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A connected subset of the plane
by
M. E. Rudin (Rochester)

A subset of a topological space is said to be conmected if it is not
the union of two non-empty disjoint sets, neither of which contains a limit
point of the other. A connected set is degenerate if it consists of a single
point. The object of this paper is the construction of a connected set
which has, in a certain sense, few connected subsets:

THEOREM. If the continuum hypothesis is true, then there exisis o non-
degenerate connected, subset M of the plane with the following property: if N
is a mon-degenerate connected subset of M, then M—N is at most countable.

This disproves a conjecture made by Brdos ([1], p. 443). It might
be of interest to note that the result cannot be strengthened, since every
non-degenerate connected set M containg a non-degenerate connected
subset ¥, such that M—N is infinite ([1], p. 443).

We shall first construct a ecertain indecomposable comtinuum I in
the plane, discuss some of its properties, and then construct M as a subsetb
of I, by means of a transfinite induction process; M will contain at most
one point on any composant of I.

1. The indecomposable continuum I

1.1. A 2-cell is & homeomorphic image of a closed square in the
plane. A chain I'is a collection of 2-cells Ly, ..., I, such that (1) L; inter-
sects L; if and only if [i—j| <1; (2) L~ Dy 18 an are, for m=1, ...,
n—1. The sets I; will be called the links of I L, and L, are the end-
links, Ly, ..., Ly are middle links. The union of the links of I" will be
denoted by I'™.

1.2. Fix three points a, b, ¢ in the plane. A chain I' is of type (a, b, ¢)
if each of its end-links contains one of the points & and ¢ in its interior
and if b is in the interior of some middle link. Let {I';} be a sequence
of chains with the following properties:

(1) Iy is of type (a, b, ¢), I, is of type (b, ¢, @), I'; is of type (c, a, b),
I, is of type (a, b, ¢), and so on, permuting the letters a, b, ¢ cyclically.
(2) I'y lies in the interior of I'y—y.
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(3) Bach link of I, lies in some link of I7,_,.

(4) ¥ L is a link of I',_, which does not contain a, b, or ¢, and if
ZL; and Lj (¢ < §) are links of I, which lie in L, then either I, lies in the
interior of L for all L e I, such that ¢ < % < §, or one such I, containg
one of the points a, b, or c. )

(5) The diameter of each link of I, is less than 1/n.

Put

I=ATI%.
n=1

13 It is evident that I is compact and connected (i.e., I ig
a continuum). To see that I is indecomposable, suppose I is the union
of two continua H, and H,, neither of which is equal to I. Then
I —H, and T—H, are open (relative to I), and there is a chain I', of
type (4, b, ¢) which contains two links Z; and L; such that I ~L; ~H. n= 0
and I~ Lj~ Hy,= 0. The connectedness of H, and H, now implies 117hat
@ and ¢ do not belong to the same set H;. But the same argument applies
to the pairs (@, b) and (b, ¢), and a contradiction is reached.

1.4, We now introduce some additional terminology.,

(a) Let .Ll-, «-s L, be the links of one of the above-mentioned chains
1. Qhoose %, such that 1 < i< j < n, and such that none of the links
Ly (i <m <j) contains a, b, or ¢. Let G be the interior of Lo ... L
I U=I~6 wecll U a section of I. T "

(b) Observe that for any section T of I, the closure of T is homeo-
morphic to the plane set B described as follows: let K be a Cantor set
on the x-axis, and let & be the set of all points (z,y) such that z ¢ X
and 0 <y < 1. The section U itself corresponds to the subset of B with
d<y<1. Thfa points of I which, under the above homeomorphism of U
on’c_o E, map into points with y = 0, form one end of U; the points of I
which correspond to the points of B with y =1 form the’ other end of U

(e) If U is a section, formed as above by means of the links Z;, ‘

and if ©<<p < ¢ <j, the section V formed o b
be called a block of’U. Py moans of Lp, ., Ly will

(d) By a subsection of a section U we mean any séction 'which is

@ subset of U. A strip of U is a subsecti
ot U ection of U whose ends are gsubsets

(e} A closed subset 8 of I is a se ] i i

( . parating set if I — 9 is not connected.

If Siga sgpamtmg sety G(8S) is the collection of all sections U such that S

does not intersect the ends of U and U—g — A B, where A AB=0
]

& ( ?
A nd B are open Ielavtlve to 1), A Gonbaxlns one end Of U aﬂld B con
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(f) Xt p eI, we let O(p) be the set of all g I such that I contains
a proper subcontinuum which contains p and ¢. O(p) is the composant
of I which contains p.

1.5. The following properties of the concepts just introduced will be
needed in the sequel.

(a) If 8 is a separating set, then G(8) is not empty.

(b) The intersection of a composant C and a section U 1is the union
of countably many of the arc segments (i. e., arcs minus end points) which
are the components of U (compare 1.4 (b)).

Proof. Sinece ¢ is dense in I ([2], p. 147), C intersects infinitely
many components of U. If § is a component of U such that § ~ C 0,
then there is a proper subcontinuum X of I such that X C € and X ~ 8+#0.
Sinee I is indecomposable and § is an are, X u § is also a proper sub-
continuum of 7. Consequently, 8C 0.

It is known ([2], p.147) that ¢ is the union of countably many
proper subcontinua of I. Hence the proof will be complete if we show
that every proper mon-degenerate subcontinuum of I is an are.

Tet X be a proper non-degenerate subcontinuum of I. For each
positive integer n, let I (X) denote the subchain of I, consisting of those
links of I, which intersect X; let I'i(a), I'n(b), and I'x(¢) denote the links
of I, which contain a, b, and ¢, respectively.

Tf X contains none of the points a, b, or ¢, then, for some n, none
of the links I'(a), IW(b), I'n(e) belong to I',(X). Hence X is a subset of
a section, and 1.4 (b) shows that X is an are.

So suppose a ¢ X. For some %, the chain I', is of type (a, b, ¢) and
I'y(X) 5 I'y, so that ¢ ¢ X. Similarly, b ¢ X. Hence there is an integer »
(held fixed during the rest of this proof), such that I7(b) ¢ I'n(X) and
I'y(e) ¢ I'(X). The following three statements are then ftrue:

(1) If i >n, Ii(a) is an end-link of I'y(X).

(2) If j>i>m, if @ely(X) and Q C I';(a), then every link of I
between Q and I'j(a) 18 o subset of Ii(a).

(8) If j>i>mn, Lel(X), Hel(X), KelyX), and Ho KCL,
then every link of I'{X) between H and K is a subset of L.

From (3) it is evident that X is an arc. )

If (1) is false, then I'j(a) lies between two links A and B of I'(X),
and I is of type (c, @, b). One of 4 and B, say A, is between Ii(c) and
I'fa) in Iy, But Iy, is of type (e, b, ¢) and I'ya(b) ¢ [a(X); by 1.2 (4)
this implies that X intersects no link of I'; between Iy(a) and I(e), 80
that X ~ 4 = 0, a contradiction.

Fundamenta Mathematicae, T. XLVL 2
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If (2) is false, 1.2 (4) implies that some link of I'; between @ and
T'y(a) lies in either I(b) or I'y(c). Since § and I'y(a) belong to I'y(X) and X
is connected, this is impossible. )

If (3) is false, 1.2 (4) and our choice of n imply that there ig a link
Q ¢ T;(X) between H and K, such that @ CIi(a). By (2), every link of
Ty{X) between @ and I'j(a) lies in Iy(a). Since I'y(a) is an end-link of Iy,
either H or K, say K, lies in I'y(a). But K C L. Hence L = I'J(a), H C Iy(a),
and by (2) every link of I',(X) between H and I'j(a) lies in I'y(a).

This completes the proof. i

(¢) If a section U belongs to some G(8), then every strip of U belongs to
G(8),and if U is a block of a section V , then V belongs to G(8'), where §'= S.r'\ U.

(Since § does not intersect the ends of U, §' is closed, so that G(§')
is defined.) ’

(@) If U and V are sections, then V has disjoint strips Vy, ..., Vy, with
the following properties:

1 Viv..wV,DUAT;

(2)if 1< m<n, if Y is a strip of Vp, if Z is o strip of U, and if
every strip of Z intersects Y, then ZAVy=Z Y.

Proof. By 1.4 (a), there are chains I'; and [} and sets G and H
{such that & is the interior of the union of some links of Iy H is ’ché
interior of the umion of some links of I, and such that U=1I~ @
V=1In~H. Let H,...,H, be the components of I} ~ H, and pué
Vo= Hu~I (1< m<n). These sets V,, have the desired properties.

Note that if k << h, then HC Iy, sothat n=1and V,=V. I k>h
then the sets H,, are the “straight pieces” which I} cuts out of H. ’

2. Preparatory lemmas

- Lemwa 1. Le?t 8 be a separating set and let K be a-countable collection
of subsets of I with the following property: If K « K, then either (1) K is
a composant of I, or (2) every section U ¢ G(8) contas )

e b 7 D) ¢ (8) ains a section V e G(8S)

Then 8 contains a point which belongs to no member of K.

Proof. Fix a section W e G(8), and replace each composant K ¢ K
by thg countable col}ection of arc-segments whose union is K ~ W. Since
we will opera?;e entirely within W, we may therefore agsume without
loss of generafht'y that K is a sequence {K,} (n =1, 2,...), each of whose
members satisties (2) (each arc-segment clearly satisfies (2)). Using (2),
we can construct a sequence {U,} shch that WD U, U,_; D Uy, U, € G(8),

and 8~ U, ~ K, = 0. Any point of the non-empty set 8 ~ ﬁ U, bas
the desired property. i
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LeMMA 2. Suppose 8 is a separating set, K is a subset of a section v,
and every strip X of V has a strip Y such that ¥ ~ K ~8=0. Then if
U eG(8), U contains a section W e G(8) such that W n EA~A8=0.

Proof. We can assume without loss of generality that 8§CU, and
that every strip W of U intersects K, hence V. Choose strips Viy ooy Vo
as in 1.5 (d), and select corresponding members W, 2 ...0 Wy of G(S)
as follows:

Put W, = U. It W, has heen selected, let X be a strip of V; such
that every strip of X intersects W;. (If no such X exists, put W= W)
Then there exists a strip ¥ of X such that ¥ ~ K~ 8=0, and there
is a strip Z of W;, every strip of which intersects Y. Let Wiy, = Z. Then

Wz'+1 AVi= Wi+1 nY

and we see that Wiy nVin KA S8=0.
The section W = W,,, then has the desired property.

Lemma 3. Hypothesis. (1) 4 and B are disjoint subsets of I, no
composamt of I intersects both 4 and B, A U B is at most countable, and
B—(awbue)#0.

(2) It W is a section which intersects B, there is a strip X of W and
a separating set S such that §~A=10, X« G(8), and every term of G(S)
intersects B.

Conclusion. There is a separating set T such that T~ A4 =0, and the

following property holds: if 8 is a separating set such that 8 ~ B =0, then
every section U e G(8) contains a section V e G(8) such that VA S~ T=0.

Proof. Order the points of 4 v B in a simple countable sequence.
We will say a section U has property ) if there is a separating set S
such that S ~ 4 =0, UeG(S), and every term of G(8) intersects B.
Note that, if U has property A, every strip of U has property X.

Tor each U such that A ~ U =0, let ¥(U) denote U.

For each U having property A such that A ~ U 0, there is a first
point p of 4 in T and we will associate with U a section Y(_g)_il_lch that
(i) ¥(U) is a subsection of U having property A, (i) p ¢ ¥ (U), (i)
ig in the closure of the strip of U having Y(U) as 2 block. That such
a section exists can be shown from the definition of property X as follows.
Assume that U is a section having property ». If 8 is a geparating set
such that U ¢ G(§) and 8 ~ A = 0, there is a section V such that peV
pelU, VAS=0, peV and VCU. So if Z is the strip of U having V
as a block, one of the (at most two) blocks of Z which is maximal with
respect to the property of not intersecting V, must belong to G(8) and

hence satisty the conditions desired for ¥ (U).
Pid
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With each section U which intersects B, associate sections P(U)
and Q(U) such that (i) P(U) is a strip of U having property 2, (ii) @(U)
is a subsection of U containing the first point of B in U, (iii) the di-
ameter of Q(U) is less than half the diameter of U, (iv) @(U) ~n P(U)=0.
For each positive integer 4, define sections Py(U) and Q;(U) intersecting B
ag follows. Let P,(U)= P(U) and Q,(U)=Q(U). If @;—(U) has been
defined, then Py(U)= P(Q:—y(U)} and Q(U)= @(Q@:—1(T)). Observe that
any open set which contains the first point of B in U also contains Py(U)
for some 1. .

Now choose a fixed section ¥ having property A and arrange the strips
of V in a sequence Vi, V,, ... By induction, we define for each positive
integer # a collection F, of subsections of ¥ with the following properties:

(a) No component of V intersects two members of F,.

(b) Every strip of V intersects some member of F,.

(¢) If U eF,, then U has property A

Let F, consist of the single section V.

Suppose F,—, is defined and = is even. Let F, be the collection of
all subsections W of ¥ such that

i) WCV, ot WCV-V,;

(ii) for some U e F,,;, W is a strip of Y(U) or W is a strip of U
whiech does not intersect Y (U);

(iii) W is maximal with respect to properties (i) and (ii).

Suppose F,_; is defined and = is odd. Let F, be the collection of
all subseetions W of V such that

(i) WCV,, or WCV—V,;

(ii) for some U e F,_;, W is a strip of P{U) for some ¢, or W is
a strip of U which intersects no one Py (T).

(iii) W is a maximal with respect to properties (i) and (ii).

Since V is a section, there is a chain I'; whose links are L, ..., Ly
such that V is the intersection of I with the interior of I;u ... U’Lj,
where 1 <1< j<n (compare 1.4 (a)). Let R, and R, be the intersection
of I with the interiors of I, ... UL;; and L;; U ... u Ly, respectively.
Let D be the union of R, and of all sections B which intersect R, and
which, for some %, intersect no member of F,. '

Finally, define

T=1In~(D-D).
We will now show that T has the desired properties.

First D is open’ with respect to I, and the fact that every strip of V

intersects somg member of F, (for every n) implies that D ~ R,= 0
and hence T is a separating set. ,
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Secondly, let us prove that T ~ A = 0. If J is one of the arc segments
which are the components of V, then, for each n, either J contains a point
of B or J intersects some member of F,. This follows from the following
facts: (1) every strip of V intersects some member of Fy, (2) Fy= {V},
(3) for » even, each term of F,_, contains only a finite number of terms
of Fy, (4) for n odd, the terms of F, lying in any one term W of F,,
intersect every arc-segment-component of W except the one containing
the first point of B'in W, (5) no component of ¥ intersects two members
ot F,, and () every term of Fy, for »>1, is a subset of some term
of Fp_1.

Suppose there is a point p e T~ 4. Since no point of B is on the
composant containing p (since p € 4), for each n there is a term W, of F,,
such that p e W,. Let p, be the first point of A in W,. The definition
of F, for n even shows that W, is either a strip of ¥ (Wp—;) or W, i8
a strip of W,_, which does not intersect ¥ (W,—1). So by the definition
of Y(U), Pns ¢ Wn if n iz even. Consequently, p =p, for some n; but

then p ¢ Wyye, and this contradietion shows that ThnAd=0.

Thirdly, let § be a separating set such that 8 ~ B = 0; the proof
will be completed by an appeal to Lemma 2 with T in place of K. If X
is a strip of V, then X =V, for some n; let p be the first point of B which
lies in some member W of F, such that W CV.,; since p ¢ §, there is
an open set @ such that pe@ and G~ 8 =0. The definition of P{(W)
shows that Py(W)C @ for some 4. If m>n+1 the definition of F, for n
0dd shows that F,, contains a section Z which lies in Py{W) and hence
in @. Hence Z ~8 = 0, and it ¥-is the strip of X which has Z as a block,
¥ ~ S ~ T = 0. This shows that the hypothesis of Lemma 2 is satisfied,;
consequently the conclusion of Lemma 2 holds and the proof of Lemama 3
is complete.

TEMMA 4. There is a collection S of separating sets such that (1) if
R is a separating set, some subset of R belongs to S and (2) if S €, I—-8
is the union of two mutually separated sets .D and B such that, if U is a sec-
tion and U~ S0, then DA U0 and B~ U +# 0.

Proof. For each separating set R, I — R is the union of two separated

" gets D’ and E'. Order all sections in a simple countable sequence and,

for each positive ‘integer m, define mutually separated sets D, and Bn

as follows. Let D, = D’ and B, = FE'. ¢ D,_, and B, have been de-

fined, consider the nth section U. I U~Dy1=0, let Dy=Dy, and

By = By_ywU. And if U~ Dpy7# 0 bub UnEBpa=0,let Dy=Dp U

and B, = B,_,. Otherwise, let Dp= Dp_y and B, = H,_,. Then let

D= Can and E= OEn and §=1I—(F o D). Then D and E are
n=1

Nl
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mutually }separated and § is a subset of B such that, if U is a section
and U~ S8+#0, then D AU#0 and E ~ U # 0. Hence if S is the set
of all § derived from separating sets B in the manner deseribed, S has
the desired properties.

8. The construction of the set ¥

Let B be the collection of all countable subsets of I which have
at most one point on any composant. Choose S as in Lemma 4. Both
B and S have the power of the continuum. Hence, if the continuum
hypothesis is true, there is a function f, defined on the set £ of all
countable ordinals, such that f(a) e B w § for each a2, and such that
every member of B U S is f(a) for some aef. ‘

For each a €2, we will define subsets 4, and Z, of I (M will be the
union of the sets 4,). and a collection K, of subsets of I.

Let A, =0, let Z; = C(a)u C(b)u C(¢) (compare 1.4 (f)), and let K,
be the collection whose elements are C{a), C(b) and C(c). :

Let § €2, and suppose that, for each a < §, the following induction
hypotheses are satisfied: )

H1l: 4,~nZ,=0, 4,C4,, Z,CZ,if y<a.

H2: If ped,, then O(p)—{p}CZ,.

H3: A, is at most countable.

H4: K, is at most countable, and Z, is a subset of the union of the
members of K.

At least one of the following three statements is true for every choice
of 8e8 and K e K,:

(8) 8~ A, 0.

(b) K is a composant of I.

(¢) Bwery section U eG(8) contains a section Ve G(S) such that

B8AVAK=0.

If g is a limit ordinal, we put

Hb5:

Aﬁ'_—U-A-a! Z/3=UZ117 Kﬁ:UKa7
a<p a<f a<fp

and the induction hypotheses clearly hold with g in place of a.

If § is not a limit ordinal, we choose a such that f= a+1, and
consider two cases.

Case 1. Suppose f(a)=SeS.

We a.sser§ that §—Z, # 0. By H1, 4,C I—Z,, and if H5 (a) holds,
the assertion i evident. If H5 (b) or H5 (¢) hold, then Lemma 1 shows
that 8 contains a point which does not lie in any K ¢ K,, and our asser-
tion follows from H4. )
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Hence there is a point p e §—Z,, and we put
Ap=A, v {p}, Zp=2Z,o(0(n)—), K=Ko{0p)},
g0 that the induction hypotheses again hold, with g in place of .

Case 2. Suppose f(a)eB.

Let B=f(a)—2, and A= 4,—f(a). We consider two situations
which cover all possibilities.

Case 2 (i). Suppose B 5 0, and that, if W is a secion which inter-
sects B, there i3 a strip X of W and a separdting set 8 such that X e G(8),
8~ A=0, and every term of G(8) intersects B. .

In this case the hypothesis of Lemma 3 is satisfied (since Z; D (a v by ¢)).
Choose T as in the conclugion of Lemma 3. Put

A;=A,uB, Zy=12, upLEJB(O(p)—{p}) u (T—B),
K, = KuupL_EJB{G(p)}v {T3.

From the properties of T the induction hypotheses may easily be
proved with § in place of a.

Cage 2 (ii). Suppose either:

(a) B=0,
or there exists a section W such that W ~B =0 and that -

(b) if X is any strip of W and 8 is any separating set such that X « G(8)
and 8§~ A =0, then there is & term of G(8) not intersecting Ii

Put 4= A, Zy = Zow (W~ B)—4], K;= K, v {Wn B}.

Tt should be noticed that, if X is a section and X ~B=0, then
XAB=0o.

The induetion hypotheses certainly follow if B = 0; 80 we can assume
case 2 (ii) (b). _

Clearly H1 to H4 hold with # in place of a. To prove that Hb5 also
holds, suppose K= W ~ B, S¢S, and 8§~ A= 0. We wil prove that
H5 (¢) holds. For U in G(S) we can assume without loss- of generality
that §C U. Clearly Hb (c) follows from Lemma 2 if every strip X of W
has a strip Y such that ¥ ~ 8 ~ K = 0, so we can assume that there
is a strip X of W such that every strip of X intersects S.

By Lemma 4, since S¢S, I—8 is the union of mutually separated
sets D and F such that every section intersecting § intersects both D
and E. Since X ~ 8 = 0 and UD S, some subsection of X ~ U inter-
sects §; hence there is a section L such that LCX AUAD: Let Y be
the strip of W having I as a block. Similarly ¥ ~U ~ § 5 0, and there
is @ section N such that N C ¥ AU ~ B. Let Z be the strip of W having N
as a block and let Q be the minimal block of Z containing N and Z ~ L.
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Notice that @ C U since the ends of @ are in U. Since LCD and NC B,
Q eG(8) and Z ¢ G(8 ~ Q). But gince Z is a strip of W and Z ¢ G(8 ~ Q)
and § ~4 =0, and 2 (ii) (b) is the case, there is a term J of G(8 Q)
guch that J ~ B =0 (and hence J ~ B=10).

At least one of the sets which is maximal with respect to being
5 section contained in J ~ @ must belong to G(R); let V be such a section.
Then VeG(8), VCQCU, and VAEKECVABCIAB=0.80V has
the desived properties to give us HB (e).

Tet M=\ A4..

aeld

4. Proof that M is connected and that, if N is a non-degenerate
connecied subsed of M, then M—N is at most countable

To see that M is connected we observe that M intersects every
separating set. If B is a separating set, by the description of S in Lemma 4,
there is an & < S such that R D 8. For some o, 8 = f(a), and, by Case 1,
A,,;, and hence M, containg a point of 8.

From the definition of M and H1, we see that, for ¢ e 2, M~ Z, =0,
and, by H2, M has at most one point on any composant.

Let B be a countable dense subset of the set of points of condensa-
tion of. M — N such that BC M —N. If M — N is uncountable, then
BA(M—N)is uncountable and if W is open with respect to I and
B~ W0, thén B~ (M—N) ~ W is uncountable.

For some a, f(a)=B. So consider Case 2 with = a-1. Bither

(i) Z; D (T —B), where T' is a geparating set,
or

(i) ZzD (W ~ B)—A4,), where W is open with respect to I and
W~ B0 (since B##0) and A, is countable.

If (i), then N CI—T and hence, since I is indecomposable, N is
a subset of one composant of I. Bubt one composant of I intersects M
in at most one point; this contradicts the non-degeneraty of N.

If (ii), then (B A W n (M—N))—A,7 0 since 4, is countable. Bub
then (M—N) A Zz50 and this impossible since M ~ Zz= 0.
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A note on Kosinski’s r-spaces *
by
M. L. Curtis (Athens, Georgia)

Following Kosingki [1] we call a point x in a space X an r-point
if z hag arbitrarily-small neighborhoods U such that for each yeU
there is a deformation retraction of U~y onto T—_U. A space X is an
r-space if it is finite dimensional, compact metric and each point is an
y-point. Problem 7 of [1] agks if (@, b) being an r-point of AXB implies
that @ and b are r-points of 4 and B respectively. We answer this que-
stion in the negative by giving 2 4-dimensional finite polyhedron P
which is not an r-space but is such that its Cartesian product Prx 8t
with a 1-sphere 8* is an 7-space. This example also furnishes & negative
answer to Problem 6 of [1]. The polyhedron P* is the suspension of
o Poincaré space M®; i.e. M*is a polyhedral orientable closed 3-mani-
f0ld such that H,(M*, Z) =0 but 7 ( M3) # 0. It is not known if PtxS*
is a topological manifold.

One can readily show that P*has the homotopy tiype of the 4-gphere S*
Thig fact also follows from Lemma 9 of [1]. Let P'= M3V (avwb) where
& and b are points and v denotes the join. Clearly, P'—a and P*—b are
contractible. Since P* is locally Tuclidean at all ofther points and has
the homotopy type of 8% it follows that P*—x i3 contractible for any
2 ¢ P4 Tt follows from Theorem 6 of [1] that P* is nob an r-space. We will
show that P*xS' is an r-space. We note that P:x 8 is an r:space it
and only if the double suspension M* of M3 iy an r-space. (Indeed, for
any space X we may represent the guspension X' of X as XV(a v b)
and the double suspension X'’ a8 X'v(euwd) where a,b, 0, d are pomt_s.
Then any point y in P= (awb)x 8 in X'x 8 and any poi.nt.z in
Q= (aub)V(cwd) in X" have homeomorphic neighborhoods. Slmllar].y
any point y in (X' x 8 — P and any point 2 in X'"—(Q have homeomorphic
neighborhoods.) N

Let X = X vp be the cone over X. Fach point of X can be’ re-
presented as (v, ) with weX and rel. The representation is uwmque
except for p which can be written as (w,1) for any eX.
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