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On the divisors of zero of the group algebra
' by
W. Zelazko (Warszawa)

In this paper it will be shown that for every non-trivial locally eom-
pact group the group algebra has divisors of zero.

Let @ be a locally eompact multiplicative group. Its elements will
be denoted by the letters a, b, 7, 7, 4, v; the unit element by e. The letters
U, V, W will denote the neighbourhoods of the umit e (open sets with
compact closure containing e). If 4, B are the sets contained in &, then
AB is defined as the set of points u=ab, where a ¢ 4, and b ¢« B. The
seb A7 is the set of all ¢ such, that ¢ ¢ 4. It is proved that for every
neighbourhood U7 of the unit e there exists a symmetric neighbourhood V
contained in U, 4. e., such a ¥ that V=V"" and VC U. It is well known
that for every locally compact group there exists a unique (to within
a multiplicative constant) left invariant Haar measure p (4. e., u(ad)
=u(4) for every a e@). Generally speaking the left invariant measure
is not the right invariant one, but there exists such a continuous func-
tion A(a) called the modular funciton that u(da)=p(d)4(a) for every
ae@. ’

It is proved that 4 is a homomorphism into the multiplicative group
of positive reals, i. e., 4(a)>0, and 4(ab)=A(a)4(b) for every a,b e @.
By the definition of the Haar measure if 4 i3 any non-void open sef
then u(4)>0, and if B is & compact one then u(B)<co.

‘We shall consider the Banach space L,(¢) of all eomplex u-inte-
grable functions defined over @, with the customary norm

ey th=J1#(2)|du.

It is proved that L,(G) is a Banach algebra with multiplication as the

convolution: ) .

(2) frg= [ fmtg(x)du().

The algebra L,(G) is called the group algebra when the group G is discrete

(in this case, and only in this case, the algebra has the unit element).

The group slgebra for a non-discrete group is the algebra obtained from

L(G) by joining the unit element. We shall prove that if ¢ is non-
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trivial, then I,(@), and so the group algebra has divisors of zero. In the
proof we shall give a construction of such divisors.

Levma 1. If the group @ contains a non-trivial compact subgroup Gy,
then the group algebra has divisors of zero.

Proof. We shall construct such functions f and g that

3 ' 0<ifli<oo, 0<|gh<eoe,
and
(4) fxyg=0.

Let @Gy, and azte. There exists such a symmetric neighbour-
hood V of ¢ that aVAV=0.

We put
(8) F(8) = xveolt)
where y4(t) is the characteristic function of the set 4, and
(6) ' 9(t)= yar{t) — 1¥(t) -
We have
(7 fh=pn(VGy),  and  [g=2p(V).

Hence (3) holds.
‘Now we see that

Fxg= ] gre(tv) [ar(z)— u(r)]du(z)
=u(GVinaV)—pu(GVt V)
and (4) holds by the left invariance of u, q.e. d.

LeMMA 2, The algebra 1, (the group algebra of infegers; its elements
are the two-sided sequences {Gnime—oo With absolute convergent series) has
divisors of zero.

Proof. It iz well known that the Fourier transform 7'

T({a})= D aneins
is an isomorphism of I, into the algebra of all complex-valued continuous
functions defined over (—m,w) having absolutely convergent Fourier se-
ries. Then if F(z), and G(z) are two non-zero funetions with absolutely
convergent Fourier series and disjoint supports (1), then the convolution
of the sequences of their Fourier coefficients is zero, q. e. d.

¢) B g., ’
g Fla)= | ginz for we(—w,0),
”wl 0 for #e(0,m),
0 for ®e(—w,0), d
G(w)—{ sing  for we(0,w).
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The following lemma is known:

Lmyvya 3 (see [1]). If a is any element of G and G, is the closure of
the subgroup generated by a, then @, is either diserete or compact.

It is obvious that if &, iz discrete, then there exists such a U that
(8) #UnarlU=@ and UdnUwr=@ for Fksp.

Levwa 4 (3). For every non-trivial Zocally'compaot group there exists
such an element az=e that A(a)=1.

Proof. If & is an abelian group, then A(a)=1 for every a eG.
If & is not abelian, then there exist such x,y ¢ G that ays£ys. Then
(wy)yw) e and

Allay) ()™= A (@) 4 ()[4 (@] (A )] =1,

Now we pass to the proof of the

g. e. d.

THEOREM. For every non-trivial locally compact group the group al-
gebra has divisors of zero. :

Proof. By the lemma 4 there exigts such an element a that ae,
and A(a)=1. Let G, be the closure of the subgronp generated by this
element. By lemma 3 @, is either compact or diserete. In the first case
there are divisors of zero by lemma 1, in the second there exists such
a symimetric neighbourhood U of the unit e that (8) holds.

We put
(9) ft)= D) wnzuan(t)
and e
(10) git)= D Powreult)

where {a,} and {8,} are divisors of zero in I, (their existence proved in

lemma, 2).
‘We have
(11) o= D lanu(Ua™) = 3 lafu(0)47"a)
= () Y al
and n—_‘:c
(12) loh =w(0) Y ]

Hence we have (3).

(*) This lemma was suggested to me by C. RyllkNardzewski,
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Wg have also
fxg= 2 nteit™) 3 paaaol) (o)
= ZZ,: “nﬁ—kf yva—n(tr™1) yaku(T) du(7)
= 22}; af i (07 Ut ~ a#T)

= 22 ok dn—rk,
n k

A= p(a Tt ~ U);

where

then in the sum Y a, ), f—xdn_x we put n—k=s, and
n k .

j*g:.—Za,Zﬁ,_,,A,:ZAsZa,,ﬂ,_,,:O, q e d
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Completely regular mappings

by

N

E. Dyer and M.-E. Hamstrom (%) (Princeton)

The class of continuous mappings 7 of a topological space X onto
a topological space Y can be ordered roughly by the amount of infor-
mation about the loeal and in the large properties of X which can be
learned from information about those properties of ¥ and the inverses
under f of points of ¥. Some of the groupings in this ordering are open
mappings, homologically regular mappings [5], mappings which' have the
covering homotopy property, homotopically regular mappings, and pro-
jection mappings of direct products.

In this paper a new type of mapping iz defined — the completely
regular mapping. It will be shown that this type of mapping occupies
a position in the ordering mentioned above just before that of the pro-
jection mapping, that under certain additional hypotheses such mappings
hecome projection mappings and that if the inverses are certain low
dimensional spaces, 0-regular maps are completely regular. Thus we will
be able to show in some cases that spaces on which certain 0-regular
maps arve defined are direct products. Some of our results of this sort
are related to results of B. J. Ball [2] and others nicely complement
a result of R. H. Bing [3]. Part of Theorem 7 is & special case of a theo-
rem of Whitney [15] proved by quite different methods.

In particular, we show that if f is-a 0-regular mapping of a com-
pact metric space onto an arc such that each inverse under f is a 2-cell
then X is a 3-cell. This answers a question raised in [7], p. 84. We also
show that if f is a closed mapping of E® onto a metrie space X such that
each inverse under f of a point of X is a compact continmum lying in
a borizontal plane and not separating that plane, then X is homeomor-
phic to E*. For information on related problems the reader is referred
to [3] and [4]. The lemma of Alexander which proves so important in
the argument for our principal theorem was called to our attention by

(*) Part of this work was done while one of the authors held National Science
Toundation grant NSF-G2577 and the other held a National Science Foundation post-
doctoral fellowship.
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