On a problem of Steinhaus
by .
A. Kosinski (Warszawa)

To F.

1. On the plane there is a circle S. Bach pair of antipodal points
of 8 is connected by an arc lying in the domain bounded by 8. These
arcs depend continuously on their ends. Obviously, every two different
ares intersect. Do there exist everywhere three different arcs having
a point in common?

This problem has been raised by H. Steinhaus in 1953. We shall
prove a theorem from which a positive answer follows. In fact, our theo-
rem will be more general:

a. the circle § will be replaced by an #-sphere in the Euclidean
(n -+ 1)-space;

. the ares will be replaced by arbitrary acyelic continua;

¢. continuity will be meant in a less restrictive sense, namely that
of the upper semi-continuity.

Under these assumptions we will prove that there exist again three
continua having a point in common. (Observe that for » > 1 even the
existence of two intersecting arcs is not obvious.)

A closely related question may be formulated as follows: Consider
a mappmg‘]‘ of a 2-dimensional Mobius band M into the 2-cell Q, and
suppose that f maps homeomorphically the boundary of M onto the
boundary & of Q. Do there exist three different points of M which have
a common image under f?

Theorem 2 gives a positive answer to that question, even generalized
to higher dimensions. Let us observe that the positive solution of the
first problem does not imply directly that of the second. In fact, both
theorems are consequences of a lemama.

In section 2 we establish the terminology, in 8 we give the exacht
formulations of both theorems and show how they can be deduced from
the “main lemma’, which is proved in 4. In 5 we give some problems
and remarks; some auxiliary notions from algebraic topology are gath-
ered in 6.
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2. Let X be a compact space and let @: X —~2% be an upper semi-
continuous mapping of X in the space 2% of all non-empty compact
subsets of a (metric, separable) space ¥. The triple ¥ = {X, ¥, &} will
be called a family. The set X will be called the basis of 7, the sets @ (x) —
the elements of F, the set | @(z) C ¥ — the field of F. The field will

be also denoted by P(X). ?I?}}fe family F will be called simple if its ele-
ments are disjoint; it will be said to be acyelic if all its elements are such.
(We use the Cech homology theory with coefficients mod2; a set X is
gaid to be acyclic if it is connected and if Hy(X)= 0 for k=2)

The subset M = [, [y e ®(x)] of the Cartesian product X XY will

be said to be the graph of F— (X, ¥, ®}. The mappings (z,y)->& and
(z,y)—y will be called projections.

It is known that the upper semi-continuity of @ implies that the
graph and the field of & family are compact sets.

Let F;= {X, ¥, ®;}, i=1,2, be two families. We shall call the
family %, a prolongation of the family F, if Dy(z) D Pyfw) for every = e X.

Q™ will always denote the Euclidean unit »-cell, §*" its boundary.
Let g be any involution on §"* (i. e. the mapping ¢: §" " 8" such
that @@(z) =« for every x e 8""). Let P be the space obtained from
"' by identification of pairs (z,¢()) and let : §* ' P be the identi-
fication mapping. Obviously {P, Q" k') is a family: it will be called
the family induced by the involution @. If ¢ is an involution without fixed
points then % is a covering mapping (see [7], p. 67) and P is a manifold.

The family induced by the antipodal involution will be called the
antipodal family. Its basis i3 the projective (n—1)-space P

8. TEEOREM 1. Let F = {P" %, Q", @} be a prolongation of the antipodal
family F,. If F is acyclic then there exist three distinct elements of F having
a point in common.

TeEorEM 2. Let f be a continwous mapping of am n-dimensional
Mibius band M™ into the cell Q" such that f maps the boundary of M™ homeo-
morphically onto the boundary of Q™. Then f is the mapping onto Q" and
at least three distinet points of M™ are mapped imto one point of the cell.

Theorems 1 and 2 are consequences of the following

MarN Lemma. Let @ be an involution without fized poimts on S
and let Fy= {P,Q" k™'} be the family induced by p. Let F = {P,Q", ®}
be a prolongation of F, and le¢ M CR= PxQ", M,CR be the graphs
of F, %, respectively.

Supposethati: Hy (M) —H,— (M) is trivial, where i: M, —M is the in-
clusion mapping. Then every point of Q™ belongs to at least one element of the
family F and there exists a point which belongs to three different elements of F.
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We will denote by §: R—Q", p: R—P the projections; the mappings
¢ M—~Q" ¢ M;~8"", and p: M—P will be defined by g=g|M,
p= ?lMa gy = Q|M1-
We defer the proof of the lemma to 4. Now we shall prove that it
implies theorems 1 and 2. ‘
The main lemma implies theorem 1. Suppose that the families F, Fy
satisfy the conditions of theorem 1. Consider the diagram

Hy (M) 5> Hyoo(M)
e Do

H, ("5 H, (P

where M and M, are graphs of ¥ and F,, and the mappings are as above.
By definition ()< M if and only if 2= (y, —¥), where —y is the antip-
ode of y. Hence kgy(z,y)=k(y) =y, —y) = o= pi(®,¥); which proves
that the diagram is commutative.

Now, since we use the homology theory mod2 we infer that k, is
trivial, whenee so is p,i,. But the inverse-images by p of any point of
P"Y, being elements of F, are acyclie. Thus by the Vietoris mapping
theorem (see [1]) p, is an isomorphism and it follows that 7, is trivial.
Therefore theorem 1 follows from the lemma.

The main lemma implies theorem 2. We recall that the n-dimensional
Mobius band is obtained from the n-dimensional annulus

n
A" i< Zaf"- <1
i=1
n
> #} = 1. Therefore
i=1
M" is a fibre space with the segment as the fibre and P"* as the base
space. We shall identify ™! with the pairs (&, —) of antipodal points
of B (— the boundary of M"). The fibre over (#, —x) will be denoted
by L(z, —=); it contains # and —.
Let f: M™—Q" be the mapping satisfying the conditions of theorem 2.
If o e 8™ there is only one point # ¢ B such that a = f(z). We. define
the involution @ on 8" by g(a)=f(—x) Where a ¢ 8" zeB, f(x)=a.
Let %, be the family induced by ¢. We define elements of a family F
with basis P** by &(z, —a)= f(L(z, —=)). Then F is a prolongation
of . Let M, M, be the graphs of ¥ and F. We shall prove that

(i) 4y Hpo(My)—>Hya(M) is trivial.
Define first g: M"—>M by
g(a) = ((f(@), pf(@)), f(@) for @ el(@,~a).

Fundamenta Mathematicae, T. XLV,

by identification of antipodal points of the sphere
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Obviously, ¢ is a continuous mapping; if ¢ ¢ B and a ¢ L(z, —») we have,
say, @ = @, whence g(a) = ((f(w), of (@), ;f(m)), which proves that g, = g|B
maps B homeomorphically onto M;.

Now let j: B—M" be the inclusion mapping. Of course j,: H,_,(B)
. —>H, (M) is trivial. Therefore so 18 1,01 = GiJs, wWhich proves (i),
sincé g, is an isomorphism.

Sinee (i) is verified, the main lemma applies and it follows that there
is a point in Q™ which belongs to three different elements of 7. The ele-
ments of F being the images by f of fibres of M", it follows that there
exist three different fibres whose images intersect at one point. This is
a little more than was demanded by theorem 2.

4. We proceed now to the proof of the main lemma. We shall sup-
pose that the families &, F satisfy the conditions of the lemma. If ¢ < Q"
the subset 4’ of R defined by

A= F [y=ad]
() eR

will be called an axis through the point a. The main lemma is equivalent
to the statement that there exists an axis which intersects M at three
points at least, and that every axis intersects M. The second statement
will be proved in 4.1. In 4.2 we shall suppose that no axis intersects M
at more than two points and with the aid of this hypothesis we shall
prove that if the axis through a intersects M at two points, there exists
a neighbourhood U of @ such that ¢~ U) consists of two sheets, each
homeomorphically mapped by ¢ onto U. (This is the essential part of
the proof.) Having done this, we easily infer that such a situation is
impossible, i. e. that every axis intersects M at exactly one point, which
corresponds to the statement that ¢ is a homeomorphism. But this will
give at once a contradiction proving the lemma.

4.1. We will prove first that without logs of genera.iity we may
assume that the family F satisfies the following condition

4.1.1. There exists an open mneighbourhood U of 8" ' in Q™ such that
any point of U belongs to only one element of F.

n n
The cell Q" is given by D «f <1. Lot @7 be the cell 3 a? <2. It o is
=1 g==1

a point of §"* (—the boundary of @"), let ' denote the point on the
boundary 83" of QF which lies on the same radius as . Define the in-
volution ¢’ on 877" by ¢'(¢') = (p(x))’. Let F, be the family induced by
o' and M; its graph. Put

&0, ¢'(a)) = B(a) w aa’ U p(a) /().
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This defines a family &’ which ig a prolongation of ¥{. The graph of &'

will be M’. But obviously

(1) di: Hp—o( M7)—~Hp (M) is trivial if and only if 4, Hyy( M) —~H, (M)
is such;

(i) 9" satisfies the assertion of the main lemma if and only if F does so.

This shows that nothing will change if instead of %, %, we consider
the families ¥, Fi. But F' satisties 4.1.1 (with respect to @7, St as U
we take Q7—Q™), so that the proof is complete.

Now we will prove that

4.1.2. The mapping ¢: M,—~S""" is a homeomorphism.

Since M, is compact and gq,(M,) = 8" we have only to prove that
g, ¥) = q(@s,y) =y « & implies @ =a,. But (w;,y)ec M, implies
(@5,9) = ((y, zp(y)),y) (i =1, 2), proving therefore 4.1.2.

Now let a be the fundamental class of A, i. e. the generabor of
Hp (M)

4.1.3. Let M’ be a compact subset of R containing M, and i: M, M
the inclusion mapping. If tua=0 e Hy (M) then J(M') =Q"

Let ¢t M’—>g(M’) be the mapping induced by g, let j: 8"t >g(M)
be the inclusion mapping, let y be the fundamental class of 8"t By 4.1.2
g0 =y and we have

Jo¥ = Juis0 = G040 =0,
which proves 4.1.3.

Now let M, be a compact subset of M, containing M, in which «
bounds irreducibly (see 6.1). We choose M, once and for all; by 4.1.3
we have

4.1.4. Hovery awis intersecis M, at one point at least.

This pfoves in particular the first part of the main lemma. Observe
that it follows also from [2], theorem 1.

4.2. Tn 4.2 a will be such a point of Q" that the axis through o inter-
sects M, at two points b, b,. By 4.1.1 @ is an interior point of @". Let
U,, U, be the open neighbourhoods in B of by, b, respectively. We assume
that U, ~ U, =0 and that each U; is the Cartesian product of two open
cells which will be demoted by Ui=#(U;) CP and Uy= ) Ce™
Let S;= M, Ui, 4=1,2; thus §; is a neighbourhood of b; in M,.
‘We shall prove that

4.21. a belongs to the interior of at least ome of the sets q(S1), ¢(8s).

First, remark that there exists a neighbourhood V; of a which is an
open cell, satisfies ¥ C Uy and '

(1) (Fr(U)X Vi)~ My=0.
4*
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For if (i) were untrue for every sufficiently small neighbourhood of g,
we should have (Fr( Ui x a) ~ M, =0, which implies that 4 intersects M,
at other points than b, and b,.

Suppose now that a e Fr(g(8y)) ~ Fr(g(S,)). It follows that there
exist points a;, i =1, 2, such that a; ¢ V; and if 4; is the axis through e,
(i) AnUinMy=0.

Let 7;: Vi—a;—>Fr(V;) be a retraction and define r: M,—E by

it (2,9)eUixVs,
otherwise .

r(@,y) =

By (i) r is well-defined on the whole M,; obviously
(iif) » is an identity on M,
and
(iv) g(r(M,)) does not contain the point a.
We will prove that )
(v) r is continuous on M,.
For assume that (z,¥) eFr(Uix V)~ M,. This implies by (i)
(#,9) € (Usx Fr(Vy)) ~ M, but on U; ~ Fr(V;) both definitions of r agree.
Now (ili) and (v) imply that <,: Hn_l(Ml)——>Hn_1(r(M o)) ig trivial,
therefore 4.1.3 apply and yield a contradiction of (iv). This proves 4.2.1.
We will assume henceforth that :

4.2.2. Every axis intersects M, at two poinis at most.

(Remark that this is a negation of a statement a little stronger than
that demanded by the main lemma. In fact, the main lemma is equiv-
alent to the statement that there exists an axis intersecting M at three
points at least. We will prove this for the intersection with M, which
is a subset of M.)

Since we have proved that a belongs to the interior of at least one

1(;)1f1 the sets ¢(8,), ¢(8;) we may assume that a e Int(g(S;)). We will show
at .

4.2.3. Mapping q considered on o sufficiently small neighbourhood
of py in M, is o homeomorphism.

Let U be an open neighbourhood of p, in M, such that ¢(U)
CInt(g(8;)). We shall prove that U has the desired property. Since each
?»xis that intersects U intersects also S,, it follows from 4.2.2 that it
mte£§§cts U exactly at one point. Therefore the mapping ¢ considered
on U is a 1-1 continuous mapping of U onto ¢(T). Since U i3 compact
it is a homeomorphism, therefore it is a homeomorphism also on U.
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With the aid of 4.2.3 we may strenghten 4.2.1. Namely:

4.9.4. a belongs to the interior of both sets q(Sy), ¢(8,).

By 6.2 if V is a sufficiently small neighbourhood of p, in M,, then
there exists an element § of H,_,(Fr(V)) which bounds irreducibly in V.
Thus, by 4.2.3, a certain element of Hn_l(q (Fr (V))) bounds irreducibly
in g(V) and ¢(V) is a neighbourhood of & in ¢(8,) (if ¥ was chosen suf-
ficiently small, which is what we suppose). But it is known (e. g. [5],
p. 117) that this implies that @ is an interior point of g(V), whence also
of g(8,). )

By 4.2.4 the points p;, p, in the proof of 4.2.3 may be interchanged
and we obtain the following result

4.2.5. If 8; s a sufficiently small netghbourhood of p; in My, 1=1,2,
then the mapping ¢ considered on 8; is a homeomorphism.

4.3. Tn 4.2 we have established some local properties of the map-
ping ¢ considered on M,. Now we shall prove that

4.3.1. The mapping ¢ maps homeomorphically M, onto Q".

The fact that ¢ maps M, onto Q™ was proved in 4.1.3. Since M, is
compact we have only to prove that ¢ is 1-1. Suppose to the confrary
that there exists a point a ¢ @™ such that the axis through a intersects M,
at two different points by, b,. Let ¥ be an open cell, neighbourhood of &
in Q" (we recall that by 4.1.1 ae Tnt(Q™) which is so small that ¢=X(V)
= U, v U, where U,, U, are two disjoint open cells, mapped by ¢ hon.leo-
morphically onto U and disjoint also from M;. By 4.2.3 such a mneigh-
pourhood V does exist. Write U= U, v U,. Observe that g(0)=7,
Fr(q(U)) =4 (Fr(U)), and that q(Mo—U? =Q"—V. Let F=Fr(U).
This leads to the following commutative diagram

% ’ Iu
H, (M)~ H,(M—U)« Hypy(F)
Ve ‘ 1

. Ja
Hy (Y5 B i(Q—V) & Hya(B2(V)

where the horizontal homomorphisms are induced by inclusions and the
vertical homomorphisms are induced by the mappings induced by the
mapping ¢. .
P%yg6q.2 there exists a class p e Hoo(F) w_hioh bounds irreduexb.ly
on T. Since we use coefficients mod2 and since T is the sum of two dis-
joint n-cells, we easily infer that g is the sum of fundamental classes By
and 8, of Fr(U,) and Fr(Us) respectively. Since Fr(U,) and Fr(U,) are
homeomorphically mapped by ¢ onto Fr(V) we have

() Gy =qub+Gih=0.
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Now let o« be the fundamental class of M, and y that of 8", We
have by 4.1.2

(i) Qs =7
Again by 6.2 we have

(i) ia—f,f=0.
The relations (i)-(iii) give, by the use of commutativity relations,
0= q(,0—]iB) = tufrua—JugiB = tay -
But this is impossible, since the fundamental class » of &* " does not

bound in a true compact subset @"—V of Q". This proves 4.3.1.
The final step before arriving at a contradiction will be the following:

4.3.2. The identification mapping k: 8" —P"* is homotopic to a con-
stant mapping.

By 4.3.1 the mapping pg~*: @"—~P" " is well-defined and continuous.
Let 2 ¢ 8" . Then

pg(z) = p((@, p(2), 2) = (&, 9(a)) = k(2),

which proves that pg~" is an extension over Q" of the mapping k.-

Now, since involution ¢ has no fixed points, the identification map- -

ping k: 8" —P" ™ is a covering mapping, and we may apply the covering
homotopy theorem to the identity mapping i: §"'—=8"* and we infer
from 4.3.2 that ¢ may be extended over @". This being false, the assump-
tion 4.2.2 must also be false, which proves the main lemma.

5.5.1. Let ¥ = {X, ¥, #} be a family. We will say that the point
. aeX is of order N (N being any cardinal), ordza = N, if ¢ belongs to
exactly N different elements of ¥. Let N(F) = naxorde(a).

aey

Now let F= {P"™, Q" &'} be the antipodal family. Let N (n)
= minN (¥) where min is taken with respect to all acyclic prolonga-
tions of %;. Theorem 1 shows that

511 N(n)>3.

Consider now the family %, as “imbedded” in B"; more exactly,
let 8" be as usual the unit sphere in E"; we will consider the family
Fo={P"", B", K"} where k: §"'->P"' is the identification mapping.
Let No(n) = minN(F), where min is taken with respect to all acyclic
prolongations F of F,. We will show that '

B.1.2. Nyn)>2.

Let F be any acyclic prolongation of %, and suppose that the field
of F is contained in the interior of the cell QF: D'} < 2. On the boundary
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of that cell we consider the family &{ induced py ’?he antipodal 111:011;11-J
tion. By & construction analogous to that ‘apphed in 4.1.-1 we eons ruf:u
the prolongation 7’ of Fi: the prf)lf)ngatlon of‘the pair (a, —ha,) me
consist of two straight segments joining @y =@ with points on the sam
radius but on §*%, and of the corresponding el.ement of F. N

In general the family Fy will not' be acyelic, b1.113 the p;ll‘ %‘, 7
will satisfy the conditions of the main lemma prow@ed ¥, 21; s: 1; y
them. Hence there exists a point a of order three with respect to F'.
e ordga)+1 i a<@i—Q",

ordgs(a) = orde:(a) it aeQ",

this completes the proof.

5.2. Consider now the question of the exact value_of N(n) and Nyn).
Obviolus'ly to prove that N (n) < k it suffices to give an example of
! prolongaition of ¥, in which no more than % elements intersect at one
point. The following shows that

521. N(2)=3. .

In view of 5.1.1 we have only to construct an example ‘of a fannl;;
in the plane such that no more than three of its elements @tersectt‘a
one point. Let § be given by o +a%=1. Let (a,—a) be the pair of a.n>11(;-
odal points of 8, and assume that writing @ = («,, %) we have 2, =0.

Then we define

Dla, —a) = (®; D) (— 5 Ta) (—@y, %) (—%1, — @)

(see fig. 1).

//

Xy

//

Fig. 1
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It is easy to see that no more than three different @’s intersect at
one point. Thig proves 5.2.1.
In case n =2 we also know the exact value of Ny(n). Namely

B.2.2. Ny2)=2.
Tor let § and (e, —a) be as in 5.2.1. We define

D(a, —a)=(2:, %) {—1, ) UAIC((“lf @), .(_‘1; “mz)) (=1, —2,) (—my, —~

where Arc(e,b) is that one of the arcs in which the pair (a,d) divia
the circle with centre in 0, which intersects x,-axis in the negative part
(fig. 2). Obviously no more than two different @’s intersect, which
proves 5.2.2. .

The generalization of the above examples to higher dimensions is
possible, but gives only N (n) <2n—1 and Nyn) < 2n—2. The question
of the exact value of IV (n) and Ny(n) for n > 2 is thus open. (It seems
posgible that Ny(n) = N(n)—1.)

5.3. Questions analogous to those from 5.1 and 5.2 may be asked
in connection with theorem 2. Observe that since the Mobius band cannot
be imbedded in the Euclidean space, the inequality analogous to 5.1.2
is trivial.

In theorem 2 we have supposed that the mapping f maps the bound-
ary B of the Mcbius band homeomorphically onto 8" % If we suppose
only that f induces an arbitrary mapping B—8"* the theorem is no
longer true, as may be shown by easy examples. But it seems that theo-
rem 2 i3 still true if we suppose only that B—S"" has the degree 1.

5.4. In the example of 5.2.1 all points of Q" were of finite order,
but the set of points of order >3 was infinite. The family of diameters
of a circle give an example of a family where only one point of the field
is of the order >3, but in that case it is of infinite order. These facts
are not accidental, as is shown by the following theorem:

5.4.1. Let F be an acyclic prolongation of the antipodal family F, and
suppose that all points of Q" are of finite order with respect to F. Then
the set of points which are of order >3 is infinite, moreover, dimension of
s closure is not smaller than n—1.

(It seems that, in fact, it always contains interior points, i.e. is
of dimension ).

5.4.1 is a strengthening of theorem 1. A corresponding strengthening
of theorem 2 is also true. The proof of both may be obtained by small
changes in the proof of the main lemma. We will outline them.

Instead of 4.2.2 we suppose that every axis intersects M at a finite
number of points and that there exists a subset 4 — 4 C Q™ such that
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dimA <n—2 and for every a ¢Q"—A the axis through a intersects M,
at two points at most. This will be the “new version” of 4.2.2.

In 4.2.3-4.2.5 no change is needed. The argument given to prove 4.3.1
remains valid but only for points of @"—A. Suppose now that a point
a e A and that the axis through e intersects M, at two points at least,
say b, b

We prove first that there are two sequences {b"} and {45’} such that
B™ e Mo, Umdy = b; and of = q(b7") e @"—A. It may easily be shown,
using 6.2, that dim, M,=n for every p e M,. Then let {UT}, {U3} be
two sequences of neighbourhoods in M, of by, b, respectively, such that
s[UT]—0. By the remark above and by the Hurewicz theorem ([4], p. 91)
we have

dim ¢(TU7) = dim U7 =n,

whence g(UT)—A # 0. Then choose a;"e ¢(U7")—A4 and let by be any
point of the intersection of the axis through a7® with U7, Obviously the
sequences (b7} (i =1, 2) satisfy the conditions imposed.

Now since dimA < n—2 and Hmal = ¢ =lima;", there exists a se-
quence of arcs L™ C Q"—4 such that o, ay e L™ and 6[L™]—0. But the
mapping ¢ is 1-1 on g7'(¢"—A4); therefore the arcs L™ may be “lifted”,
i.e. there exist ares N™C M, such that g(N™) = L™ It is easy to see
that 8" e N™ for ¢=1,2%nd m=1, 2, 3, ... Now the sequence N™ con-
tains a convergent subsequence, its limit N is then contained in M?’
contains b, and b,, is connected and ¢(¥) =a. But this implies that & Is
contained in the axis through a; therefore the intersection of this axis
with M, is infinite, which contradicts the “new version” of 4.2.2 and
completes the proof of 4.3.1 in the “old version”. _ )

Having 4.3.1 we prove 4.3.2 as before, the contmdictiog which
follows proves that the “new version’ of 4.2.2 is false, i. e. that if every
axis intersects M, at a finite number of points, the closure of the set
of points through which pass the axes intersecting M, at more. than
two points is of dimension ab least n—1. This is the generahza,tlon. of
the main lemma which is needed to prove 5.4.1 and the corresponding
generalization of theorem. 2.

5.5. Let us remark that while in the main lemma the prolongati_ons
of an arbitrary family induced by an involution ﬁthout fixed Pom‘os
are considered, theorem 1 relates only to prolongations of the ant'lpodavl
family. Nevertheless it is true also in the general case, as shown in [6].

6. We recall in a form suitable for our purposes some notions from
algebraical topology. The homology theory is that of Cech. For further

details see [3].
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Let (X, M) be a compact pair. Let ae Hy(M). We will say that q
bounds in X if 4,0 = 0 e Hy(X), where ¢: M —X is the inclusion mapping.
We will say that o bounds irreducibly in X if « bounds in X and for every
compact set M’ such that M C M’ C X if o bounds in M’ then M’ = X,

6.1. If o bounds in X there exists a compact space M’ C X in which o
bounds irreducibly.

The continuity of the Uech theory implies that the Brouwer reduc-
tion theorem (see [4], p.161 and [3], Chap. X) may be applied. This
proves 6.1,

6.2. Suppose that o € Hy-(M) bounds irreducibly in X. Let U be an
open subset of X disjoint with M and let F = Fr(U). Then there emists an
element B e Hy_o(F) which bounds irreducibly in U and for which My — My
= 0 ¢ Hyo(X—T), where my, m, are homomorphisms induced by inclusions
M—~X—-U and F>X—U respectively.

Consider the following diagram

H(X, M)5 H X, X-0) & 5y T, 7)

oo e ot
Hy (M) —> Hypy(X—U) <—Hy_4(F)
\ll la/ I3
N

Hyo((X—T) 0 7)< B, _y(7)

where V is a subset of U such that VD F, the homomorphisms 9, .

1=1,2,3, are boundary operators and all other homomorphisms are
induced by inclusions.

The diagram is obviously commutative. Observe that ky, being
induced by a relative homeomorphism, is an isomorphism ([3], p. 266).

Let a e Hy (M) If ¢ bounds in X then there exists & e Hy(X, M)
such that 9;& = a. Define f ¢ H, 4(F) by

B=0sks Ty £

We say that g satisfies 6.2.

Observe first that, by commutativity, we have

M@ —Moff = M9 & —mydkey ey £ = 0 .

Suppose now that A bounds in V, i.e. = 0. Then
ho=lmia=1lmf=118=0 cHys(X—U) o 7).

icm

Since a bounds irreducibly it follows that (X-U)u 7= X, which im- i

plies T = V. This completes the proof.
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