On a class of continuous mappings
by

K. Borsuk and R. Molski (Warszawa)

1. Simple and elementary mappings. By a mapping of or-
der <k of a space X we understand a continuous mapping f defined
on X and such that for every point y e f(X) the set F ) contains at
most % points (comp. [10], p. 52). A continuous mapping f is said to be
elementary if its range X is metric and there exists a positive & sueh that
for every two different points ,2" ¢ X from f(@)=f(a') follows ¢(x,a’) >e.
The mappings of order <2 are said to be simple. A

The rather special class of all simple mappings constitutes a nat-
ural and intuitive generalization of the class of all homeomorphisms.
In this note we study some elementary properties of these mappings,
give some examples and formulate some problems.

The theory of mappings of order <k is intimately related to the
theory of upper semicontinuous decompositions (see [10], p. 42). A col-
lection §f of subsets of a space X constitutes a decomposition of X if the
sets of §F are disjoint, not empty and they fill up X. The decomposition
is said to be upper semicontinuous if for every closed subset A of X the
union of all sets of § intersecting 4 is closed (in X). If, moreover, for
every open subset B of X the union of all sets of § intersecting B is
open (in X), then the decomposition & is said to be CONINUOUS.

P. Alexandroff ([1] and [2]; see also [10], p. 42) has proved the fol-
lowing theorem:

In order that a decomposition § of a compact space X be upper semi-
continuous it is sufficient and necessary that there ewists a continuous map-
ping f: X->Y such that the sets belonging to § are the same as the sets fy)
with yeX.

The continuous decompositions are characterised as the decompositions
corresponding to the so called ““interior mappings” (1) (see, for instance
[10], p. 48).

{(*) A continuous mapping f: XY is said to be interior if for every set (¢ open
in X the set f(G) is open in Y.
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If f denotes a continuous mapping of X, the topological properties
of the space Y=f(X) depend only on the upper semicontinuous decom-
position § of X into sets F~(y), with y ¢ ¥. In particular the study of
simple mappings of compacta is thus reduced to the study of upper semi-
continuous decompositions into sets containing at most two points.

Let f: X—Y be a continuons mapping. By the seam of f we mean
the union of all sets f~*(y) containing at least two different points. The
basie problem of the theory of simple mappings can be formulated as
follows:

What are the topological properties of a space Y obtained from a given
space X by a simple mapping having a given seam X ,?

In this note we shall give some rather simple remarks concerning
this problem.

2. Examples. We begin with some examples.

Exampre 1. Consider the decomposition of the n-dimensional Eu-
clidean sphere S, onto pairs of antipodal points. This decomposition is
continuous and its hyperspace is the n-dimensional projective space P,.
The corresponding mapping is simple and elementary. Its seam is the
whole sphere §,.

Exampie 2. Let @ denote the disk defined in the Euclidean plane
E, by the inequality #*+y2<1. If we identify every point (z,y) lying
on the boundary B of @ with the point (z,—v), we obtain from @ a space
homeomorphic with the 2-dimensional sphere §,. The corresponding
mapping is simple, but not elementary. Its seam is the set obtained
from B by removing two points, (1,0) and (—1,0).

ExAMPLE 3. Besides the identification made on the disk @ as in
the example 2, let us identify two points, (1,0) and (—1,0). We obtain
2 space homeomorphic with the surface obtained by the rotation of the
circle round one of ity tangents. The corresponding mapping is simple

. but not elementary. Its seam is the boundary B of 0.

Exampre 4. Let X be the Cantor discontinuum (*) lying on the
straight line E,. If we identify every pair of endpoints of every open
segment-component of B, — X, we obtain a simple (but not elementary)
mapping of X onto a set homeomorphic with a segment. The seam is
the enumerable set of all endpoints of the bounded components of E; — X.
It is demse in AX.

(2) Cantor . discontinuum = the set of all real numbers expressible in fhe form
o

22 a,-37", where a, =0 or 1.
H=1
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ExAMprE 5. Congider in the Kuclidean plane E, the dendrite (*) X
defined as the union of the segment L, with the endpoints (0,0) and
(1,0) and of the segments Ly,Ly,..., Where L, has a8 endpoints the points
(2*",0) and (27",27"). Consider the mapping f defined as the orthogonal
projection on the axis » Hence f(X)=IL,. This mapping is simple but
not elementary, its seam is the set obtained from X by removing two
points, (0,0) and (1,0).

EXAMPIE 6. Besides the identifications made on the dendrite X
as in the example 5, let us identify two points, (0,0) and (1,0). We obtain
a simple mapping of the dendrite X onto a simple closed curve. Its seam
is the whole set X.

ExAuprE 7. We consider every point (z,y) of the plane E, as iden-
tical with the point (#,y,0) of the 3-dimensional Huelidean space Hy.
Let X, (n=1,2,...) be the projection of the dendrite X (of the example 5)
from the centre (0,0,1) on to the plane P(1—27") consisting of the
points (z,y,1—27"). Moreover, let L denote the segment with endpoints
(0,0,0) and (0,0,1) and Ly (n,k=1,2,...), the segment with endpoints
(0,0,1—2"" +27"(1—2"7%) and (~27*",0,1 2" +27(1—27)). Sefting

Z=Lwu G [Xnw GI/,,k]
n=1 k=1

we obtain & dendrite. Congider the decomposition of Z into the following
sets: 1) The projections from the centre (0,0,1) onto the plane P(1—27")
of the sets constituting the decomposition of X considered in the exam-
ple 6; 2) the pairs of the points at which Z intersects the planes P(c)
with the equations z=e, where 0 <c <1 and ¢£1—27"; 3) the pair of
the points (0,0,0) and (0,0,1).

One easily sees that this decomposition is upper semicontinuous
and the corresponding mapping is simple, not elementary and has Z as
its seam. The hyperspace of this decomposition is homeomorphic with
. the union of the segment with endpoints (—2,0) and (2,0), of the half-
circle with the equation a®--y2=4, ¥ >0 and of the circles with the equa-
tions (z—27" 4+ (y—27""°f=2"""% It is clear that the space ¥ is not
locally contractible (%).

Examere 8. Congider in the plane X, the rectangle @ with the ver-
tices (—2,0), (—2,1), (2,0), (2,1). Let us identify every point of the

(%) Dendrite = a locally connected continnum which contains no simple closed curve.

(4) A space X is said to be locally coniractible if for every point z ¢ X and every
neighbourhood U(z) of % there exists a neighbourhood V(%) of # contained in U(x)
and a continuous deformation of V(&) in U (x) to a point. It is known that for every
locally contractible continnum ¥ cH,, the complement B,—¥ containg only finite
pumber of components. See, for ingtance, [3], p. 230.
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form (x,0), where 0 <z <1, with the point (»—2, »—2 sin(1/z)) and also
the point (0,0) with the point (—2,0). In this manner one obtaing a sim-
ple and elementary mapping f having as it seam the union of two dis-
joint simple ares. The space f(@) is a 2-dimensional compactum not
homeomorphic with a polytope, because the get in which it is not lo-
cally homeomorphic with the plane has an infinite 1-dimensional Betti
number.

Exawvrrre 9. Consider in the space F; the square @ with the vertices
(0,0,0), (0,1,0), (1,0,0), (1,1,0). Let {w,} denote the sequence of all
rational numbers of the interval 0<x<1 such that w,7%w, for nm.
Let us denote by Y, the union of the segment with endpoints
(104,0,0), (wn,1,0) and of n segments L,x (k=1,2,...,n) with endpoints
(2n, (k—1)/n,0), (w,,¥/n,1/n). Setting

X=9oU Y,
n=1
we obtain a 2-dimensional compactum (which is an absolute retract ()).
The orthogonal projection f of X on the square @ is a simple (but not
elementary) mapping of X onto . Its seam is the I-dimensional set

UY.— FE 0<a<1]
n=1 (x,0,0)
denge in X.

Examrr®s 10. Let X, be an arbitrarily given subset of a space X.
Setting X*=X x (0) v X, x (1) and
flz,t)=w
we obtain a simple mapping (elementary if X is a metric space) with
the seam X, X ((0)u (1)).
ExampLE 11. Let ¢ denote the Cantor discontinuum lying on the
segment X= [ [0<t<1]. The complement X—( contains 2" com-
7 .

for every (z,1) e X*

ponents of the length 37"
Lox = F [ane <t <y +37"], n=1,2,..; k=1,2,..,2"7,
t

where @,; <@nii1- If we identify in X every point of the form an
with the point a@.x +37" for m=1,2,.. and k=1,2,...,2"" and, more-
over, if we identity every point of the form a,i +2-3™" with the
POt @ppia+3"""Y for every n=2,3,.. and k=1,2,..,2"""—1, then

{*) A space X is said to be an absolule reiract (or an AR -set) if there exists a con-
tinuous mapping f of the Hilbert cube @, onto X and a continuous mapping g of X
into @, such that fg(x)=2x for every « ¢ X. See, for instance, [10], p. 259,


Artur


33 K. Borsuk and RB. Molski

we obtain a simple (but not elementary) mapping f. Let ¥Y=F(X). Evi-
dently the set f(C,), n=2,3,..., where

e e
O=UE [t +37" 7 <1< ti4-2-377]
k=1 ¢
is a simple arc. The ares f((,),f(Cs),... are disjoint and they converge
to the simple are f(C). It follows that ¥ has infinite order at every point
of the arc f(C). In particular Y is not regular (in the sense of Menger,
see for instance, [10], p. 201).

3. Involution assigned to a simple mapping. Let f be a sim-
ple mapping defined on a space X and let X, denote the seam of /. We
assign to f the funetion i, defined on X in the following manner:

If z € X,, then there exists exactly one point x* ¢ X, different from x
and such that f(z)=F(z*). We set if{z)=a*

If 2 X —X, then we set ifz)=a.

Evidently i maps X onto itself and

iflife)) =z

TuroreM. Let § be a simple mapping defined on o compactum X
and let {8,)CX be a convergent sequence such that for an &>0 it . ds
o(nyis(ma) > for every n=1,2,... Then

for every xelX.

(1) Lim i4(2,) = ip(im x,) = 1m @, .

n—=00 n—-ro0 > 00

Proof. Let #,=1lim xz,. Since X is compact, the sequence {ir(@a)}

n—oo
contains convergent subsequences. It remains to show that every con-
vergent subsequence {if(z,)} converges to the point ix(x,). Since f is
continuous we have

£ 67(,)) = i fli(@,)] = Him f (@) = f (Lim @) = f (o) -
k00 k~»c0 k-»00 k—o00

It follows that lim 4p(x,,) is either m, or ir(w,). But the first eventuality
n—o9 N

does not hold, because {z,} converges to z, and o(ip{%n,) , %ny) >e. Hence

we get (1).

COROLLARY 1. Let  be a simple elementary mapping defined on a com-
pact space X. Then the seam X, of f s closed in X and the involution ir
maps X, topologically onto itself.

The first part of the statement is an immediate consequence of (1).
In order to prove the second part, consider an &> 0 such that olm,ifm)) >e
for every # ¢ X,. It follows, by the last theorem, that i, is continuous
on X,. But i is the inverse of itself, hence i is & homeomorphism.
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By example 2, the hypothesis that j is elementary ix essential in
this corollary.

COROLLARY 2. Let f be a simple elementary mapping with compact
range X and with the seam X,. Then f is a local homeomorphism on X,.

By corollary 1, the seam X, is compact. Since f is elementary, there
exists an ¢>0 such that g(m,q}(w)) >¢, for every « € X,. Consider a point
€ X,y and a closed neighbourhood U of o, in X, with the diameter <e.
The mapping f, being contintous and univalent on U, maps U topo-
logically. It remains to show that f(U) is a neighbourhood in f(X,) of
the point f(x,). In order to prove if, let us observe that the decompo-
sition of X, into sets (w,'if(m)) with @ e X, is the same as the decompo-
sition of X, into sets f(y) with y  f(X,). But i Is continuous on X,
whence f is interior on X, Consequently f maps the neighbourhood U
of z, (in X,) onto a neighbourhood F(TU) of f(x,) (in f(X,)).

COROLLARY 3. Let f be a simple mapping defined on a compactum X.
Then the seam X4 of f is a Fy-set. hd

Let X (1/n) denote the union of all sets /~'(y) with the diameter >1/n.
Then X,=|JX(1/n) and, by the last theorem, each of the sets X (1/n)
n=1
is closed in X.
By example 10, the hypothesis that X is compact is essential, even
it we suppose that f is elementary.

4. Simple mappings and dimension. Let f be a continunous '
mapping of finite order, defihed on a compact space X. Since the in-
verse-images 7 '(y) .are finite, we infer by a known theorem of W. Hu-
rewicz (see, for instance, [10], p. 67), that

dim f(X)>dim X .

By example 4, even a simple mapping can raise the dimension (not more,
however, than by one unit, by a theorem of Hurewicz; see, for instance,
[10], p. 52). Now we shall show that for a certain class of mappings, con-
taining all elementary mappings, the dimension remains invariant.

Let 7 be a continuous mapping defined on a space X. By a substra-
tum of § we understand a system {X,} of closed subsets of X (indexed
by a set A={a}) such that X = (J X, and that for every a ¢ U and every

a€H
yef(X) the set X,~f “(y) contains at most one point. By the indes
of the mapping 7 we understand the smallest of cardinals m such that
there exists a substratum {X,}, ¢ ¢, of f with W=m. In particular the
index of every elementary mapping over a compactum X is finite. In fact,
if £>0 satisfies the condition that g(x,o')>e for z,2' ¢ X, s¥£2’ and
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flz)=F(z"), then it suffices to split X into @ finite number of compact
sets with diameters < e in order to obtain a finite substratum of f.

Example 1 shows that there exist simple elementary mappings with
arbitrary finite indices. Tn fact, for the simple elementary mapping f de-
fined on the sphere 8, considered in example 1, the sets constituting
4 substratum have diameters <2. But it is known (see [12], p- 26 also
[4], p. 178), that S, ean be split into n+2 closed sets with diameters <2,
but can not be split into < n-+2 such sets. Hence the index of f i3 equal
to n+2.

The simple mapping (defined on the disk @) congidered in example 2
is not elementary, but its index is finite. In order to obtain & finite sub-
stratum of this mapping it suffices to split @ into 4 quarters (closed)
by the straight lines with eguations =0 and y=0.

' Example 9 gives a simple mapping f over a compactum X with
an infinite index. In fact, if X =X;uX,u..uX,, where the sets X;

are closed, then the set CJX,-—Q is closed in X and contains X —@.
i=1 .

Since X —@Q is dense in X we infer that CJX,——Q:X. It follows that
i=1 *

for an i, the set X;,~@~ @ contains some set ¢ open in Q. Since GCX;,—@

we infer that there exists a sequence {px}CX;,—@ which converges to

a point P, e GCX;,. Then lim f(pr)=f(po)=p, and f(py) € Q. Sinee @ is
k—o00

open in @, we infer that f(px) ¢ G for almost all k. For those % the points
pre Xiy—@ and f(pi) e GCQ are distinet, both belong to X;, and satisly
the condition f(px)=7[f(pe)] It follows that the sets X, X,,... , X, do not
constitute a substratum for the mapping f.

TEEOREM. If f 48 a continuous mapping defined on a compacium X
and the index of f is finite, then dimX=dimf(X).

Proof. Let {X;,X;,...,X,} be a finite substratum of f. Then f is
univalent and continuous on every set X;. Since X; is compact, we infer
that f is topological on X;. Hence

dim f(X) =djm[Lan(Xi)] =max dim f(X;) =sup dim X; =dim X .
i=1 1<istn 1<i<in

ProBrEM 1. Does there ewist a simple mapping defined on an absolute
neighbourhood retract (%) which raises the dimension®

(*) A space X is sald to be an absolute neighbourhood retract (or an ANR -get) pro-
vided that it is compact and there exists a continuous mapping f of an open subset 64
of the Hilbert cube @, onto X and a continuous mapping g of X into @, such that
fg(@w)=w for every x¢X. The finite-dimensional ANR-sots are the same as locally
contractible compacta. See [3], p. 240.
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. PROBLEM 2. Let X be a rational curve () and | o simple mapping de-
fined on X. Is it true that f(X) is necessarily also a rational curve?
_Let us observe that, by example 11, the image of a segment by
a simple mapping is not necessarily regular.

5. Superpositions of simple mappings. We shall prove the
following

THEOREM. Let f be a continuous mapping defined on a compact space X
and having o finite index n. Then | is a finite superposition of simple map-
pings with indices <n.

Proof. Let & ={X,,X,,...,X,} be a substratum for f. For every
pair of indices (7,7) with 1<i<j<n and for every point yef(X) the
seb (X:;uX,-)mf'l(y) contains at most 2 points. Let N(%,f) denote the
number of all pairs (i,7) such that for some y « f(X) the set (X;wX;)~f X (y)
contains two distinet points. Evidently if N (&¥,f) =1 then the mapping f
is simple. Proceeding by induction let us assume that the statement holds
for all compact spaces X and all continuous mappings f for which there
exists a substratum & such that N(¥,f)<m and let- us assume that
in our cage N(&¥,f)=m+1.

Let (%0,70) be a pair of indices such that 1<i;<j,<n and that for
some y e f(X) the set (X;pvX jo)nf_l(y) containg two distinet points.
Congider the decomposition § of the space X into the sefs of the form
(X Xj)~fMy) and into the individual points of X—(X;,uX,,). Bvi-
dently every set belonging to ¥ contains at most two points. Moreover
the decomposition ¥ is upper semicontinuous, because for every closed
subset 4 of X the union of all sets of § not digjoinb with A is identical
with the set

4 Uf_llf(A n (anU-Xio))] m (Xfo N Xfo) 3

whence it is closed in X. It follows that & induces a simple mapping ¢
defined on X which maps X onto a compactum X* Evidently one ob-
tains X* from X by the identification of points belonging to every seb
1) A (X Xy,).

Now let us observe that setting

Ha*)=flp==*)]
we obtain a continuous mapping f* of X* onto ¥Y=7(X). The closed

sets "p(X,),...,p(X,) constitute a decomposition of X* and it is clear
that none of them contains two distinct points belonging to one of the

for every a*eX*

(") A curve X (i. e., a 1-dimensional continuum) is said to be rational if each point
of X has arbitrarily small neighbourhoods (in X) whose boundaries are finite or
countable.
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sets f*(y). Hence the system Fr={p(Xy),...,p(Xs)} is a substratum
of f*. Hence f* is & continuous mapping with index <.

Jf there exist in the set ¢(X)uoe(X;), where 1<i<j<n, two
points x*, #'* such that

@)= ™) ‘
then one of these points belongs to @(X;) and the other to @(X;). For
instance z*=¢(x), where z ¢ X; and o*=p(@'), where #' ¢ X;. It follows
that z5£ 2’ and f(¢)=f(#'). Thus we have shown that if the set ¢ (X;)w @(X;)
contains two distinet points belonging to one of the sets 7 Hy), then
the set X,u X, contains two points belonging to one of the sets f~(y).
But the converse is not true, because Xjw X;, contains two distinct
points belonging to one of the sets '), but for every two points
ot =g(@), x*=g¢@) with z¢X;,, o X satisfying the condition
F*(a*) = f*(z'*) we have
flz) =f*e (@) =*@*) = o) =fo @) =),

which implies, by the definition of the set X*, that a*=a'*.

Thus we haye shown that N (&%) <N(&E,f), & e, N(&E*[f)<m.
By the induetion hypothesis we infer that f* is a superposition of a finite
number of simple mappings with indices <. To finish the proof it re-
mains to observe that f= f*p, where g is a simple mapping with index <n.

COROLLARY. Hvery elementary mapping over a compactum is a super-
position of a finite number of simple mappings.

PROBLEM 3. Is it true that every elementary mapping 8 a Superposi-
tion of a finite number of elementary simple mappings?

PROBLEM 4. Does there ewist a continuous mapping of finite order
which is not a superposition of a finite number of simple mappings?

6. Simple mappings on the ANR-sets. It follows by example 8
that a simple elementary mapping with the seam being a {(curvilinear)
polytope can transform a polytope onto a compactum which is not & curvi-
linear polytope. However, the question whether the image of & polytope X
by & simple elementary mapping with the seam being a rectilinear poly-
tope (i. 6., & subcomplex of a triangulation of X) is necessarily a poly-
tope remains open.

Tn example 7 we have constructed a simple mapping f of a den-
drite X (hence of an AR-set: see, for instance, [10], p. 290) with the
seam Dbeing also an AR-set, such that the image f(X) is not an ANR-set.
Now we shall prove that for simple elementary mappings an analogous
phenomenon is not possible. More exactly, we shall prove the following

THEOREM. Let f be a simple elementary mapping, defined on a locally
contractible compactum X of a finite dimension. If the seam of | is locally
contractible then Y=7(X) is an ANR-sel.
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Fivst we establish the following

Levma. Let X and X,CX be two ANR-sets. For every point ae X,
and every neighbourhood @ of a in X there exists a compact neighbourhood A
of a in X and a continuous function vp(x,t) defined jor (z,t) e A X(0,1>
and satisfying the following conditions:
(1) p(@,l) e @
2) p{w,0)=u;
(3) p(@,t)=2

for every  (r,t)e A x<0,1,
y(z,1)eX, red,
(@,8) e (AnX,) X 0,15

for every

for every

Proof. We may assume that X i3 a subset of the Hilbert cube Q,.
Let r be a retraction of a neighbourhood U of X (in Q,) to X and 7,
a retraction of a mneighbourhood U, of X, (in @,) to X,. Setting
(#,8) e Uy X 0,15,

p(,1) =tro(z)+(1—t)x for every

we obtain a continuous deformation of the set U, in ¢, to the set X,
such that all points of X remain fized during this deformation. It fol-
lows that there exists a neighbourhood UFCU, of X, in @, such that
all values of g@(#,t) for (z,t)e Uy x (0,1, belong to U. Hence setting

p(w,t)=rp(x,t) for every (z,t)e(UsnX)x<0,1,,

we obtain a continuous deformation of Us~ X in the space X to X, and
all points of X, remain fixed during this deformation. It follows that
for every point @ € X, and every neighbourhood & of a in X there exists
2 compact neighbourhood 4 of ¢ in X such that y satisfies conditions
(1), (2) and (3).

Proof of the theorem. It suffices to show that ¥ is locally con-
tractible. By corollary 1 of section 3, the seam X, of f is closed. We infer
that the set X~ X, is open in X and f maps it topologically onto the
seb ¥ —f(X,) open in ¥. Since X is locally confractible, we conclude
that Y is locally contractible at each point yoe¥Y —f(X,).

Consider now a point y, € f(X,) and an arbitrarily given neighbour-
hood V of y, in the space Y. It remains to show that there exists a neigh-
bourhood W of y, in ¥ contractible in ¥V to a point.

Let yo=f(x,)=F(x,) where % x,. Since f is elementary, there exists
for »=1,2 a compact neighbourhood U, of x, in X such that

(4) U,~U,=0,
(8) { is univalent on U,,
(6) HU)CV  for »=1,2.
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Since U, is compact we infer by (5) that f maps U, onto a seb
F(U,)CX topologically. Consequently there exists & homeomorphism ¢,
defined in the set f(U,) such that

M g.(y) eU, and fgy)=y for every yef(UL), r=1,2.
Moreover, let us observe that

{8) FHU) ~H(T)CFHXG)

(9) HUATSS USR] neighbourhood of y, in ¥.

By corollary 1 of section 3 the sets 7~ '(y), where y e f(X,), constitute
a continuous decomposition of the set X,. Tt follows that the mapping f
iq interior on X, and consequently each of the sets f(U,nXy), v=1,2,
bence also the set F{TU;nXo)nf(UsnXo) constitutes a neighbourhood
of y, in f(X,). Since f is topological on the set U, and the set X, iz lo-
cally contractible, the set F(X,) is also locally contractible. Hence there
exists a compact neighbourhood B of y, in f(X,) such that

BCH(Uyn Xo) ~f(Uzn Xa) s
B is contractible to a point in the set Ve (X, -

(10)
1
We infer by (7) and (10) that the set g.(B) is 2 neighbourhood of
2, in X,.
Let @, be a neighbourhood of x, in X such that

(12) 6.CU, and X,~G,Cg(B) for »=1,2.

Applying our lemma we infer that there exists in X a compact neigh-
bourhood A4,CG, of the point z, and 2 continuous function yp,(x,t) de-
fined for (,t) e 4, x0,1) and satisfying the following conditions:

(13) y{z,t)e@ for every () ed, X<0,15,
(14) wiz, 0=z w1 eX, for every wed,,
(15) wiz,t)y=x  for every (1) e (A, X o) X<0,15 .

Gince 7 maps 4, topologically onto F(4,)CF(U,), we infer by (9)
that the set
(16) W=f(4,)w}(4s)

is a neighbourhood of y, in Y. It remains to show that W is contractible
in V to a point, To prove it, let us set

A1) e,)=ruln®),t] for every  (3,1) €f(4,) x 0,15, v=1,2.
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By (13), (12) and (6), the val -
e havé (6), the values of ¢ lie in V. Moreover, by (14) and (7)

fodguy), 0] = Hauw)) =y
and, by (14), (13) and (12)
ol g(y), 11 €F (X~ 6,)Cfg,(B)=B.

Since 4,CU,, we infer by (8) that for
e s 4 ef(dy) A)CHU.
Cf(Xy) ib 15 g,(y) € 4, ~ X,. Hence, by (15) O DI~ T

for every yef(d.), r=1,2

wlo),tl=1g(y)=y for »=1,2.

It fo]lqws that formula (17) defines a continuous deformation of the
set W in the set V to a subset of B. By (11) we infer that the set W is
contractible to a point in the set V. Thus our proof is finished.

follozv'insgimple mappings and retractions. Now we shall prove the
g R I 1 b o imss mangiog el ¢ ompe sy X
ract of 7(X). ing the seam Xo. Then f(4) is a ret-

Proof. Let » denote a retraction of X to A. For every y e f(X,)

the set f~(y) lies in the seam X,CA. Conse =1 =1
. quently fr = =4.
It follows that setting ’ ==y

s(y) =1ri~() ¥ eF(X)
we obtain a single-valued function mapping 7(X) onto f(4). Let us show
that s is a retraetion of f(X) to f(4).
If yef(A) then fy)CA and consequently

s(y)=fri )= "1y) =y.

Moreover, f maps X-— A homeomorphically onto f(X)—f(4) (see [8],
- 266). It follows that the mapping s is continuous on the set f(X)—f(4)-
It remains to show that for every sequence {y,}Cf(X)—f(4) convergent
to a point ¥y, ef(4) we have lm s(y¥,)=1y,. In order to show it, let us

for every

obse%'ve that the decomposition of X into sets f~(y) is upper semi-
continuous. Consequently y,—y, implies that for each neighbourhood V'

of ~(y,) (in the space X)
(1) F{w)CV  for almost all n.

(“) A subset A of a space X is said to be a reiract of X if there exists a continuouns
mapping » of X onto 4 such that r(@)=u for every wed.
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But f and 7 are continuous. Hence for each neighbourhood U of ¥, (in
F(X)) there exists a neighbourhood V of Fy,) such that fr(V)CU. We
infer by (1) that
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frf y,) CU  for almost all %,
i ey W frf 7 Ya) = Yo

8. Simple mappings and homeology groups. Let X, Y .be
compact spaces and let ACX, BCY be closed. A continuous mapping

2 (X,A)—»(Y,B),

that is a continuous function mapping X onte ¥ and such that f(A)CB
is said to be a relative homeomorphism (comp. [8], p. 266) if p maps X—4
homeomorphically onto ¥ —B. :

By H,(X) we denote the nth Cech homology group of X and by
H,(X,A) — the ath Cech relative homology .group of the pair (X,4)
over the group of rational numbers (see [8], P 237). If ¢: (X,A)—>(Y,.B)
is a relative homeomorphism then g induces an isomorphism g,, mapping
the group H,(X,A) onto the group H,(Y,B) (see [8], p. 266).

Let f be a simple mapping of a compactum X onto Y and let X,
denote the seam of f. Then f: (X,Xy)—~(¥,f(X,)) is a relative homeo-
morphism inducing an isomorphism fu, of H,(X,X,) onto II,,(Y, f(Xo)).
Moreover, f induces a homomorphism fre of H,(X) into F,,( Y) and a homo-
morphism 75, of H,(X,) into H,,(f(XD)). The inclusions X,C X and HX)CY
induce the homomorphisms %, and i, of H(X,) into H,(X) and of
H,(f(X,)) into H,(Y). The inclusions X=(X,0C(X,X,) and Y———(Y,_O)
C(¥,#(X,)) induce the homomorphisms jue a0 ji, of Hy(X) into H,(X, X,)
and of H,(Y) into H,(¥, f(Xo)). Finally we have the boundary homo-
morphism 9, of H,(X,X,) into H,.(X,) and & of H.(Y,/(X,) into
H,,_l(f(X(,)). It is known (see [8], p. 13) that the diagram

& ine1x

o inx Jnx . = 'n —
o= H( X)) — HJX) - HfX,Xy) — Hpa(Xy) —
\l(ff"l"* ¢fi# Jvfn* ifn‘“u ’
U N i - o N A
...~>H,,(f(Xu))—>H,,(Y)—>H,,(Y,f(Ao)) o Hua(f(Xo) — -
is exact in rows and commutative. If the image of 4, is zero then -
is an isomorphism into and consequently also ji, fow=Fuydme 18 a0 isomor-
phism into. Hence
(X) If the image of iy, is zero then fue i8 an isomorphism nto.
Moreover, '
(II) If the hernel of fa_s, is zero and if fn, is onto then fi, i onto.

On 4 class of continuous mappings 9%

Proot. 1t is known (see [8], pi 16) that the hypothesis of (IT) im-
plies that ful Hol X)]=jia{fas(Ha( X, Xo))]. But f, is an isomorphism onto,
whence fo (H,(X,X,))=H,[Y,{(X,)] and thus fr,[H,(X)]=H¥).

- (1IX) If the image of in, is zero and the kernel of i,_y, is zero then
HAY) 2 Hy(X) + i, [ Ha(f( X)) -

Proof. In this case j,, maps H,(X) isomorphically onto H,(X,X,).
Moreover f,, maps H,(X,X,) isomorphically onto H,(Y,f(X;)). Since
Fosine=Jnefre We infer that y=ji,fe i$ an isomorphism onto and the in-
verse isomorphism y~* maps H,(Y,f(X,)) onto H,(X). Setting =712,
we obtain a homomorphism of H,(¥,f(X,)) into H,(¥). Moreover the
homomorphism jad=jrfrxs =z is the identity {on H,(Y,{(X,)))-
Thus we see that for the homomorphism 4, there exists a homomor-
phism ¢ satisfying the condition ji# = identity on H.(Y,f(X,), 4. e,
jns 18 an r-homomorphism (in the sense of [6]). It follows (see [6], p. 331)
that H,(Y) is isomorphic with the direct sum of H,(X) and of the ker-
nel of ji,, and eonsequently also with the direct sum of H,(X) and of
the group i, [H.{Y,/(X,)]. ‘

THEOREM (*). If f is an elementary simple mapping defined on a com-
pact space X and if X, denotes the seam of f then the relations .

a) Hy(X)=0 or Hy(X,)=0,

b) Hy o Xo)=0
imply the isomorphism H(X)~H (Y).

Proof. By corollaries 1 and 2 of section 3, f is a loeal homeomor-
phism on X,=2X,. It is known (see [7], p. 40) that in this case the ho-
meomorphism 75, maps the group H.(X,) onto the group H(f(X,)).
It follows by (I) and (II) that f;, maps the group H,(X) onto the group
H,(Y). .

COROLLARY 1. Let f be an elementary simple mapping of a compact
space X such that the dimension of the seam X, is < n—2. Then
Hy(X) = H,(Y).

Since for loeal connected compacta X the condition H,(X)=0 (see
[11], p. 273) means that X is unicoherent (see [5], p. 230), we infer

COROLLARY 2. Let f be an elementary simple mapping of a compacdt,
locally connected, wnicoherent space X. If the seam X, of | is connecied

then the space f(X) is unicoherent,

(*) Similar results, but concerning some other subclass of simple mappings that
is a little more general than the class of elementary simple mappings, is obtained in
a different way, by J. Jaworowski (see [9], theorem 4 and corollary 3). Let us observe
that in onr proof the hypothesis that f is elementar is used only to show that the ho-
momorphism f2 induced by f, maps H“(fu) onto H”(f(fu)).
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On the divisors of zero of the group algebra
' by
W. Zelazko (Warszawa)

In this paper it will be shown that for every non-trivial locally eom-
pact group the group algebra has divisors of zero.

Let @ be a locally eompact multiplicative group. Its elements will
be denoted by the letters a, b, f, 7, %, v; the unit element by e. The letters
U, V, W will denote the neighbourhoods of the umit e (open sets with
compact closure containing e). If 4, B are the sets contained in &, then
AB is defined as the set of points u=ab, where a ¢ 4, and b ¢« B. The
seb A7 is the set of all ¢ such, that ¢ ¢ 4. It is proved that for every
neighbourhood U7 of the unit e there exists a symmetric neighbourhood V
contained in U, 4. e., such a ¥ that V=V"" and VC U. It is well known
that for every locally compact group there exists a unique (to within
a multiplicative constant) left invariant Haar measure p (4. e., u(ad)
=u(4) for every a e@). Generally speaking the left invariant measure
is not the right invariant one, but there exists such a continuous func-
tion A(a) called the modular funciton that u(da)=p(d)4(a) for every
ae@. ’

It is proved that 4 is a homomorphism into the multiplicative group
of positive reals, i. e., 4(a)>0, and 4(ab)=A(a)4(b) for every a,b e @.
By the definition of the Haar measure if 4 i3 any non-void open sef
then u(4)>0, and if B is & compact one then u(B)<co.

‘We shall consider the Banach space L,(¢) of all eomplex u-inte-
grable functions defined over @, with the customary norm

& =@l

It is proved that L,(G) is a Banach algebra with multiplication as the

convolution: .

(2) frg= [ fmtg(x)du().

The algebra L,(G) is called the group algebra when the group G is discrete

(in this case, and only in this case, the algebra has the unit element).

The group slgebra for a non-discrete group is the algebra obtained from

L(G) by joining the unit element. We shall prove that if ¢ is non-
7*
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