A connected subset of the plane

by

M. E. Rudin (Rochester)

A subset of a topological space is said to be connected if it is not the union of two non-empty disjoint sets, neither of which contains a limit point of the other. A connected set is degenerate if it consists of a single point. The object of this paper is the construction of a connected set which has, in a certain sense, few connected subsets:

THEOREM. If the continuum hypothesis is true, then there exists a non-degenerate connected subset M of the plane with the following property: if N is a non-degenerate connected subset of M, then M-N is at most countable.

This disproves a conjecture made by Erdös ([1], p. 443). It might be of interest to note that the result cannot be strengthened, since every non-degenerate connected set M contains a non-degenerate connected subset N, such that M-N is infinite ([1], p. 443).

We shall first construct a certain indecomposable continuum I in the plane, discuss some of its properties, and then construct M as a subset of I, by means of a transfinite induction process; M will contain at most one point on any composant of I.

1. The indecomposable continuum I

- **1.1.** A 2-cell is a homeomorphic image of a closed square in the plane. A chain Γ is a collection of 2-cells L_1, \ldots, L_n such that (1) L_i intersects L_j if and only if $|i-j| \leq 1$; (2) $L_m \cap L_{m+1}$ is an arc, for $m=1,\ldots,n-1$. The sets L_i will be called the *links* of Γ ; L_1 and L_n are the endlinks, L_2, \ldots, L_{n-1} are middle links. The union of the links of Γ will be denoted by Γ^* .
- **1.2.** Fix three points a, b, c in the plane. A chain Γ is of type (a, b, c) if each of its end-links contains one of the points a and c in its interior and if b is in the interior of some middle link. Let $\{\Gamma_n\}$ be a sequence of chains with the following properties:
- (1) Γ_1 is of type (a, b, c), Γ_2 is of type (b, c, a), Γ_3 is of type (c, a, b), Γ_4 is of type (a, b, c), and so on, permuting the letters a, b, c cyclically.
 - (2) Γ_n^* lies in the interior of Γ_{n-1}^* .

- (3) Each link of Γ_n lies in some link of Γ_{n-1} .
- (4) If L is a link of Γ_{n-1} which does not contain a, b, or c, and if L_i and L_j (i < j) are links of Γ_n which lie in L, then either L_k lies in the interior of L for all $L_k \in \Gamma_n$ such that i < k < j, or one such L_k contains one of the points a, b, or c.
 - (5) The diameter of each link of Γ_n is less than 1/n. Put

$$I = \bigcap_{n=1}^{\infty} \Gamma_n^*.$$

- **1.3.** It is evident that I is compact and connected (i. e., I is a continuum). To see that I is indecomposable, suppose I is the union of two continua H_1 and H_2 , neither of which is equal to I. Then $I-H_1$ and $I-H_2$ are open (relative to I), and there is a chain Γ_n of type (a,b,c) which contains two links L_i and L_j such that $I \cap L_i \cap H_1 = 0$ and $I \cap L_j \cap H_2 = 0$. The connectedness of H_1 and H_2 now implies that a and c do not belong to the same set H_i . But the same argument applies to the pairs (a,b) and (b,c), and a contradiction is reached.
 - 1.4. We now introduce some additional terminology.
- (a) Let L_1, \ldots, L_n be the links of one of the above-mentioned chains Γ_k . Choose i, j such that $1 < i \le j < n$, and such that none of the links L_m $(i \le m \le j)$ contains a, b, or c. Let G be the interior of $L_i \cup \ldots \cup L_j$. If $U = I \cap G$, we call U a section of I.
- (b) Observe that for any section U of I, the closure of U is homeomorphic to the plane set E described as follows: let K be a Cantor set on the x-axis, and let E be the set of all points (x,y) such that $x \in K$ and $0 \le y \le 1$. The section U itself corresponds to the subset of E with 0 < y < 1. The points of I which, under the above homeomorphism of \overline{U} onto E, map into points with y = 0, form one end of U; the points of I which correspond to the points of E with y = 1 form the other end of U.
- (c) If U is a section, formed as above by means of the links $L_i, ..., L_j$, and if $i \leq p \leq q \leq j$, the section V formed by means of $L_p, ..., L_q$ will be called a *block* of U.
- (d) By a subsection of a section U we mean any section which is a subset of U. A strip of U is a subsection of U whose ends are subsets of the ends of U.
- (e) A closed subset S of I is a separating set if I-S is not connected. If S is a separating set, G(S) is the collection of all sections U such that S does not intersect the ends of U and $U-S=A\cup B$, where $A\cap B=0$, A and B are open (relative to I), \overline{A} contains one end of U, and \overline{B} contains the other end of U.

- (f) If $p \in I$, we let C(p) be the set of all $q \in I$ such that I contains a proper subcontinuum which contains p and q. C(p) is the composant of I which contains p.
- 1.5. The following properties of the concepts just introduced will be needed in the sequel.
 - (a) If S is a separating set, then G(S) is not empty.
- (b) The intersection of a composant C and a section U is the union of countably many of the arc segments (i. e., arcs minus end points) which are the components of U (compare 1.4 (b)).

Proof. Since C is dense in I ([2], p. 147), C intersects infinitely many components of U. If S is a component of U such that $S \cap C \neq 0$, then there is a proper subcontinuum X of I such that $X \subset C$ and $X \cap S \neq 0$. Since I is indecomposable and \overline{S} is an arc, $X \cup \overline{S}$ is also a proper subcontinuum of I. Consequently, $S \subset C$.

It is known ([2], p. 147) that C is the union of countably many proper subcontinua of I. Hence the proof will be complete if we show that every proper non-degenerate subcontinuum of I is an arc.

Let X be a proper non-degenerate subcontinuum of I. For each positive integer n, let $\Gamma_n(X)$ denote the subchain of Γ_n consisting of those links of Γ_n which intersect X; let $\Gamma_n(a)$, $\Gamma_n(b)$, and $\Gamma_n(c)$ denote the links of Γ_n which contain a, b, and c, respectively.

If X contains none of the points a, b, or c, then, for some n, none of the links $\Gamma_n(a)$, $\Gamma_n(b)$, $\Gamma_n(c)$ belong to $\Gamma_n(X)$. Hence X is a subset of a section, and 1.4 (b) shows that X is an arc.

So suppose $a \in X$. For some k, the chain Γ_k is of type (a, b, c) and $\Gamma_k(X) \neq \Gamma_k$, so that $c \notin X$. Similarly, $b \notin X$. Hence there is an integer n (held fixed during the rest of this proof), such that $\Gamma_n(b) \notin \Gamma_n(X)$ and $\Gamma_n(c) \notin \Gamma_n(X)$. The following three statements are then true:

- (1) If i > n, $\Gamma_i(a)$ is an end-link of $\Gamma_i(X)$.
- (2) If j > i > n, if $Q \in \Gamma_{j}(X)$ and $Q \subset \Gamma_{j}(a)$, then every link of Γ_{j} between Q and $\Gamma_{j}(a)$ is a subset of $\Gamma_{i}(a)$.
- (3) If j > i > n, $L \in \Gamma_i(X)$, $H \in \Gamma_j(X)$, $K \in \Gamma_j(X)$, and $H \cup K \subset L$, then every link of $\Gamma_j(X)$ between H and K is a subset of L.

From (3) it is evident that X is an arc.

If (1) is false, then $\Gamma_i(a)$ lies between two links A and B of $\Gamma_i(X)$, and Γ_i is of type (c, a, b). One of A and B, say A, is between $\Gamma_i(c)$ and $\Gamma_i(a)$ in Γ_i . But Γ_{i+1} is of type (a, b, c) and $\Gamma_{i+1}(b) \in \Gamma_{i+1}(X)$; by 1.2 (4) this implies that X intersects no link of Γ_i between $\Gamma_i(a)$ and $\Gamma_i(c)$, so that $X \cap A = 0$, a contradiction.

If (2) is false, 1.2 (4) implies that some link of Γ_j between Q and $\Gamma_j(a)$ lies in either $\Gamma_i(b)$ or $\Gamma_i(c)$. Since Q and $\Gamma_j(a)$ belong to $\Gamma_j(X)$ and X is connected, this is impossible.

If (3) is false, 1.2 (4) and our choice of n imply that there is a link $Q \in \Gamma_i(X)$ between H and K, such that $Q \subset \Gamma_i(a)$. By (2), every link of $\Gamma_i(X)$ between Q and $\Gamma_i(a)$ lies in $\Gamma_i(a)$. Since $\Gamma_i(a)$ is an end-link of Γ_i , either H or K, say K, lies in $\Gamma_i(a)$. But $K \subset L$. Hence $L = \Gamma_i(a)$, $H \subset \Gamma_i(a)$, and by (2) every link of $\Gamma_i(X)$ between H and $\Gamma_i(a)$ lies in $\Gamma_i(a)$.

This completes the proof.

(c) If a section U belongs to some G(S), then every strip of U belongs to G(S), and if U is a block of a section V, then V belongs to G(S'), where $S' = S \cap U$. (Since S does not intersect the ends of U, S' is closed, so that G(S') is defined.)

(d) If U and V are sections, then V has disjoint strips V_1, \ldots, V_n with the following properties:

(1) $V_1 \cup ... \cup V_n \supset U \cap V$;

(2) if $l \leq m \leq n$, if Y is a strip of V_m , if Z is a strip of U, and if every strip of Z intersects Y, then $Z \cap V_m = Z \cap Y$.

Proof. By 1.4 (a), there are chains Γ_k and Γ_h and sets G and H, such that G is the interior of the union of some links of Γ_{k} , H is the interior of the union of some links of Γ_h , and such that $U = I \cap G$, $V = I \cap H$. Let H_1, \ldots, H_n be the components of $\Gamma_k^* \cap H$, and put $V_m = H_m \cap I$ $(1 \le m \le n)$. These sets V_m have the desired properties.

Note that if $k \leq h$, then $H \subset \Gamma_k^n$, so that n = 1 and $V_1 = V$. If k > h, then the sets H_m are the "straight pieces" which Γ_k^n cuts out of H.

2. Preparatory lemmas

LEMMA 1. Let S be a separating set and let **K** be a countable collection of subsets of I with the following property: If $K \in \mathbf{K}$, then either (1) K is a composant of I, or (2) every section $U \in G(S)$ contains a section $V \in G(S)$ such that $S \cap V \cap K = 0$.

Then S contains a point which belongs to no member of K.

Proof. Fix a section $W \in G(S)$, and replace each composant $K \in K$ by the countable collection of arc-segments whose union is $K \cap W$. Since we will operate entirely within W, we may therefore assume without loss of generality that K is a sequence $\{K_n\}$ (n=1,2,...), each of whose members satisfies (2) (each arc-segment clearly satisfies (2)). Using (2), we can construct a sequence $\{U_n\}$ such that $W \supset U_1, \ U_{n-1} \supset U_n, \ U_n \in G(S)$, and $S \cap \overline{U_n} \cap K_n = 0$. Any point of the non-empty set $S \cap \bigcap_{n=1}^{\infty} \overline{U_n}$ has the desired property.

LEMMA 2. Suppose S is a separating set, K is a subset of a section V, and every strip X of V has a strip Y such that $Y \cap K \cap S = 0$. Then if $U \in G(S)$, U contains a section $W \in G(S)$ such that $W \cap K \cap S = 0$.

Proof. We can assume without loss of generality that $S \subset U$, and that every strip W of U intersects K, hence V. Choose strips V_1, \ldots, V_n as in 1.5 (d), and select corresponding members $W_1 \supset \ldots \supset W_{n+1}$ of G(S) as follows:

Put $W_1 = U$. If W_i has been selected, let X be a strip of V_i such that every strip of X intersects W_i . (If no such X exists, put $W_{i+1} = W_i$.) Then there exists a strip Y of X such that $Y \cap K \cap S = 0$, and there is a strip Z of W_i , every strip of which intersects Y. Let $W_{i+1} = Z$. Then

$$W_{i+1} \cap V_i = W_{i+1} \cap Y$$

and we see that $W_{i+1} \cap V_i \cap K \cap S = 0$.

The section $W = W_{n+1}$ then has the desired property.

LEMMA 3. Hypothesis. (1) A and B are disjoint subsets of I, no composant of I intersects both A and B, $A \cup B$ is at most countable, and $B - (a \cup b \cup c) \neq 0$.

(2) If W is a section which intersects B, there is a strip X of W and a separating set S such that $S \cap A = 0$, $X \in G(S)$, and every term of G(S) intersects B.

Conclusion. There is a separating set T such that $T \cap A = 0$, and the following property holds: if S is a separating set such that $S \cap B = 0$, then every section $U \in G(S)$ contains a section $V \in G(S)$ such that $V \cap S \cap T = 0$.

Proof. Order the points of $A \cup B$ in a simple countable sequence. We will say a section U has property λ if there is a separating set S such that $S \cap A = 0$, $U \in G(S)$, and every term of G(S) intersects B. Note that, if U has property λ , every strip of U has property λ . For each U such that $A \cap \overline{U} = 0$, let Y(U) denote U.

For each U having property λ such that $A \cap \overline{U} \neq 0$, there is a first point p of A in \overline{U} and we will associate with U a section Y(U) such that (i) Y(U) is a subsection of U having property λ , (ii) $p \notin \overline{Y(U)}$, (iii) p is in the closure of the strip of U having Y(U) as a block. That such a section exists can be shown from the definition of property λ as follows. Assume that U is a section having property λ . If S is a separating set such that $U \in G(S)$ and $S \cap A = 0$, there is a section V such that $p \in V$ if $p \in U$, $V \cap S = 0$, $p \in \overline{V}$ and $V \subset U$. So if Z is the strip of U having V as a block, one of the (at most two) blocks of Z which is maximal with respect to the property of not intersecting V, must belong to G(S) and hence satisfy the conditions desired for Y(U).

With each section U which intersects B, associate sections P(U) and Q(U) such that (i) P(U) is a strip of U having property λ , (ii) Q(U) is a subsection of U containing the first point of B in U, (iii) the diameter of Q(U) is less than half the diameter of U, (iv) $Q(U) \cap P(U) = 0$. For each positive integer i, define sections $P_i(U)$ and $Q_i(U)$ intersecting B as follows. Let $P_1(U) = P(U)$ and $Q_1(U) = Q(U)$. If $Q_{i-1}(U)$ has been defined, then $P_i(U) = P(Q_{i-1}(U))$ and $Q_i(U) = Q(Q_{i-1}(U))$. Observe that any open set which contains the first point of B in U also contains $P_i(U)$ for some i.

Now choose a fixed section V having property λ and arrange the strips of V in a sequence V_1, V_2, \dots By induction, we define for each positive integer n a collection F_n of subsections of V with the following properties:

- (a) No component of V intersects two members of F_n .
- (b) Every strip of V intersects some member of F_n .
- (c) If $U \in \mathbf{F}_n$, then U has property λ .

Let F_1 consist of the single section V.

Suppose F_{n-1} is defined and n is even. Let F_n be the collection of all subsections W of V such that

- (i) $W \subset V_n$ or $W \subset V V_n$;
- (ii) for some $U \in F_{n-1}$, W is a strip of Y(U) or W is a strip of U which does not intersect Y(U);
 - (iii) W is maximal with respect to properties (i) and (ii).

Suppose F_{n-1} is defined and n is odd. Let F_n be the collection of all subsections W of V such that

- (i) $W \subset V_n$ or $W \subset V V_n$;
- (ii) for some $U \in F_{n-1}$, W is a strip of $P_i(U)$ for some i, or W is a strip of U which intersects no one $P_i(U)$.
 - (iii) W is a maximal with respect to properties (i) and (ii).

Since V is a section, there is a chain Γ_k whose links are L_1, \ldots, L_n such that V is the intersection of I with the interior of $L_i \cup \ldots \cup L_j$, where $1 < i \le j < n$ (compare 1.4 (a)). Let R_1 and R_2 be the intersection of I with the interiors of $L_1 \cup \ldots \cup L_{i-1}$ and $L_{j+1} \cup \ldots \cup L_n$, respectively. Let D be the union of R_1 and of all sections E which intersect R_1 and which, for some n, intersect no member of F_n .

Finally, define

$$T = I \cap (\overline{D} - D)$$
.

We will now show that T has the desired properties.

First D is open with respect to I, and the fact that every strip of V intersects some member of F_n (for every n) implies that $D \cap R_2 = 0$, and hence T is a separating set.

Secondly, let us prove that $T \cap A = 0$. If J is one of the arc segments which are the components of V, then, for each n, either J contains a point of B or J intersects some member of F_n . This follows from the following facts: (1) every strip of V intersects some member of F_n , (2) $F_1 = \{V\}$, (3) for n even, each term of F_{n-1} contains only a finite number of terms of F_n , (4) for n odd, the terms of F_n lying in any one term W of F_{n-1} intersect every arc-segment-component of W except the one containing the first point of B in W, (5) no component of V intersects two members of F_n , and (6) every term of F_n , for n > 1, is a subset of some term of F_{n-1} .

Suppose there is a point $p \in T \cap A$. Since no point of B is on the composant containing p (since $p \in A$), for each n there is a term W_n of F_n such that $p \in \overline{W}_n$. Let p_n be the first point of A in \overline{W}_n . The definition of F_n for n even shows that W_n is either a strip of $Y(W_{n-1})$ or W_n is a strip of W_{n-1} which does not intersect $Y(W_{n-1})$. So by the definition of Y(U), $p_{n-1} \notin W_n$ if n is even. Consequently, $p = p_n$ for some n; but then $p \notin W_{n+2}$, and this contradiction shows that $T \cap A = 0$.

Thirdly, let S be a separating set such that $S \cap B = 0$; the proof will be completed by an appeal to Lemma 2 with T in place of K. If X is a strip of V, then $X = V_n$ for some n; let p be the first point of B which lies in some member W of F_n such that $W \subset V_n$; since $p \notin S$, there is an open set G such that $p \in G$ and $G \cap S = 0$. The definition of $P_i(W)$ shows that $P_i(W) \subset G$ for some i. If m > n+1 the definition of F_n for n odd shows that F_m contains a section Z which lies in $P_i(W)$ and hence in G. Hence $\overline{Z} \cap S = 0$, and if Y is the strip of X which has Z as a block, $Y \cap S \cap T = 0$. This shows that the hypothesis of Lemma 2 is satisfied; consequently the conclusion of Lemma 2 holds and the proof of Lemma 3 is complete.

LEMMA 4. There is a collection S of separating sets such that (1) if R is a separating set, some subset of R belongs to S and (2) if $S \in S$, I-S is the union of two mutually separated sets D and E such that, if U is a section and $U \cap S \neq 0$, then $D \cap U \neq 0$ and $E \cap U \neq 0$.

Proof. For each separating set R, I-R is the union of two separated sets D' and E'. Order all sections in a simple countable sequence and, for each positive integer n, define mutually separated sets D_n and E_n as follows. Let $D_1=D'$ and $E_1=E'$. If D_{n-1} and E_{n-1} have been defined, consider the nth section U. If $U\cap D_{n-1}=0$, let $D_n=D_{n-1}$ and $E_n=E_{n-1}\cup U$. And if $U\cap D_{n-1}\neq 0$ but $U\cap E_{n-1}=0$, let $D_n=D_{n-1}\cup U$ and $E_n=E_{n-1}$. Otherwise, let $D_n=D_{n-1}$ and $E_n=E_{n-1}$. Then let $D=\bigcup_{n=1}^{\infty}D_n$ and $D_n=0$ and $D_n=0$. Then $D_n=0$ and $D_n=0$ and $D_n=0$.

mutually separated and S is a subset of R such that, if U is a section and $U \cap S \neq 0$, then $D \cap U \neq 0$ and $E \cap U \neq 0$. Hence if S is the set of all S derived from separating sets R in the manner described, S has the desired properties.

3. The construction of the set M

Let B be the collection of all countable subsets of I which have at most one point on any composant. Choose S as in Lemma 4. Both B and S have the power of the continuum. Hence, if the continuum hypothesis is true, there is a function f, defined on the set Ω of all countable ordinals, such that $f(\alpha) \in B \cup S$ for each $\alpha \in \Omega$, and such that every member of $B \cup S$ is $f(\alpha)$ for some $\alpha \in \Omega$.

For each $\alpha \in \Omega$, we will define subsets A_a and Z_a of I (M will be the union of the sets A_a) and a collection K_a of subsets of I.

Let $A_1 = 0$, let $Z_1 = C(a) \cup C(b) \cup C(c)$ (compare 1.4 (f)), and let K_1 be the collection whose elements are C(a), C(b) and C(c).

Let $\beta \in \Omega$, and suppose that, for each $\alpha < \beta$, the following induction hypotheses are satisfied:

H1: $A_a \cap Z_a = 0$, $A_{\gamma} \subset A_a$, $Z_{\gamma} \subset Z_a$ if $\gamma < a$.

H2: If $p \in A_a$, then $C(p) - \{p\} \subset Z_a$.

H3: A_a is at most countable.

H4: K_a is at most countable, and Z_a is a subset of the union of the members of K_a .

H5: At least one of the following three statements is true for every choice of $S \in S$ and $K \in K_a$:

- (a) $S \cap A_{\alpha} \neq 0$.
- (b) K is a composant of I.
- (c) Every section $U \in G(S)$ contains a section $V \in G(S)$ such that $S \cap V \cap K = 0$.

If β is a limit ordinal, we put

$$A_{eta} = igcup_{lpha < eta} A_{lpha} \,, \quad Z_{eta} = igcup_{lpha < eta} Z_{lpha} \,, \quad K_{eta} = igcup_{lpha < eta} K_{lpha} \,,$$

and the induction hypotheses clearly hold with β in place of α .

If β is not a limit ordinal, we choose α such that $\beta = \alpha + 1$, and consider two cases.

Case 1. Suppose $f(\alpha) = S \in S$.

We assert that $S-Z_a \neq 0$. By H1, $A_a \subset I-Z_a$, and if H5 (a) holds, the assertion is evident. If H5 (b) or H5 (c) hold, then Lemma 1 shows that S contains a point which does not lie in any $K \in K_a$, and our assertion follows from H4.

Hence there is a point $p \in S - Z_a$, and we put

$$A_{\beta} = A_{\alpha} \cup \{p\}, \quad Z_{\beta} = Z_{\alpha} \cup \{C(p) - \{p\}\}, \quad \mathbf{K}_{\beta} = \mathbf{K}_{\alpha} \cup \{C(p)\},$$

so that the induction hypotheses again hold, with β in place of α . Case 2. Suppose $f(\alpha) \in \mathbf{B}$.

Let $B = f(\alpha) - Z_{\alpha}$ and $A = A_{\alpha} - f(\alpha)$. We consider two situations which cover all possibilities.

Case 2 (i). Suppose $B \neq 0$, and that, if W is a section which intersects B, there is a strip X of W and a separating set S such that $X \in G(S)$, $S \cap A = 0$, and every term of G(S) intersects B.

In this case the hypothesis of Lemma 3 is satisfied (since $Z_1 \supset (a \cup b \cup c)$). Choose T as in the conclusion of Lemma 3. Put

$$egin{aligned} A_{eta} &= A_a \cup B \;, \quad Z_{eta} &= Z_a \cup igcup_{p \in B} ig(C(p) - \{p\}ig) \cup (T - B) \;, \ & \mathbf{K}_{eta} &= \mathbf{K}_a \cup igcup_{p \in B} \{C(p)\} \cup \{T\} \;. \end{aligned}$$

From the properties of T the induction hypotheses may easily be proved with β in place of α .

Case 2 (ii). Suppose either:

(a) B = 0,

or there exists a section W such that $W \cap B = 0$ and that

(b) if X is any strip of W and S is any separating set such that $X \in G(S)$ and $S \cap A = 0$, then there is a term of G(S) not intersecting B.

Put $A_{\beta} = A_{\alpha}, \ Z_{\beta} = Z_{\alpha} \cup [(W \cap \overline{B}) - A_{\alpha}], \ K_{\beta} = K_{\alpha} \cup \{W \cap \overline{B}\}.$

It should be noticed that, if X is a section and $X \cap B = 0$, then $X \cap \overline{B} = 0$.

The induction hypotheses certainly follow if B=0; so we can assume case 2 (ii) (b).

Clearly H1 to H4 hold with β in place of α . To prove that H5 also holds, suppose $K = W \cap \overline{B}$, $S \in S$, and $S \cap A = 0$. We will prove that H5 (c) holds. For U in G(S) we can assume without loss of generality that $S \subset U$. Clearly H5 (c) follows from Lemma 2 if every strip X of W has a strip Y such that $Y \cap S \cap K = 0$, so we can assume that there is a strip X of W such that every strip of X intersects S.

By Lemma 4, since $S \in S$, I - S is the union of mutually separated sets D and E such that every section intersecting S intersects both D and E. Since $X \cap S \neq 0$ and $U \supset S$, some subsection of $X \cap U$ intersects S; hence there is a section E such that $\overline{L} \subset X \cap U \cap D$. Let E be the strip of E having E as a block. Similarly E and there is a section E such that $\overline{L} \subset X \cap U \cap D$ and there is a section E such that $\overline{L} \subset X \cap U \cap D$. Let E be the strip of E having E as a block and let E be the minimal block of E containing E and E and E are the section E such that E is a section E such that

Notice that $Q \subset U$ since the ends of Q are in U. Since $\overline{L} \subset D$ and $\overline{N} \subset E$, $Q \in G(S)$ and $Z \in G(S \cap Q)$. But since Z is a strip of W and $Z \in G(S \cap Q)$ and $S \cap A = 0$, and $Z \in G(S \cap Q)$ such that $J \cap B = 0$ (and hence $J \cap \overline{B} = 0$).

At least one of the sets which is maximal with respect to being a section contained in $J \cap Q$ must belong to G(S); let V be such a section. Then $V \in G(S)$, $V \subset Q \subset U$, and $V \cap K \subset V \cap \overline{B} \subset J \cap \overline{B} = 0$. So V has the desired properties to give us $H_{\overline{S}}(c)$.

Let
$$M = \bigcup_{\alpha \in \Omega} A_{\alpha}$$
.

4. Proof that M is connected and that, if N is a non-degenerate connected subsed of M, then M-N is at most countable

To see that M is connected we observe that M intersects every separating set. If R is a separating set, by the description of S in Lemma 4, there is an $S \in S$ such that $R \supset S$. For some a, S = f(a), and, by Case 1, A_{a+1} , and hence M, contains a point of S.

From the definition of M and H1, we see that, for $\alpha \in \Omega$, $M \cap Z_{\alpha} = 0$, and, by H2, M has at most one point on any composant.

Let B be a countable dense subset of the set of points of condensation of M-N such that $B\subset M-N$. If M-N is uncountable, then $\overline{B} \cap (M-N)$ is uncountable and if W is open with respect to I and $B\cap W\neq 0$, then $\overline{B}\cap (M-N)\cap W$ is uncountable.

For some α , $f(\alpha) = B$. So consider Case 2 with $\beta = \alpha + 1$. Either

(i) $Z_{\beta} \supset (T-B)$, where T is a separating set,

 \mathbf{or}

(ii) $Z_{\beta} \supset ((W \cap \overline{B}) - A_{\alpha})$, where W is open with respect to I and $W \cap B \neq 0$ (since $B \neq 0$) and A_{α} is countable.

If (i), then $N \subset I-T$ and hence, since I is indecomposable, N is a subset of one composant of I. But one composant of I intersects M in at most one point; this contradicts the non-degeneraty of N.

If (ii), then $(B \cap W \cap (M-N)) - A_{\alpha} \neq 0$ since A_{α} is countable. But then $(M-N) \cap Z_{\beta} \neq 0$ and this impossible since $M \cap Z_{\beta} = 0$.

References

[1] P. Erdös, Some remarks on connected sets, Bull. Amer. Math. Soc. 50 (1944), p. 442-446.

[2] C. Kuratowski, Topologie II, Warszawa 1950.

UNIVERSITY OF ROCHESTER

Reçu par la Rédaction le 15, 7, 1957

A note on Kosiński's r-spaces

by

M. L. Curtis (Athens, Georgia)

Following Kosiński [1] we call a point x in a space X an r-point if x has arbitrarily-small neighborhoods U such that for each $y \in U$ there is a deformation retraction of $\overline{U}-y$ onto $\overline{U}-U$. A space X is an r-space if it is finite dimensional, compact metric and each point is an r-point. Problem 7 of [1] asks if (a,b) being an r-point of $A \times B$ implies that a and b are r-points of A and B respectively. We answer this question in the negative by giving a 4-dimensional finite polyhedron P^4 which is not an r-space but is such that its Cartesian product $P^4 \times S^1$ with a 1-sphere S^1 is an r-space. This example also furnishes a negative answer to Problem 6 of [1]. The polyhedron P^4 is the suspension of a Poincaré space M^3 ; i. e. M^3 is a polyhedral orientable closed 3-manifold such that $H_1(M^3, Z) = 0$ but $\pi_1(M^3) \neq 0$. It is not known if $P^4 \times S^1$ is a topological manifold.

One can readily show that P^4 has the homotopy type of the 4-sphere S^4 . This fact also follows from Lemma 9 of [1]. Let $P^4 = M^3 \lor (a \cup b)$ where a and b are points and \lor denotes the join. Clearly, $P^4 - a$ and $P^4 - b$ are contractible. Since P^4 is locally Euclidean at all other points and has the homotopy type of S^4 , it follows that $P^4 - x$ is contractible for any $x \in P^4$. It follows from Theorem 6 of [1] that P^4 is not an r-space. We will show that $P^4 \times S^1$ is an r-space. We note that $P^4 \times S^1$ is an r-space if and only if the double suspension M^5 of M^3 is an r-space. (Indeed, for any space X we may represent the suspension X' of X as $X \lor (a \cup b)$ and the double suspension X'' as $X' \lor (a \cup d)$ where a, b, c, d are points. Then any point y in $P = (a \cup b) \times S^1$ in $X' \times S^1$ and any point z in $Q = (a \cup b) \lor (c \cup d)$ in X'' have homeomorphic neighborhoods. Similarly any point y in $(X' \times S^1) - P$ and any point z in Z'' - Q have homeomorphic neighborhoods.)

Let $\widetilde{X} = X \vee p$ be the cone over X. Each point of \widetilde{X} can be represented as (x, r) with $x \in X$ and $r \in I$. The representation is unique except for p which can be written as (x, 1) for any $x \in X$.

^{*} Research supported by National Science Foundation Grant NSF-G4211.