC Ou(X). It remains only to show that H satisties (€').
Suppose B is an M-extension of H as in (€). It follows from 4.2 thab
B is isomorphic to a dense subring of Ceo(Mz(B)), where L' is a locally
compact Hausdorff topology. Since the elements of B are continuous,
I’ is at least as strong as the Stone topology (Lemma 2.3). Thus, « is
continnous from M (B) to V(H).

Next, let K CI,(H) be compact. By Theorem 3.3, the Stone topol-
ogy on Di(H) is locally compact Hausdorff. Thus, using the same meth-
od as in 3.1, we find an a ¢ O;(MM(H)) whose support contains &, and
repeating the argument, a non-negative b e C;(T(H)) exceeding 1 every-
where on the support of a. Let e=min{b,1}. Then ee Os(M(H)), and
¢ is a relative identity for a. By hypothesis, HD OE(SUES(H)); so a,ec H.
We now view & and e as functions on MzA(B). Since ae=a in B also,
it is elear that e(M)=1 for each M e My (B) in the support of a. Thus,
a has a support which is a closed subset of D= {M e MuA(B): e(M) =1}
The set {z ¢ fIM(B; B): (¢,0)%(x)=1} is compact, so its continmnous image
in the quotient space which yields the one-point corpactification of
Me(B) is also compact. But this latter set, since it does no$ contain
the point at infinity, coincides with D. It follows that ae O,(ETRLI(B)).
Since ¢ is continuous and & is closed, o~Y&) is compact. Thus, we have
shown that o—! takes compact sets into compact sets.

Finally, we extend a to a mapping o*: M (B)~> M, (H), where
My (B)=Mu(B)w{cog}, M(H)=IM{H)w{ccn} are the one-point corapacti-
fications of My (B), M,(H), respectively, by stipulating thab a*(cop)=o0g.
Tt BCIM,L(H) is any open set containing cog, then MJSH)—DB is com-
pact; 8o a*~H{M,(H ) —B) = a~1{M,(H)—B) is compact, and hence is the
complement of an open set containing oop. It follows that a* is con-
finuous, and henee a homeomorphism. Thus, a is a homeomorphism
from M(B) to M(H).

By Theorem 3.3, X is homeomorphic to M(H) under the mapping
p—>M*~H, (p ¢ X). Hence X and Mz(B) are homeomorphic under the
natural mapping. Thus, 3(B,§my(B)) may be identified with 3(H,X),
i 6., with H. Since BC 3(B,My(B)), and BDH, we have B=H.
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COROLLARY 4.5 (4). (1) Let A be a commulative ring satisfying (R),
(B') and

(Coo) Any M- emtension of A satisfying (R) and (B') coincides with A.

Then A is isomorphic to ON(SIRL(A)), where L is a suitable locally
compact Hausdorff topology.

(2) Conmversely, if X is a locally compact Hausdorff space, then Coo(X)
satisfies (R), (B') and (Ceo).

Proof. The only statement which might require a remark is that
it X is a locally compact Hausdorff space, then Ceo(X) satisfies (€eo).
A proof of this can be given by using the proof of 4.4, (2) in a manner
similar to 4.6, (2) below.

The final theorem is a direct generalization of Theorem 4.1, (2)
and (3).

THEOREM 4.6 (). (1) Let A be a commutaiive ring salisfying (R) and

(3;) Every element of A has a relative tdentity.

(B,) For each ae A, there exists an v ¢ B such that a <re, where e 1is
a suitable relative tdentity for a.

(G) Any I-extension of A satisfying (R), (Ts) and (Bs) coincides
with A.

Then A is isomorphic to C{Mz(A)), where L is o suitable locally
compact Hausdorff topology.

(2) Conversely, if X 4s a locally compact Hausdorff space, then Cy(X)
satisfies (R), (Is), (Bs) and ().

Proof. (1) We modify the proof of Theorem 4.2 as follows: By (J;)
and (B,), each element of 4, in (4; R) is a bounded funetion. Now [K],
Theorem 6.3, shows that each element of (A; R) iz the sum of a funection
in 4, and a constant function, and hence is bounded. Since condition (B)
of Theorem 4.1, (1) is used only to obtain boundedness, we may again
apply 4.1, (1) to (4; R). Thus, from 4.2, we conclude that 4 is isomor-
phic to a dense subring of Cm(iD"(L(A)), where I iz a locally compact
Hausdorff topology. We now show that, in fact, A4CC,(M(4)). Let
aed, and let ee A be a relative identity for a. Since ee Ow(EmL(A)),
{M e My(4): |e(M)]>1} is compact. The support of a is a closed subseb
of {M eMz(A4): |e(M)|>1}. Hence a e C(Mz(4)).

Now if X is a locally compact Hausdorff space, then C(X) sabis-
fies (R), (J;) and (B,). For, (R) was shown to hold in 4.4; (J;) follows
from a construction like that nsed in 4.4, (2); and (B;) is evident. Thus,

() For a characterization of ¢ (X) as a ring and lattice, see [1], Theorem 5.
(") A similar characterization of C(X), using its vector lattice properties, has
been obtained by J. E. Kist.
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in view of Theorem 3.3, it follows that os(th(A)) is an M-extension
of A satistying (R), (3;) and (B,). From (E), we have A=C(M(4)).

(2) Lett X be a locally compact Hausdorff space. It remains only
to show that C(X) satisfies (&,). Suppose B is an M-extension of C,(X)
satisfying (R), (J;) and (B,). It follows from the preceding part of the
proof that B is a subring of C’S{E)JEL'(B)), where I’ is a locally compact
Hausdorff topology. As in the proof of 4.4, (2), X is homeomorphic to
My(B). Thus B=0,(X).

5. fF-points (*). The set U is called an X-neighborhood of p <X
if U has the form X ~Q, where Q is a neighborhood of p in X. Thus
when p ¢ X, the set of X -neighborhoods of p coincides with the set of
neighborhoods of p in X. For convenience, when U is an X -neighborhood
of p, we shall refer to the set U—{p} as a deleted X -neighborhood of p —
even when pepfX~X, so that U—{p}=T.

Let fe C(X), and Y be a subset of X. If a statement about j(x)
is true for each w e ¥, we shall say the statement is true for f on Y.

We recall that for any fe C(X), 7 denotes the extension to X of f
(as a function into the one-point compactification of ). For any max-
imal ideal M7 of G(X), f € M? implies f(p)==0. But the converse is false
in general, as can be seen from Lemma 2.1.

. In the following definition, we generalize several concepts discussed
in [4].

DEFINITION #.1. Let p e fX. We define p to be a:

(1) BF-point (with respeet to X), if for each fe C(X) such that
f (p)="0, there is an X -neighborhood of p on which one of the relations
>0, f<0 holds; .

(2) BP'-point (with respect to X), if for each fe C(X) such that
fip)=0, there is a deleted X-neighborhood of p on which one of the
relations >0, f<0, f==0 holds; :

(3) BP-point (with respect to X), if for each feC(X) such that
f(p)=0, there is an X -neighborhood of p on which f=0.

We observe that if f(p)=0, then f is continuous and finite-valued
in some neighborhood of p in fX. Thus, since X is dense in X, each
of the conclusions in 5.1, (1) and (3), is equivalent to that obtained by
replacing X -neighborhood” with “neighborhood in BX”, and f with f.
However, this is not the case for (2).

(*) It is interesting to compare this section with the results obtained in (7] for
the ting of entire functions. (Added in proof: ‘We hawe since shown that the
conclusions of 5.6 hold for any prime ideal of C(X), and that all conclusions of 5.8,
§.11 and .13 hold when p is any BF-point, The proofs will be given elsewhere.)


Artur


42 CG. W. Kohls

A point p e X is a AP-point (resp. pP'-point) if and only if it is
a P-point (resp. P’-point) as defined in [3], 4.1 (resp. [4], 8.1).

When p evX —X, the concept of SP-point coincides with that of
“P-point with respect to X’ given in [3], § 4; but when p ¢ v.X, the con-
cept of BP-point is more restrictive. For, whenever p ¢ vX, there is an
f ¢ M such that f(p)=0 (cf. [8], Theorem 43). Now there is a restriction
placed on f if p is a AP-point, but not if p is a P-point with respect
to X. As an example, let X be the discrete countable space {e;,€s,...,84,...};
then »X=2X. Let p be any point in X —X. Since X is a P-space, p is
a P-point with respect to X (cf. [3], Theorem 5.3, (4)). But p cannot
be a BP-point, since the function f defined by f(e.)=1/n (n=1,2,..),
vanishes on no X-neighborhood of p, although f(p):O.

If p ¢ X is a fP’-point, then p is a P-point with respect to X. For,
if p is a BP’-point, every f ¢ C(X) satisfying f(p): 0 and such that neither
f>0, f<0 holds on any X-neighborhood of p, must vanish on some
X -neighborhood of p. In particular, each fe M? satisfies these condi-
tions (cf. 2.1). ’

Now suppose p ¢ X is a fF-point, and a P-point with respect to X.
Then every fe C(X) satisfying flp)=0 either (1) belongs to M*, so that,
by the second condition, it vanishes on an X-neighborhood of p; or (2)
is non-zero on some X-neighborhood of p, so that, by the first condi-
tion, it is positive or negative on some X -neighborhood of p. Thus, p is
a AP’ -point.

THEOREM 5.2. Let p e fX. Then p is a BF-point if and only if the
ideal N* is prime. ,

The proof is almost identical with the last part of the proof of [4),
Theorem 2.5.

Since N7 coincides with the intersection of the prime ideals contained
in M” ([4], Theorem 1.4), 5.2 justifies the formulation of the hypothesis
that p is a-AF-point which was given in the introduction. Theorem 5.2
and [4], Theorem 2.5 together show that every point of X is a AF-point
if and only if X is an #-space ([4], Definition 2.1).

We next relate the concept of AF-point to zero-sets of functions
in C(X).

TeroREM 5.3, Let p e pX. Then p is o BI-point if and only if for
each pair of functions f,g e C(X) satisfying f(p)=g(p)=0, there is an
X -neighborhood U of p such that at least one of the relations (Z () )
Q(Z(g)nU), (Z(f)nU)_C;(Z(g)nU) 18 valid.

Proof. Let p be aﬁlf"-point, and let f,g ¢ C(X) satisty f(p):ﬁ(p):O.
Set k=|f|—|g|. Then k{p)=0, so there is an X-neighborhood U of p
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guch that either k>0 or k<0 on U. If k>0 on U, then for any e U,
f(z)==0 implies g(x)=0, i. e, (Z(f)nU)}C(Z(g)~T); and similarly if
k<0 on U.

Conversely, if p is not a SF-point, let fe C(X) satisty f(p)=0
and change sign in every X-neighborhood of p. Define g=max{f,0},
J=min{f,0}. For every X-neighborhood U of p, there exist #,9¢ U
guch that g(z)#0, h(y)70, whence ¢(y)=0, h(z)=0. Thus, neither
(Z(g)nU);(Z('h)r\U) nor (Z(g)nU)g_(Z(h)nU) is valid.

Let p e BX. If p is a non-isolated point of X, we define M to be
the set of all fe O(X) such that Z(f) meets every deleted neighborhood
of p. Otherwise, we set M?=M". Evidently, M*D M"DN".

THEOREM 5.4. If p is a BF-point, then M is a prime ideal.

Proof. Since M” is a prime ideal, it suffices to consider the case
where p is a non-isolated point of X. Let f,g e M. By 5.3, there is an
X -neighborhood U of p such that (say) (Z()~U)2(Z(g9)~T). Let V"’
be an arbitrary deleted X -neighborhood of p. Since UnV' is a deleted
X -neighborhood of p, there is a point z in Z(g) ~UAV'. Now we have
also e Z(HAUAV. But Z(f—9)DZ(finZ(g); s0 weZ(f—g)nTUnV"
Hence Z(f—g¢) meets V'. It follows that f—ge M”.

It is clear that M is closed under multiplication by arbitrary ele-
ments of O(X), and that the complement of M is a multiplicative sys-
tem. Hence M7 is a prime ideal.

‘We note that if p is a P’-point, then M”=XN"; and if p is a fF-
point such that M'”==N?, then p is a SP'-point.

When p is not a AF-point, M need not even be an ideal. For
example, let X =R, p=0, and let f,¢ « C(X) be defined by f(x)=2 sin? 1/z,
z5£0, f(0)=0, and g(z)=2 cos* 1/z, 270, g(0)=0. Then f,g e M, but
f+g ¢ M. On the other hand, M” can be an ideal at a non- BF -point.
For example, let X be a linearly ordered space, p ¢ X a point with char-
acter e, (see, . g., [3], § 6). Then it is easily seen that p is not a pF-
point. But M7= MP, since every continuous function which is zero at p
is zero on a whole interval to the left of p; so M'® iy an ideal.

‘We point out next that when p is a AF-point but not a SP’-point
(whance N” M), then either M”=M" or M* M’ can occur. In both
our examples, we shall make use of the space E=Nu{e} defined as fol-
lows ([4], 8.5): N=1{e,,6,...} is the denumerable discrete space, and
¢ e fN—N. Thus every e, is an isolated point, while deleted neighbor-
hoods of ¢ are the members of some free ultra-filter on N (i. €., maximal
tilter on N with total intersection void). It follows that e is a BP’-point
of B ([4], 8.6).
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For the first case, let X be the space described in [4], 8.10:
X=BEuW (w,), whare all points of NoW (w,) are isloated, and a neigh-
borhood of ¢ in X is the union of a neighborhood of ¢ in ¥ with the com-
plement in W (w,) of a countable subset of W(w). Then ¢ is a SF-point
but not a AP’-point, and M’ =M°

The second case is illustrated by the following example (due to
L. Gillman).

Exawpie 5.5. For n=1,2,..., let E,={¢x,mn,...,6,} be a copy of B
(with ¢, corresponding in E, to ¢ in B), and X=(J K)o E=(U E,)u {e},

n n
with the following topology: each e,, is isolated; the neighborhoods of
¢, are its neighborhoods in F,; while each neighborhood of ¢ is the
union of & neighborhood U of e in F with a neighborhood U, of &, in
E, for each ¢,eU.

Then e is a BF-point. For consider any fe C(X) satistying f(e)=0.
If there is a deleted neighborhood V of ¢ such that f>0 or f«<<0 on VA B,
then the defining property obviously holds for f. If no such neighbor-
hood exists, then, since ¢ is a fP'-point of F, there is a neighborhood W
of e such that f=0 on W~ E. Set .

W.={e.e W: >0 on some deleted neighborhood of e,},

W, ={ene W: <0 on some deleted neighborhood of e,},

Wy={e.e W: f=0 on some deleted neighborhood of e,}.

Precisely one of W,, W,, W, is a deleted neighborhood of ¢ in E. The
union of this set with suitable neighborhoods of its elements in the as-
sociated E,’s is a neighborhood of ¢ in X on which >0 or f<0.

The function ge¢C(X) defined by gle)=g(e)=0, g{ewm)=1/m
(m,n=1,2,...) shows that ¢ is not a AP'-point.

Finally, M5 M°, as shown by the function e ¢'(X) defined as
follows: h{e,) =h(ewm)=1/n (m,n=1,2,..), h(e) =0.

We now investigate the properties of the quotient-rings C(X)/N?
and C(X)/M"™.

THEOREM 5.6. Let p be a fF-point. (a) The ring C(X)/N” is an ordered
integral domain containing R, in which the image of M” forms the untque
mazimal ideal; and C(X)[N" has infinitely large elements if and only if
pévk.

(b} The corresponding statement for C(X)/M'™ also holds.

Proof. If fe O(X), ge N?, and 0<f<g, then, trivially, f ¢ N°. For
any ke O(X), B*—|h’=0 ¢« ¥”, By Theorem 5.2, N? is prime; so at least
one of the congruences h=|h| (mod N?), h= —|| (mod N”) is valid. Thus,
by [2], Theorem 4.4, ¢(X)/N? is an ordered integral domain. Explicitly,
the image of f e O(X) in C(X)/N” is positive if />0 on some X -neigh-
borhood of p (i.e., f=|f| (mod N?)), but f==0 on no X -neighborhood
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of p (i. e, =0 (mod N”)). Finally, it is clear that the functions which
are constant in some X -neighborhood of p map into a subset of ¢(X)/N”
which is isomorphic to R.

Since M? is the only maximal ideal of ¢(X) containing N, it is evi-
dent that ¢(X)/N? has a unique maximal ideal, namely, the image of M.

If p e vX, then for each f e ('(X), there is an » « B such that f(p)="r.
Thus, the image of f differs from the element corresponding to r by at
most an infinitely small element. Conversely, if 9 ¢ vX, there is a g 0(X),
g >0, such that gf(p):oo. Hence g is unbounded on every X-neigh-
borhood of p; so the image of g is an infinitely large element.

The proof for C(X)/M” iz similar.

A commutative ring 4 with ideutity is a valuation ring it for any
a,b e A, either a divides b or b divides a.

TugoREM 5.7. If p is o BF-point, then C(X)/M* is a valuaiion
ring. If p s a PP’ -point, or if X ds an F-space, then C(XH/N? is a
valuation ring.

Proof. It is easily seen that every element of C(X)]N? which is not
infinitely small has an inverse. The same statement then follows for its
homomorphic image C(X)/M’”. Thus, to show that either C(X)/N° or
C(X) M7 is a valuation ring, it suffices to consider an arbitrary pair
of distinct infinitely small elements.

Let p be a pF-point, and let y,8 e C(X)/M'” be infinitely small
positive elements such that y <é. It will be shown that & divides y.

When p is isolated or p ¢ X, then M'”7=M?, so the desired conclu-
sion is obvious. We therefore suppose that p is a non-isolated point of X.

Let f,9 € C(X) map into y, d, respectively. We show first that it
may be assumed that Z(f)=Z%(g)={p}, and that 0<f<g<1 on X.

Since >0 on some X -neighborhood of p, we may suppose that
0<f<1 on X, replacing 7 by min {If],1} if necessary. Now f>0 on somf
deleted X -neighborhood of p, so Z(f)—{p} is a closed subset of X.
By complete regularity, there is an fy e 0*(X) such that 0<f<2,
flw)=0 for xeZ(f)—{p}, and fulp)=2. Set h=F+f. Then 0<h3,
Z(h)=Z(f)— {p}, and h(p)=2. Let k=1-—min{k,1}. Then k(q):l when
x € Z(h), and k(z)=0 when h(x)>1; s0 Z (k) is a closed X—nfalghborhood
of p. Thus, Z(f+%)={p}, and 0 < f+ k< 1; moreover, f+k is congruent
to f modulo N”, and hence modulo M N

Similarly, we may suppose that 0<g<1, and that Z (g.)={p}. Fi-
nally, since y <é in C(X)/ M7, we have i<y on some X.—nelghbqrhood
of p. Thus, min{f,g}=f (mod M), so replacing f by min{f,g} if nec-
essary, we may assume that f<y¢ everywhere.
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The remainder of this part of the proof is a simple modification
of the argument used in [4], Theorem 2.3, III. On X —{p}, we define:

1) d=fjg.

For every real », define a function u, e (*(X) by

(2)  mlw)=Ff@)—rg(x).

Obviously, if »>s, then p,< u, (since g>>0). Furthermore, gx.(p)=0
for every real s. :

We have u,=7:>0. Now there is a deleted neighborhood of p not
meeting Z(f—g). Thus, since f—g<0, for each neighborhood U of p,
there is a y e U such that u(y)=7(y)—g(y) <0. We may put

(8) d(p)=supfr: @ >0 on some neighborhood of p}.

Tt must be shown that d is continuous at p. By (3), for every » > d(p),
and for every neighborhood U of p, there is an @ ¢ U such that u.(x) <0.
Since u,(p)=0, <0 on some neighborhood of p. From this point we
may follow the proof of [4], 2.3, exactly, changing only the notation.
‘We then have: For every e >0, there is a neighborhood U of p such that
|d(z)—d(p)|<e xeU—{p}. Thus, deC(X). Clearly f=dg, so f=dy
(mod M'?). This concludes the proof that ¢(X)/M7 is a valuation ring.

If p is a BP'-point, then M"=N’, so C(X)/N” is a valuation ring
by the result just established.

Now suppose X is an F-gpace. Given a pair of distinet infinitely
small positive elements of CO(X)/N®, let a, b be functions in C(X)
which map into these elements. It is easily seen that we may assume
that 0<a<b<1. Clearly Z(a)D Z(b). Set ¢=a/b on X—2Z(b). Then
¢e CX—Z(b)). By [4], Theorem 2.6, ¢ has a continuous extension
¢ € OXX). Clearly a=¢'b, 80 a=¢'b (mod N°). Thus, O(X)/N* is a val-
uation ring.

COROLLARY 5.8. If p is a SF-point, then the prime ideals containing
M form a chain. If p is a BP’-point, or if X is an F-space, then the set
of all prime ideals comtained in M" form a chain.

Proof. It is easily seen that the set of all ideals in a valuation ring
form a chain. The sets in question are the sets of inverse images, under
the natural mapping, of the prime ideals in O(X)/M”, C(X)/N", respect-
ively (cf. also [2], Theorem 3.10).

We shall show next that the conclusions of the second parts of 5.7
and 5.8 never hold when p fails to be a BF-point.

. TurorEM 5.9. If p is not @ SF-point, then the prime ideals contained
in M® do not form a chain.
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Proof. By Theorem 5.2, if p is not a BF-point, then N7 is not prime.
From [4], Theorem 1.4, we have that the interseetion of the prime ideals
contained in M” is not a prime ideal. But then the prime ideals con-
tained in M* do not form a chain (cf. [2], Theorem 3.9).

COROLLARY B.10. If p is not a BF-point, then C(X)/N” is not a val-
uation ring.

Proof. By 5.9 there are incomparable prime ideals contained in M®
(and containing N?); these map into incomparable prime ideals in
C(X)/N?. As already noted, the ideals of a valuation ring form a chain.

The following alternative proof of 5.9 seems interesting. By 5.3,
if p is not a AF-point, there are functions g,k e 0(X) satistying ¢(p)
=h(p)=0, and such that Z(g), Z(h) ave incomparable in every X -neigh-
borhood of p. We show that {g,42,...,8% ..} ~ (&¥",h) is empty. Suppose
pot; then there exist d « N, ke 0(X) and a positive integer m such that

m—d+%h. Let V be an X-neighborhood of p on which d=0. Then
Z(g) AV =Z (g™ ~V = ([Z (k) Z(R)]~V)D(Z(k) AT}, a contradiction. Sim-
ilarly, {h,h%,...,h",...}~(N",g) is empty.

By [15], Lemma 2, p. 105, there are prime ideals P, @ containing
(N?,q), (N?, k), respectively, and disjointi from the multiplicative systems
(hoh2y e B {9,620 8% h respectively. Since P and @ contain N?,
they are contained in M?; and they are clearly incomparable.

This method can be used to obtain a prime ideal contained prop-
erly in M? whenever p is not a P-point with respect to X (cf. [3], Theo-
rvemn 3.5). That is, we choose a function f < M” — N7, and let P be an ideal
which is maximal in the class of ideals containing N” and disjoint from
the multiplicative system i,y sf"s ..} Now P is never the entire com-
plement of {f,/%...,/",...} in M”. For, let g=max{f,0}, b= min {f,0};
then the relation g--h=7f¢ P implies that not both ¢ and h are in P,
while gh=0 ¢ P implies that at least one of the elements g, b is in P.
Thus, exactly one of g, k is in P. From this, we conclude that [fj==g—h ¢ P.
Thus |f|** ¢ P, so that f[4 e MP— (POAT, 12y eeesf"y o)y (B=243,5-00).

THEOREM 5.11. If p is a BF-point, and I is a proper 3-ideal of C(X)
containing M, then I is o prime ideal. If p is a BP’-point or if X is an
F-space, and I is a 3-ideal of 0(X) containing N7, then I is @ prime ideal.

Proof. By Lemma 2.2, I is an intersection of proper prime idea'ls.
Trom 5.8, the prime ideals containing I form a chain. Thus, any inter-
section of prime ideals containing I is a prime ideal.

Finally, we consider a type ofi deal which may be viewed as a gen-
eralization of N”.

TEvrA 5.12. Let h be a fived element of a maximal ideal M of O(X),
and let T be the set of all f in M® such that (Z(f)nU) _D_(Z(h)mU), where
U is an X -neighborhood of p (depending on ). Then I is an ideal of C(X).
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Proof. Given f,g e I, choose X-neighborhoods U,V of p satisfying
(Z() ~T) 2(Z (k) ~T), (Z( )~ V)2 (Z(k)~ V). Then (Z(f—g)~TU~Y)
) (Z(f)nZ(g)r\Um V)2 (Z(R) ~UAT); so f—gel. "Since it is clear
that I is elosed under multiplication by arbitrary elements of O(X),
I is an ideal.

TuroreEM 5.13. If p is a BP’-point or if X is an F-space, then the
ideal I defined in 5.12 4s prime.

Proof. Since I is clearly a 3 -ideal containing N?, this follows from 5.11.

6. P-spaces, and prime ideals of M?. We take up first some
questions related to [K], § 5. An example was given there of a ring pos-
sessing an ideal of an ideal which fails to be an ideal of the whole ring.
We give now an example of a ring of continuous functions having the
same property. Let X=F, and let ¢ be the identity function: ¢(z)=uw,
for all £« X. Let I be the ideal {gi: g ¢ M} of C(X); and let J Dbe the
ideal {gi®+ni®: g e M° n an integer} of I. Then 42 ¢ J, but 2 ¢J; so J is
not an ideal of C(X).

The theorem which follows shows that for rings of continuous func-
tions, this is the usual situation. .

TuEOREM 6.1. Let, 1 be a proper ideal of C(X), and let J be a proper
ideal of I. Then J is invariably an ideal of C(X) if and only if X is @
P-space. In particular, if p e X is not o P-point, thei there is an ideal
of an ideal of C(X), contained in M, which fails to be an ideal of C(X).

Proof. If X is a P-space, then O(X) is a regular ring ([3], Theo-
rem 5.3). Let jedJ be given, and let ae 0(X) be arbitrary. There is
a be@(X) such that j*b=7j. Then jba e I; s0 ja=7j(jba) eJ. Thus, J is
an ideal of C(X).

Conversely, suppose X is not a P-space. Let p be a point of X which
is not a P-point, and let fe M? —N”. Let I be the ideal {gf: g ¢ M} of
C¢(X); and let J be the ideal {gf*+ nf*: g e M”, n an integer} of I. Then
2 eJ; but %2 ¢ J, since a continuous function which vanishes at p can-
not assume the value 1/2 in every nelghb01h00d of p. Thus, J is not an
ideal of C(X).

It was also noted in [K], § & that a prime ideal of an ideal need not
be prime in the whole ring. Now if P and ¢ are prime ideals of a ring 4,
P~ Q is a prime ideal of P; and if P and ¢ are incomparable, P~ @ is
not prime in A. Thus, an example in funection rings may be obtained
from any C(X), where X has more than one point; if g <p, the ideal
MP~M? is a prime ideal of M” which is not prime in C(X).

By [3], Lemma 3.2, if a prime ideal P of M” is to be prime in C¢(X),
it is necessary that P contain N”. In the next theorem, we see that this
condition is also sufficient.

iocm
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TaeorEM 6.2. Let p be any point in BX. Then the prime ideals of
C(X) containing N7 coincide with the prime ideals of M” containing N”.

Proof. If P is a prime ideal of C(X) confaining N’ it is contained
in M”; and it is easily seen to be a prime ideal of M.

Now let P be a prime ideal of M? containing ¥°., We assume that P
is proper, the case P=M" being trivial. By [K], Theorem 5.1, the set
Q=1{f e Q(X): {M’C P} is a prime ideal of C(X) such that P=@n~M".
Since Q DN?, we have @ C M* ([3], Theorem 3.3). Hence P=@; 50 P is
a prime ideal of O(X).

We close with a result about subfamilies of Z(O (X)), the family
of zero-sets of C(X). By a %-filter on X, we mean a non-empty sub-
family & of & (C (X )) having the finite intersection property, and such
that 4 ¢« &, Be%(C(X)), ACB imply Be &. It is well known that
there is a natural correspondence between the proper ideals I of C(X)
and the Z-filters & on X, namely, I-F=2(I) ([8], Theorem 36).
We give first an example to show that in general this correspondence
is not one-to-one. Let X=R, let 4 be the identity function: i(s)=w=, for
all zeX, and let I={(i), J=(*). Clearly Z(I)=2(J)=5%(M"). But
i éd, so Is#=J.

Again, our theorem on this question shows that the example illus-
trates the normal situation.

THEOREM 6.3. The proper ideals of C(X) and the Z-filters on X
are in one-to-one correspondence if and only if X is a P-space. In partic-
ular, if p e X is not a P-point, there are distinct ideals contained in M
having the same %Z-filter on X.

Proof. Let X be a P-space, and let I, J be proper ideals of 0(X)
such that Z(I)=%(J). Then A(I)=A4(J) (see section 2). Now in a P-
spaee, every ideal is the intersection of all the maximal ideals containing

t ([3], Theorem 5.3). Hence I= N M=) M'=J. 1t follows that
peald) pead) ;
the ecorrespondence between ideals of €'(X) and Z-filters on X is one-
to-one.

Conversely, suppose X is not a P-space; let p be & point of X which
is not a P-point, let f be any funetion in M? — N7, and let I=(f), J= (%)
Since Z(f)=Z(f*, and in view of the relation Z (gh)= g)uZ (R), we
have Z(I)=%(J). But f¢J, since a continuous function g cannot sat-
isfy g(@)f(z)=1 for values of z arbitrarily near p; so I #dJ. It follows
that the correspondence between ideals of ¢(X) and Z-filters on X is
not one-to-one.

When X is a P-space, it is clear that the correspondence discussed
in Theorem 6.3 is a lattice isomorphism.
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Sur l'unicohérence, les homéomorphies locales
et les continus irréductibles

par

A. Lelek (Wroctaw)

§ 1. Introduction. Scient X et ¥ deux espaces métriques com-
pacts et f une fonction dont la variable x parcourt X et dont ¥ est I'en-
semble des valeurs. Appelons f homéomorphie locale au sens large lorsqu’il
existe, pour tout point x ¢ X, un entourage (ensemble ouvert contenant
ce point) U, tel que la fonction partielle f|U. est une homéomorphie.
Lorsqu’il en existe, pour tout x ¢ X, dont les images f(U,) sont en outre
ouverts (donc des entourages ouverts de f(z) dans ¥Y), la fonction f est
dite (voir [2], p. 35) homéomorphie locale tout court. Appelons enfin la
fonction f recouvrement de Y par X (voir le livre [11] de Pontriagin,
p. 352, définition 45 (%)), lorsqu’il existe, pour tout point ¥ ¢ ¥, un entou-
rage V, tel que Vensemble f~Y(V,), c’est-d-dire celui des @ pour lesquels
f(x) e V,, est somme d’'une famille d’ensembles ouverts disjoints,

= u,

sur lesquels les fonctions partielles f|U sont des homéomorphies et
1( Ui)zvy . '

Les fonctions de ces trois classes sont done continues par définition.

Toute homéomorphie locale en est trivialement une au sens large,
mais pas réciproguement, méme lorsque X et ¥ sont compacts. Par
exemple, la fonction f(z)= ¢ transforme le segment 0 << 2w en circon-
férence par homéomorphie locale au sens large, sans qu’elle soit une
homéomorphie locale; en effet, ancun ensemble ouvert dans une circon-
férence n’est l'image homéomorphe d'un ensemble qui est ouvert dans
le segment et en contient le bout z=0.

Le méme exemple montre qu'une homéomorphie locale au sens large
peut augmenter Dordre d*un point, & savoir transformer le bout (done
point d’ordre 1) d’un segment en un point de circonférence (donc point
d’ordre 2); mais il sera démontré qu'elle ne peut le diminuer (voir § 3,
théoréme 2).

(*) Dans [9] et [11], c’est l'espace X qui est dit recouvrement de Vespace ¥.
4*’
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