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On covering theorems*
by
E. J. Mickle and T. Radé (Columbus)

1. Introduction. In his fundamental paper [2] (numbers in square
brackets refer to the References at the end of this note) A. P. Morse
derives various covering theorems of an extremely general character.
The purpose of this note is to formulate an even more general covering
theorem which is concerned with a pair of abstract binary relations a, 8.
This covering theorem (to be referred to as the (o, §)-covering theorem)
is stated and proved in section 3. The relationship of this (o, §)-covering
theorem to the corresponding result of A. P. Morse is explained in sec-
tion 4. In applying such covering theorems in metrie spaces, a conceptual
ambiguity arises in the following manner. Let 3/ be a metric space with
distance fnnction d. Given a point @ ¢ M and a finite, positive real num-
ber r, let us put

yla,r)={x| xe M, d(z, a) <r}.

A subset ¢ of I is termed a closed sphere if it can be represented in
the form € = y(a, r). Simple examples show that the center o and the
radius 7 are generally not uniquely determined by €. This ambiguity
necessitates a certain amount of care in formulating covering theorems
in terms of closed spheres. Section 3 contains suggestions along these
lines. '
In the proof of the (o, d)-covering theorem we use the set inclhu-
sion form of Zorn’s lemma {see section 2 for the statement of this lemma,).
In view of the generality of the (o, 6)-covering theorem the question
avises whether this theorem is sufficiently general to imply, conversely,
the set inclusion form of Zorn’s lemma. This is indeed the case. In fact
& very special case of the (o, §)-covering theorem is already adequate
to imply the general form of Zorn’s lemma (see section 6 for the state-
ment of the general/form of Zorn’s lemma and the proof of this fact).
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2. Notations and definitions. Let X be a non-empty set. Le
there be given over X two binary relations ¢ and 4. For each element
¢ X we define the sets N, (z) = {y| y ¢« X, yous}, Ns(v)= {y| ¥ ¢ X, ydu},
N(2) = N (x)~N;(w). For each subset E of X we define (where @ is the
empty set)

NU(E)=ZL€JEN¢,(5U), NolB) =) No(w),  N(E)= ) N(a), N®)=9.

zeR

‘Concerning the binary relations ¢ and 6 we make the following assump-
tions:

(i) ¢ and & are both reflexive. That is, wox and 2z for every x ¢ X.-,

(ii) o is symmetric. That is, zoy if and only if yow.

(iil) If E is any non-empty subset of X then there exists at least
one element & e X such that @ ¢ B C Ny(z). Such an element z will be
termed a dominant element of the set K.

A subset E of X will be termed scattered if E contains no pair of
distinet elements z,y such that xoy. Thus the empty set is scattered
and every set consisting of a single element is scattered.

Let § be a non-empty family of non-empty subsets of X. A sub-
family € of § will be termed a chain in § if € is non-empty and for any
two sets ' e €, I ¢ € at least one of the two relations F' CH”, B C
holds. § will be termed chain closed if for any chain € in § the set | F

FeG
is in F. A set F e is termed mawimal in § if F is not a proper subset
of any set in §¥. The set inclusion form of Zorn’s lemma can be now stated
as follows (see Zorn [3]). If a non-empty family § of non-empty subsets
of X is chain closed then ¥ contains 2 maximal set.

3. Covering theorems. (o, §)-COVERING THEOREM. Under the cir-
cumstances deseribed in section 2 there exists a scattered subset S of X
such that X = N(8).

Proof. Let us denote by § the family of all those non-empby, scat-
tered subsets I of X which satisfy the condition that for each z eF,
X—N(F—x)C Nyz).

STATEMENT 1. 0.

Indeed, since X is non-empty by assumption there exists a dominant
element z, of X, It is obvious that the set ¥ consisting of the single
element z, belongs to ¥ and hence § == 0.

STATEMENT 2. § is chain closed.

Indeed, if € is a chain in §, the set Fo=|J F is non-empty and
Fet
it is easily verified that ¥, is a scattered set. For o « I, there is an F e €

such that zeF and hence, since F e, X—N(F—ux)C Nyzx). Since
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F—pCF,—x it follows that X—N(F, —a')CX—N(F ) C Nys(x). Thus
Foe¥% and F is chain closed.

STATEMENT 3. If the set F efy is such that X—N(F)£ @ then I is
not maximal in .

Indeed, let «* be a dominant element of X — N (F) and set #* = z* U F.
Then #* is a non-empty set. We now show that F* is a scattered set.
If there were an xeF such that «* e N,(r) then, since z*e¢ X—N(F)
CX—N(F—u)C Ns(x), it would follow that a*e N z)Nsz)= N(z).
This would contradict the faet that a* ¢ X—N(F)C X—N(z). Thus there
is no zeF such that o*eN,(r) and hence, since F is a scattered
set, F'* is a scattered set. Finally, we show that for xze¢F* we have
X N(F*—x)C Ny(z).

Case 1. zeF. Then
Feg.

Case 2. xéF. Then v=g5* and X—N(F*— )= XN (F*— z*)
= X—N(F)C Nyx*), since z* is a dominant element of X -N(F).
Therefore, F'* . F is thus not maximal in {.

The proof of the (g, d)-covering theorem is now immediate. By
Zorn’s lemma we infer from Statements 1 and 2 that § contains a max-
imal set F,. By Statement 3 we must have then X = N(F,). Since
F,eF this set F, is scattered and the (o, §)-covering theorem is thus
proved.

Given any ¢ as described in section 2 and defining the binary re-
lation 6 to be such that #6y hold for every pair of elements z,y ¢ X we
have Ny(z) = X for # ¢ X and hence N(x) = N,z)~ Nsx) = N (2)n X
= N.(z) for 2 ¢ X. As a corollary to the (o, d)-covering theorem we
have thus the following covering theorem.

X—N(F*"—z2)CX—-N(F—a)C Ng(x) since ’

o-COVERING THEOREM. Under the circumstance described in section 2
there emists a scottered subset 8 of X such that X = N,(8).

It should be noted that a scattered set S for which X = N,(8) is
necessarily a maximal scattered set.

4. A special case. Let M be a non-empty set and let X be a non-
empty family of non-empty subsets of M. Let f(E) be a real-valued,
non-negative, bounded function defined for all sets F ¢ X. Let the binary
relations o and é be defined over ¥ as follows. F'¢E” if and only if

~nE'#@ and E'0E" if and only if f(E') < 2f(E’'). In applying the (o, 8)-
covering theorem to thig situation the family X plays the role of the
set X in section 2 and accordingly the sets E ¢ X and the sub-families

" of X correspond to the elements and the subsets respectively of X. We

shall also nse N instead of N. The conditions (i) and (ii) in section 2 are
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obviously satisfied for the given ¢ and 4. As regards condition (iii) in
gsection 2 consider any non-empty sub-family € of ¥ and put

p(®) = lub f(B).
EeG

Since f is bounded we have then 0 < u(E) < co. Hence we have a set
A €€ such that u(€) < 2f(4). If E is any set in € then J(E) < u(E)
< 2f(4) and hence EéA for every set He@® Thus 4¢EC N(4) and
condition (iii} in section 2 is verified.

" Let us also note that under the present choice of the binary rela-
tion ¢ a sub-family & of ¥ is scattered if and only if € is disjoint, that
is, if B'¢@, E" €€, B'5£ E’ implies that B'~F'' = @. Then the (o, )-
covering theorem of section 3 yields the existence of a disjoint sub-
" family € of ¥ such that X = N(S). Explicitly (see the definitions in
gection 2): if-E is any set of X then there exists a set § in the disjoint
family & such that f(E) £ 2f(8) and E~S#@. This result is contained,
essentially, in the important paper [2] of A. P. Morse. One sees that
the comparative generality of the (o, 8)-covering theorem in section 3
congists primarily in replacing the special binary relations considered
by A. P. Morse by any two binary relations o, § satisfying conditions
(i), (i), (iii) in section 2.

5. Comments on metric spaces. Let ) be a metric space with
distance-function d. To simplify the presentation we assume that M is
separable. Then every disjoint family of closed spheres (see section 1)
is countable and hence consists of a (finite or countably infinite) sequence
‘of pair-wise disjoint closed spheres C,, n= 1,2, ...

Lemma 1. Let A be a subsel of M and let ¥ be a non-empty family
of closed spheres in M which cover A. Assume further that the diameters
of the closed spheres C e X are less than some finite positive constant K.
Then there exists o sequence Cn, n=1,2, ..., of pair-wise disjoint closed
spheres in X such that if for each n an arbitrary representation Cp = p(@y, 75)
i8¢ assigned (see section 1) then

(1) A4CU) Y (@, Bry) .

Prooi. To apply the covering theorem - eonsidered in section 4 “we
define f(0) = diam C for C < ¥. By section 4 we infer (using the sepa-
rability of M) the existence of & sequence of pair-wise disjoint closed

spheres Cp e X, n=1, 2, ..., such that for every C <X there exists a C,
satisfying the relations

2) diam € < 2diam €, CnC,#0.
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For each n, let there be assigned a representation
3) Cr= y{an, 74) .
‘We assert that (2) and (3) imply that
{4) CCy(an, bry).

Indeed, let 2 be any point of €. By (2) there is a point y such that
4 € CAC,.
Then, in view of (2) and (3),

Az, y) < dlam € < 2diam 0, < 47y, Ay, a,) <1y,

and hence
Az, a,) < A(2, ) +d(y, o) < Bry .
Thus (4) is verified. Since by assumption
ACU 0,
CeX
the inclusion (1) follows.

DerFINITION. A family X of closed spheres in M is said to cover
a subset 4 of M in the Vitali sense if for each point ¢ ¢ A and for arbi-
trary e > 0 there exists a closed sphere ¢ (which depends upon both &
and ) such that a e C e X and diamC < e.

LeMMA 2. Let X be a non-empty family of closed spheres in M which
cover a subset A of M in the Vitali sense. Then there exists a sequence C,,
n=1,2, .., of patr-wise disjoint closed spheres in X such that if an arbi-
trary representation C,—= y(a,,r,) is assigned for n=1,2, ..., then

() A—1J6.C U

n=N+1

¥ (@, 57n)

for every choice of the positive integer N.

Proof. Clearly those closed spheres € eX for which diamC <1
cover A in the Vitali sense and hence we can assume without loss of
generality that diamC <1 for CeX. Applying again section 4 with
f(0) = diam C, there follows the existence of a sequence Cp, n=1,2, ..,
of pair-wise disjoint closed spheres in ¥ such that for every C ¢ X there
exists a O, satisfying the relations
(6) diam (¢ < 2diamC,, C~C,#0.

Let the representation
(7) Co= y(@n, 1)
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and the positive integer IV be arbitrarily assigned and consider any point
zeA—_J Cn. We have a fortiori
n

N
(8) zedA— ) Oy.

ne=1
Since the union appearing in (8) is a closed set which does not contain
the point » and since X covers A in the Vitali sense, there follows the
existence of a closed sphere ¢ such that

9) zeCeX, OCAC,=0 for n=1,2,.,N.

On the other hand there exists a (, satisfying (6). From (9} it follows
that #» > N for this particular ¢,. As in the proof of lemma 1, we con-
clude from (6) that C C y(a,, 5ry). Thus it follows that x e y(a,, 57r,) for
some n > N and the inclusion (5) is proved.

Let us note that the essential content of the lemmas 1 and 2 is not
new. Our sole purpose in discussing these lemmas was to snggest a way
to deal with the issue arising from the fact, noted in the introduction,
that in a metric space the center and the radius of a closed sphere are
not uniquely determined in general.

6. Zorn’s lemma. To state the general form of Zorn’s lemma we
need the following definitions (see Lefschetz [1], p. 4-5). In a non-empty
set X let there be given a partial order in terms of an ordering relation
to be denoted by <. The only assumption is that < is transitive. That
i to say, <y, ¥ <z implies that x < 2. We agree that we may write
y >« instead of » < y. We say that the elements z,y of X are com-
parable if one at least of the relations # <y, ¥ < « holds. A set B of X
is simply ordered if any two distinct elements of E are comparable. An
element be X is an upper bound for a subset E of X if o< E implies
that = <b. An element m e X iy said to be maximal in X if every ele-
ment « ¢ X which is comparable with m satisfies the relation # < m.
The general form of Zorn’s lemma can now be stated as follows.

ZoRN'S LEMMA. If every simply ordered subset of X has an upper
bound then for an arbitrary z, e X, there is a maximal m > Zg-

For the sake of completeness we shall show that this lemma follows
from the o-covering theorem of section 3. We define the binary rela-
tion ¢ in X as follows. For x,y ¢ X, woy if and only if either z =¥ or
27y and ¢ and y are not comparable. Then o is reflexive and symmetrie.
A set E is scattered if and only if it is simply ordered. Let 2, be an ar-
bitrary element of X. By the o-covering theorem (see the remark fol-
lowing it) there is a maximal scattered set §, in X—N,(w,) and hence
8= 2yu 8, i3 a2 maximal scattered set in X. Since S is scattered it -is
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simply ordered and by assumption there is an upper bound & for 8.
Then

(10) zeS implies that z<b.

We assert that y > b implies that y < b. Indeed, y > b implies that y >.z
for z ¢ 8 and hence yo S is simply ordered. Since yu § is thus a scat-
tered set and S is a maximal scattered set it follows that y ¢ 8. Hence
by (10) y < b. Thus y > b implies that y < b and so b is maximal in X
and, since zye S, by (10) b > xy.
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