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or-lattices and constructive logic with strong negation®
by

H. Rasiowa (Warszawa)

The subject of this paper is the algebraic method of the examination
of the system o of the constructive propositional caleulus with strong
negation (cf. Nelson [3], Markov [2], Vorob'ev [5], [6]).

The system o determines a type of abstract algebras which will
be called O7-lattices. They are some kind of distributive lattices. The
purpose of this paper is to give a topological representation of 9C-lattices.
For this aim we shall apply & method similar to that of Stone [4].

Some applications of this theorem will be given in a separate paper.

This paper contains also at the end of § 3 some remarks of A. Bia-
ynicki-Birula, which simplify the formulation of the representation’s
theorem for ¥ -lattices. :

§ 1. A constructive propositional ecalculus with strong
negation. The system o of the constructive propositional calculus with
strong negation can be briefly described as follows (see Vorob'ev [5]).

The symbols of the system o consist of infinitely many propositional
variables p;, P,, ... of the constants and the parentheses. There are the
following constants: the disjunction gign -+, the conjunction gign -, the
sign of strong negation ~, the implication sign —, and the sign of in-
tuitionistic negation .

The clags of formulas is the smallest class of expressions of this
system, which containg all the variables and satisfies the following con-
ditions:

(i) if a is a formula, then so are (~a) and (TTa);

(i) if o and § arve arbitrary formulas, then so are (a+ B (a- B),
(a—p).

We introduce for convenience the following abbreviations:

(aesp)  for  ((a—p) (B—a)),
(@a=p) for ((acf)(~d)e=(~p))

* The results of this paper were announced at the Colloquium “Construetivity
in Mathematics™, Amsterdam, August 26-August 31, 1957.
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A formula is called an axiom if it iz of one of the following kinds
(where a, 8, y are arbitrary formulas):

Al (a—a—(ﬁ—>a)) ,

A2 ((a>(B=p) > ((a>p)~>(a=>p))),
A3 ((a-p)—d),
AL ((af)—),
T O (e e (e CF /3))))
A6 (a—(a+p),

{
AT (p>(atp),
A8 (a—>y)—>((ﬁ—>y)—>((a+ﬂ)—>y))) )

49 ((a=(718) > (p-+(Ta))

A10 (M) a~>ﬂ)), -
All ((Na a—>ﬁ))

A12 ((~(a—>B) o (a- (~B))

A13 ((~(a- ) (~a)+ ~ﬁ ) -

ALt ((~(a+B) o ((~a)- (~B))),

A15 ((N(_la)) )

416 ([~(a) ora).

All the formulas of the form Al-A10, where a, 8, y contain no sign
of strong negation, constitute the system of axioms for the intuitionistic
propositional caleulus.

A formula a is said to be provable if « belongs to the smallest set
of formulas which includes all the axioms and is closed under the
operation of detachment. We shall then write |- a.

It is known (ef. Vorob’ev [5]) that the provability of a formula
(a«> B) does mnot generally imply the provability of the formula
(~a)e (~pB)) .

It is also known or very simple to demonstrate that the following
formulas are provable (a, 8,y being arbitrary formulas):

PL (o) = (a~(~a)),
P2 ((a=p)~>(y(0) = 7)),

where y(a) is an arbitrary formula containing a formula « as its part
and y(f) is obtained from y(a) by replacing a part a by B.

P18
P19

(a (~a) )
(o= ﬁ—>5) )»(1(1) (A12, P18, P4, P9, P10, A1, P11),

P20
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P3 (a—~a),
P4 ((a>B)~ (B—»)—>(a—>p)),
P5  {(a=>(B=>y) > ((a-B)->v)),
P6  ({a>(B—p) = (B~+(a>p)),
PT (e (B+9) e ((a B)+(a p),
P8 ({a+(B-9) (et (a+),
P9 ((a—>/3 (1A —~(Ta),
P10 ( a-(TJa) )
P11 ((a=>(T18)= (=B ~(T1a),
P12 ((T1o)+B)~(a—H)|,
P13 ((a+A)—~((T1a)~4),
P14 (a+ﬁ <a»y> (B+2))
P15 ((~( ),
P16 ((~(a+:3) ((~a)-(~p)),
P17 ( 5—>ﬁ))))—>(~(—1a))) (A12, A3, A15, P4),
(

(1)) = [~ _>(~(,3_>,3))))) (A12, P15, P2, P5, P3, A15, P4),

P21 ((a+p)—>((~B)—> (N(—ia))‘)) (A15, A1, P6, All, P6, A8),

P22 ~BAy) )_>(~(a—>y))))

((a+m~((
A12, P5, Al, P86, P5, P16, P2, Al1, P6, Al, P6, P5, P16, P2, A8),

(
P23 (((B- 0)>(T1a))~> (ﬁ—>(“|a))).

§ 2. Algebraical characterization of the system dJ. In this
section we shall use the familiar notion of & matrix. The matrices con-
sidered are abstract algebras M= (4,e, +, -, ~, —, 71>, where 4 is
the set of elements of M, e is a distinguished element of 4, +, -, -
are binary operations defined over A4, and ~, ~| are unary operations
defined over A.

The matrix Pt = ¢4,e, +, -, ~, —, 1> is said to be regular if it
satisfies the following conditions:

(i) if e—>o =e, then o =¢ for every v ed,
(i) if a—>b=e, b>a=¢e, ~a—+~b=¢and ~b->~a=¢, then a=">.
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Given a formula a of J, we can interpret it as a polynomial ag
of 2 matrix M= <4, e, +, -, ~, —, T1) by conceiving the propositional
variables oceuring in « as variables running over the set 4, and the
logical operations as the respective algebraical operations in M.

A formula o is said to be satisfied by a matrix M if am = ¢ identic-
ally. A regular matrix I is called a matriz of the system o if it satisties
all the axioms of this system. A regular matrix I is called a charadteristic
matriz of J, if for every formula a of § the provability of a is equivalent
to the satisfiability of « in 9.

It is easy to see that

2.1. If a is provable, then o 4s satisfied in every regular matriz M
of the system d.

We shall say that an abstract algebra {4, +, -, ~> is a quasi-
-Boolean algebra (cf. Biatynicki and Rasiowa [1]) when:

(@) <4, 4+, > is a distributive lattice with the zero element 0
and the unit element e,

(b) ~ is a unary operation which satisfies the following conditions

~~a=a, ~(a+b)=~a ~b forany a,bed.

The operation ~ is called the operation of quasi-complement. In any quasi-
Boolean algebra
~(a-b) = ~a+~Db and ~e6=0.

for any a,bed, ~0=c¢

2.2. If M=<A,e, +, -, ~, ~, 71> 8 a regular matiis of the sys-
tem o, then the following conditions are satisfied:

O]

the set A is quasi-ordered by the relation < defined as follows
a<3b if and only if a—~b=c¢e for any a,b e d;
2)

the abstract algebra {4, +, -, ~> is a quasi-Boolean algebra with
the unit element e; moreover, the relation C defined by the equivalence

aCh if and only if @ 2b and ~b<3~a for any a,bec A,

18 the partly ordering relation of this lattice;

) a=3¢ and b <3¢ imply a+b 3c;
) ¢3a and ¢<3b imply ¢ 2 a-b;
) ~(ab) 2 (a-~b);

) (@ ~D) 2 ~(a—Db);

) a=~Tla;

) ~Ta=<a;

icm
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9) a-~a=30b;
(10) a=b->c ¢f and only if a-b =< c;
(11) Ta = ¢~>~¢6.

The conditions (3)-(11) hold for arbitrary elements a,b,c of A.

To prove this theorem, let us suppose that M=<(4, e, +, -, ~, =, 71>
ig a regnlar matrix of the system d.

On account of P3 (§1) and the definition of the regular matrix of
the system o, we have a—~a=é for every a ¢ A. Hence < is a reflexive
relation. Let us suppose that a3b and b < ¢. Hence a—>b=¢ and b—>e=e.
By P4 (a—>b)— ((d—0)~(a~¢)) = e. Consequently, by (i) a—-c = ¢. Then
the relation = is a transitive one. Thus (1) holds.

The conditions (3), {4}, (8), (8), (7), (8), (9), (10) follow immediately
from A8, AB, A12, A3, A4, A15, P18, P5 and the definition of the regular
matrix of the system .

Obviously the conditions (1), (3), (4) and A6, A7, A3, A4 imply that
if a<b and ¢<d, then a+¢3b+d and a-¢<3b-d for any a,bye,ded.

On account of (1) we easily infer that the relation C is reflexive and
transitive. By (ii) it is antisymmetric. Hence the set A is partly ordered
by the relation C.

It easily follows from Al6 that

(12) 4= ~m~a for every aeA.
Moreover,
(13) aCbh if and only if ~bC ~a.
In fact, this follows immediately from the definition of the relation C
and (12).
‘We shall prove that
(14) ~(a-b) = ~at+~b for any a,bed.

Indeed, by Al3 and A3, A4

~(a-byS~a+~b and ~-F~b <2 ~(a-b).
Using Al4 and (12) we obtain
~(~at~ob) R ~ve~(e-b)  and ~mo(@ - B) =2~~~ ~b).

In consequence, we obtain (14).
Tt follows immediately from (12) and (14) that

(15) N(a+b)= ~ e ~D

Now we shall prove that a-b is the meet of a and b, the relation C
being partly ordering.

Fundamenta Mathematicae, T. XLVIL 5
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By A3 and A4 we obtain a-b<a and a¢-b<b. On the other hand,
using A6, A7, and (14) we infer that ~a<3~(a-b) and ~b=3~(a-b).
Consequently
(16) a-bCa and a-5Ch,

It remains to prove that if ¢ C ¢ and ¢ Cb, then ¢ Ca- b. Indeed, on ac-
count of (4) we have ¢<a-b. On the other hand ~a <3 ~¢ and ~b—<~e
implies by (3) that ~a-+~b-<~¢. Hence by (14) ~(a-b) <= ~¢ and
consequently ¢Ca-d.

Now we shall show that ¢ +b is the join of the elements a and b.
- By A6 and A7 a<a-+b and b a+b. Moreover, using A3, A4 and (15)
we infer that ~(a+b)<~a and ~(a+b)<3~b. Consequently

amn aCa+b and bCa-+b.

Suppose aCec and dbCe. By (3) a-+b-<2e. It follows from (4) that
~¢-<~a-~b. Hence by (15) ~¢<~(a+b). Thus if aCc and bCe,

then a+bCe. In consequence <4, +,-> is a lattice, the relation C

being the partly ordering one of this lattice.

We shall show that e is the unit element of this lattice. On aceount
of Al we have e¢—(a—e)= ¢ for every ac.d. Hence a <e. By P18
b-~b < ~a for any a, b ¢ A. Hence, by (1) and (5) ~(b—b) < ~a. Since
b—b = ¢, we obtain ~e=<~a. Thus aCe¢ for every a e 4.

Since for every a ¢ 4, ~a Ce, we infer by (13) and (12) that ~eCa
for every o eA Hence the element 0 = ~¢ is the zero element of the
lattice (4, . :

Now we shall prove that the lattice <4, +, -5 is a distributive one:
For this purpose it suffices to show that

a-(b+e)=a-b+a-o for any a,b,ced
Tt follows from P7, P8, A3, A4 that

18
19

) a-(b+e)<a-b+a-c,
) a-bta-c3a-(b4c),
0) o+b-¢c2(a+b) (ata),
21) (a+b)-(a+¢)<a+b.c.

(
(
(2
(

On the other hand, by (15), ( (14) we obtain

~(a-b+a:0) S (~a+~b)- (~a+~0) .
Hence by (21) and (1)

~(@-bta-c) < ~at~b.~c.
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Then by (15),(14)

~(ab+a-c)=2~(a (b+e)).
Hence, by (18) we obtain
(22) ‘ a-(b+e)Ca-b+a c.
It follows from (14) and (15) that

~{a-(b+o)) = ~a+(~b-~c).
Using (20) we obtain

~ (@ (b +0)) 2 (~a+~b) (~a+r~0).

Hence by (14) and (15) ‘

~(a-(b+¢) < ~(a-b+a-o).
In consequence by (19)> we infer that
(23) | | a-b+a-cCa-(b+¢).

It follows from (22) and (23) that a-(b+c)= a-b+a-c. This completes
the proof of (2).

It remains to show (11). .

On account of A10, P3, (2) and P17 we have

“la 2a—0 and ~(af>0) < ~Ta.

Hence ‘*|.qu a—0. On the other band by P19, P20 and (2) we obtain
6—>0-<"a and ~_]d—<~(a,—>0)‘

Hence a—0C 7o and consequently a—0= "]a.

2.8. If the conditions (1)-(11) of the theorem 2.2 hold for a matriz
M=<d,e, +, ,—=, 1 then it is a regular matriz of the system d.

Let us suppose that the conditions (1)-(11) arve satisfied for .
Pirst of all we shall show that I is a regular matrix. To prove (i) sup-
pose that for an element z of 4, e~z = e. Sinee ¢ is the unit element
of the lattice <4, +, > we have for every we 4, aCe. Consequently
4 C e—-p. Thus a2 e—z and ~(e—z) 2 ~a. Hence, by (10) a-e <2 and
by (6) e ~ax~3~a. In consequence ¢C . Thus (i) is fu]ﬁlle.d The eon-
dition (i) follows immediately from (1) and (2). Hence N is a regular
matrix.

Now we shall prove that every axiom of < is satistied in M.
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In fact the axioms A3 and A4 are satistied since a-b C @ and a. bCh
for any a,b e 4, and consequently

(%) ' " a-b=a and a-b=3b.

On account of (10) we obtain ¢ < b—a. Hence the axiom Al is satisfied.
It follows from (x) and (4) that

e3¢ and b= d imply that a-b 3¢ -d.
The reflexivity of the relation < and (10) imply that
(%) a-(a—~b) b for any a,bed.
It is easy to see that on account of (), (sx) and (4)
a-(a—b)- (a~(b~>0)) < 0.

Hence using (10) we obtain (a—(b—>¢)) < {(a~>b)>(a—c)). Thus the
axiom A2 is satisfied. ’

It easily follows from (), (#+) and (4) that ¢-(¢—a): (c—~b) < a-b.
Using (10) we infer that (¢—a) 3 ((¢—>b)—>(¢c—>a- b)}. Hence the axiom A5
is satisfied.

Obviously aCa+b and bCa+b fof any a,bed. Consequently
a3a+b and b3 ¢+b. Thus the axioms A6 and A7 are satisfied.

It is easy to show making use of (xx), (10) amd (3) that
a+b=2 ((a—>c)—>((b—>a)—>a)). Hence by (10) (a—>¢) ={(b—0)~>(a+b—0)).
Thus the axiom A8 is satisfied.

‘We easily prove using (sx) and (x) that a- bv(a—>(b—>0)) - 0. Hence
by (10) b-(a—(b—0)) < a~0. By (11) we obtain b- (a—~"1b)-< a. Hence
using (10) we have (a—"1b)-2 (b—+"1a). Consequently the axiom A9 is
satisfied. .
It follows from (xx) that - (a—0);<b for any a,be A. Hence by (11)
and (10) 7J¢ < e—>b. Thus the axiom A10 is satisfied. Using (9) and (10)
we infer that the axiom A1l iy satisfied. From (5) and (6) we find that
the axiom A12 is satisfied. By (2) we infer that the axioms Al3, Al4
and A16 are satisfied. Using (7) and (8) we infer that the axiom A15
is satisfied. This completes the proof of 2.3.

‘We shall prove that

2.4. The following conditions are fulfilled in every regular matrie
Me=CA, 6, 4, -y ~, =, 7> of the system J:
(a) ~aC7a,
) 6 ~e=aa,
() Ta+bCa—b,
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(@ ~a+bCa—b,

(e) if a-b=0 then a C~b,

) if a-+b=e then 1aCh,

(g) if a+c=ethen a—>bCc+b,
(h) TTe=a—>~a.

Obviously (h) follows from P1. It follows from A1 and (h) that ~a-<a.
By (8) and (12) we have ~7ja-3~~a. Hence (a) holds. On account
of (a) we obtain a-~aCa-"Ja. On the other hand a-JaCa. By A10
and (10) we have ¢ TJa < ~a. From (1), (7), (17) and (12) we obtain
~rm02 ~(a- "]a). Hence a- 716 C ~a. Consequently (b) holds. It follows
from P12 that “ja+b<a—>b. By (5) ~(a->b)<a-~b. Making use
of (7), and (15) we obtain ~(a—b)<3~(Tla4-b). Hence (¢) holds. The
condition (d) follows from (a) and (¢). To prove (e) let us suppose that
a-b=0. Hence ~a-+~b=c¢ But by (d), ~a+~bCa-—-+~>b. Thus
a3 ~b. Analogously we obtain b <2 ~a, i. 8. ~~b-3~a. Hence aC ~b.
To prove (f) let us suppose that a+b = e. It follows from Al, A10, P6
and (3) that ¢+ < Ja—b. Hence Ta—b = ¢, and consequently "|a<b.
By P21 we obtain a+b-<~b—s~"la. Thus ~b->~Tla=e¢, and
~b=<~"1a. Hence “1a Cb. To prove (g) let us suppose that a+tc=e.
Then by Pl4 a-—>b-3¢-+b and by P22 ~(¢+0b)3 ~(a—b). Hence
a—>bCe-+b. )

The well known method of Lindenbaum enables us to prove very
easily the existence of a characteristic matrix of o. Indeed, given ar-
bitrary formulas e, 8 of < we shall write ¢ ~f provided that Fa=§.
The relation o is a congruence relation in the sense of modern algebra.
In fact this follows from P3, P4 and P2. For every formula o of S let
{a| denote the class of all formulas g of § such that a=p. Let 4, be the
set of all cosets || where a ig arbitrary formula of &. We define in 4,
the algebraical operations -+, -, ~, -, 7] as follows: |a|o|f]=|acf]
if o is one of the binary logical operations of d, and o |a]= [ca| if o is one
of the unary operations of . It follows from Al, A1l and P6 that if o
and p are arkitrary provable formulas then a~p. The element |a] where
a is a provable formula will be denoted by e,. It is easy to verify that

2.5. The matriz W= {4y, 6, +, *» ~, =, 1> 8 a characteristic
matriz of the system .

It is easy to see, by making use of a similar method to that of Godel
for the intuitionmistic sentential calculus (*) that there is no finite char-
acteristic matrix of of. :

(1) See K. Godel, Zum intuitionistiachen Aussagenkalkils, Ak. der Wiss. in- Wien,
Math.-natur, Kl. Anzeiger 69 (1932), p. 65-66.
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§ 8. U-lattices and their representation. We shall say that
an abstract algebra W= <4,e, 4+, -, ~, ~, 71> is a W -lattice when it
fulfils the conditions (1)-(11) (§ 2). On account of 2.2 and 2.3 I7-latticeg
are regular matrices of § and conversely. The aim of this section is tg
give the representation theorem for these lattices.

A class H(¥;) of open subsets of a topological space ¥, is said to
be a Heyting algebra of sets (cf. [1]) provided that it iy closed under the
set-theoretical operations of sum and product as well as under the oper-

ations of pseudocodifference —, and pseudocomplement |, defined ag
follows

(24) XY =Inty((6-X)+Y), TX = Inty(¥, —X) = X, 4,
for any X, Y ¢H(¥X,), where Int, it the operation of interior in the
space X;.

Now let X be a non-empty set and let ¢ be a one-to-one mapping
of ¥ onto X which is an involution, i. e., glg(®)) =@ for every e %.
Setting
(25) ~X=%—g(X) for every XCX

we find that every family of subsets of the set ¥ which is closed under
this operation as well as under the set-theoretical operations of sum
and product is a quasi-Boolean algebra (see [1]). Every quasi-Boolean
algebra of this kind is said to be a quasi-field of sets. Every guasi-Boolean
algebra is isomorphic with a quasi-field of sets (ef. [1]). Moreover

8.1, Bvery quasi-Boolean algebra is isomorphic with a quasi-field B(X)
of open subsets of a bicompact topological To-space X, which contains X.

This remark easily follows from the proof of the theorem on the
representation of quasi-Boolean algebra as quasi-fields of sets using the
method of Stone [4]. In fact, let {4, +, -, ~> be a quasi-Boolean al-
gebra. For every subset 4,C 4, let A, be the set of all elements ~
such that x e 4,. It is easy to see that if q is a 'prime filter then 7 is
& prime ideal. Let X be the set of all prime filters of <4, 4, ., ~>. For
every qe X let ' '
(26) 9(q) =4 -7.

It is easy to see that g is a one-to-one mapping of X onto X. Moreover,
g is an involution of X. For every ae 4 lot

(@1) ha)=F (a e q) -
qex

Bvery - quasi-Boolean algebra being a - distributive lattice, it is well
known that

(28) aChb if and only if h(a) C h(d) for any a,bed,
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i.e., the mapping h is one-to-one. Moreover,
(29) B(a-b) = h(a)-h(b), hla+b)= h(a)+h(b).

We shall consider ¥ as a topological space with the clags B(X) of all
sets ‘h(a,)’ @ ¢ A as the class of neighbourhoods. Then X is a To-space.
- )

We have
(30)  h(~a) = X—g(h(a)) = ~h(a).

Tt follows from (28), (29) and (30) tpafc B(¥) is a quasrfleldtof 1;)(pxe§1
subsets of X and h is the isomorphism of (A,.+, cy o~ vm(quo)G ¢ 1;5
Qince the unit element ee A, ¥ e¢B(X). It remains to shovi " aa (;lass
a bicompact gpace. For this aim let us suppose that there exists

= , wvery finite
(s}, 1 I, of elements of A such that X = 2;71(“‘): but for every

L€

subset I,C I we have X2 h(a). Consequently ez Ya,. Hence we

1ely ely .

is i lity
i ~ 0 ~a,. It follows from this inequa
obtain 0 ~ 2;0 a,. Thus :;sLElI{O

that the filter g* generated by all the elements ~G, Le I *is a Pro;(;fr
filter. Consequently, there exists a prime filter g eong?mlhn(g )c)| . é)hb;x;m; lyg

( i a,)}. g
qeh{~a)= X—g(h(a)) for every cel, .6, g €2 g(

i = ¥, which
a one-to-one mapping of X onto X, we obtain qégg hia,) ; wh
tradicts our hypothesis. _ .
o Let ¥ be a topological space, g — an involution of ¥, and B(X)

of X, with the operation of quagi-comple-

a quasi-field of open subsets of X fulfilling

ment ~ defined by (25). Let X; be & non-empty subset
the following conditions, where X, = g(%y):
@) xlcx}ez;z)xwx, s
({i) if X, Y e B(X) and X T4, then (%,+%:) (X— )% 'iX .
(iii) the family H(X,) of all open subsets relatively X, oﬁ .thes ft;af m sm;.d ; Z
where X < B(X), is a Heyting algebra of sets, t’he ((sze.mezlmz (24;)3
codifference — and of pseudocomplement: 1y being ejz‘n Y ,

(iv) if X, Y e B(X), then there exists Z e B(X) such that

(31) 351‘X—->1%1-Y=%1~Z and (fg—g(xlx))'l‘st:%sZ-
| ' i i is fol-
It is easy to see that the seb 7 is uniquely determined. Indeed this
lows from the condition (ii).
We shall show that B(X)
operations of sum ant product,

is a OC-lattice under the set-theoretical
the operation ~ of quasi-complement
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defined by (25), and the operations - of 9f-codifference and = of
9 -complement: defined as follows:

(32) XY =27 if and only if ¥%,- X%, -Y=%-Z and
(¥a—g(X X)) +% Y = %,-7.
(83) "X =ZX-A (i.e. 1X =27 if and only if 7,(% -X)=%,-2

and X, —g(¥%, - X) = %,-2).

Every 9-lattice of this kind is said to be a 9C-lattice of sets, or, more
precisely, a 9 -lattice of open subsets of X.

It follows from (i) that ¥,-X-~X = A for every X ¢ B(X). Hence
%X (¥—g(X)) = 4. In consequence

(34) X -XCX,-g(X) for every X eB(¥%).
Now we shall prove that for arbitrary X, ¥ ¢ B(¥)
(85) X <Y if and only if X,-XCX%,-Y.

Indeed, let us suppose that X< ¥. By definition of the relation < we
have XY = X. Hence ¥, (X»>Y)=¥X,- X > X,- ¥ = X,. Consequently
¥;- X C X;- Y. Conversely, let us suppose that non X< Y. Thus X ¥+ ¥.
By (i) either X,-(X—>Y)=# X, or X,- (X =Y) % %,. In the first case we
obviously have X,-X ¢ X, - Y. If the second case holds, then X,—g(%,-X) -+
+%,-Y#X%,. Hence g(X,-X) ¥,-Y. Consequently ¥,.-X ¢ ¢(¥,-Y)
=X%,-9(Y). By (34) we obtain X,- X ¢ %, - ¥.

It follows immediately from (35) that the relation < is a quasi-
ordering one. Thus the condition (1) holds.

We shall show that :

~Y¥<3~X if and only if X, XCX, Y.

Indeed, on account of (35), ~¥Y < ~X if and only if %,-(X¥—g(¥))
C X;(X—g(X)). This is equivalent to 9{¥%;-¢(X)) Cg(%, g(X)) and con-
sequently to X,-XC¥,-Y.

It XC Y holds for any X, ¥ ¢ B(X), then ¥,-XC%, Y and %,-X
_C X, Y. Consequently, by (35) and (36), X< Y and ~¥ - ~.X. Conversely,
if X¢¥, then X—Y=4. Hence by (i), ¥ X ¢ %,-¥ or ¥,-X ¢ %Y.
Consequently by (35) and (36) either non X< ¥ or non ~Y¥ - ~X. Since
B(X) is a quasi-field of sets containing ¥ and A, we infer that the con-
dition (2) is also satisfied.

The conditions (3) and (4) follow immediately from (35j.

To prove (5) and (6) consider the equality

(36)

X (X¥—g(X)4+Y)=%—g(% X)+%, ¥,
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which holds for any X, Y ¢ B(X). Hence we obtain
% (~X+Y)=% (X-Y).

Oonsequently we have ~(~X+¥) 2~ (X—¥)and ~(X—¥)2~(~X+¥).
Hence X ~¥ <3 ~(X—-Y) and ~(X->Y)<X. ~¥.

To prove (7) and (8), let us consider the identity X, (¥— g(X)) =X,—
—g(%,-X). Hence X,-~X = X,- "X for every X ¢ B(¥). Consequently,
by (36) ~~X=<~"1X and ~"1X<~~X, which proves (7) and (8).

On account of (i) we have ¥X,- X -~XC X%, Y for any X, ¥ ¢ B(X).
Thus the condition (9) is fulfilled.

The condition (10) follows from (iii). In fact, X <Y —>Z is equivalent

Cto X, X C¥-Y-¥%,-Z. Since by (iii) X,-X, ¥%,-Y, ¥,-Z are elements

of a Heyting algebra of sets it is well known that the conditions given
above is equivalent to the following one: ¥,-X.-¥ C X;-Z, which holds
if and only if X-Y<32Z.

The condition (11) follows immediately from the definition of this
operation in the considered lattice.

We shall prove that every 9{-lattice is isomorphic with a 9(-lattice
of sets. For this purpose we shall use a method similar to that of Stone.
In the sequel let W = (4, ¢, +, -, ~, =, 71> be a 9 -lattice.

A non-empty subset g of A is said to be a special filter of the first
kind (s. £.f. k.) provided that:

(I) ¢ a,beq, then a-begq,
(TI) if aeqg, bed, and a<3Db, then beq.
Moreover, if g4, it is said to be a proper s.f.1. k.

Let @ be an element of A and let non a -2 0. It follows from (1) and (4)
that the set gq(a)= [} (¢ < @) is an example of a proper s.f. f. k. It will

xed

be called the s.f.f. k. generated by a and denoted as above by g(a).

A proper special filter g of the first kind is said to be prime pro-
vided that

(IIX) of a+beq, then either acq or beq.
Obviously every prime s.f.f. k. is a prime filter.

A s.f.f k. is said to be multiplically irreducible if it is not a pro-
duct of two s.f.f k.’s different from it.

A non-empty subset § of A is said to be a special filter of the second
kind (8. f. 8. k.) provided that:

(I*) ¢f a,beq, then a-b € q,
(IT*) if aeq and ~b-3~a, then beq.
Moreover, if qs£A4, then q will be called a proper s.f. 8. k.
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Let a0 be an element of 4. It follows from (1), (2) and (3) that
the set gy(a) = E_{; (~z < ~a)is an example of a _proper s.f, 8. k. Tt will
xe . . B

be called the s.f. 5. k. generated by o and will be denoted as above by
qx(a )

A proper special filter q of the seeonﬁ kind is sa.ld to be prime pro-
vided that it fulfils the condition (III). Olea.lly, every s. £ s k. which is
prime is also a prime filter.

A 5. f 8 k. i3 said to be mulmplwally irreducible pwvxdcd that it-is
not a product of two s.f. 8. k.'s different from it. )

Let q" be a 5. £. £ k. and let o be an element of 4, a5 0. We shall
denote by q' w; gi{a) the smallest s.f. f. k. containing g’ and ql( ).

8.2. The 5.£.£. k. q' Uy qu(a) is the set of all elements wed Fulfilling
the condition: c-a <-% for some ¢eq'.

Let ¢’ be the set of all we A such that ¢- a%a} for some ¢ e q’. Then
@' is'a 8. £.f k. Indeed, if #,y <Q’, then ¢;-a <22 and ¢,-a <y, where
01, e q'. Hence (¢, ¢,)- @ <X -y, where 0,- ¢, € g'. Consequently z-y @'
If Q' and 3y, then ¢- a<x <y for some ceq’. Thus ¥ «Q’. It ié easy
to see, that q' C Q' and q(a) CQ’. We shall show that Q' is the smallest
s. f. fk containing q’ and qy(e). In fact, let us suppose that @, is a s.£.L.k.
containing q and qy(a). If x<Q’, then ¢-a <z for some ¢ eq'. ObVlously
@,6c@,. Hence a-¢ (), and hence ze@,. Thus @' CQ,.

Let q'” be a s.1.5. k. and let ¢ be an element of 4, 4= 0. We shall
denote by q" w,qy(a) the sma,llest s.f. 8. k. containing q'' and gy(a).

3.3, The s.f. 5. k. q "y qg(a) @8 the set of all elements % e A such that
~x3~(c-a) for Some 6eq”.

Let ©” be the set of all elements xed fulfilling the condition
~ =3 ~(c-a) for some ¢eq'’. Then Q" is a s.f. 8. k. In fact, if -y < Q",
then '~z 3~¢+~a and ~y I~ +~a, where ¢, ceq’. By (3)
~ LAl 3~ 0~ et~ a. Hence ~(w-y)—<~((cl-cz)~a), where ¢;-cye .
Thus z-y eQ”. If v @ and ~y < ~x, then ~y <~z -2 ~(¢-a) for
some ceq’”’. Hence ye@'. It is easy to see that ¢ contains ¢ and
qs(a). We shall show that @’ is the smallest s. f. 5. k. with this property.
In fact, let us suppose that @, is a s.f. 5. k. containing g and qa(@). if

weq”, then ~x-3~(c¢-a) for some ¢ e q"'. Obviously ¢-a €@, and thus
@ e@2 Consequently, Q”CQ2

8.4. Every proper 5.1. 1. k. mulmplwally wrreductble is prime.
Let us suppose that q is a proper s.f.f. k. and a-+b e q, but a ¢ g
and b ¢ q. Then obviously a0 and b=£0. Moreover, we ghall show

that g = (q R )) (q 1 ‘h(b))- Indeed, qC (q vy qule )) (q 1 (h(b)) .
@ ey qma) and @ e g u; qub), then by 3.2 there exist ¢, 6, ¢ q, sueh
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that 6,- @< and ¢,-b < x. Hence (¢;- ¢): o+ (6 Co)- b= x. Consequently,
(¢, 6)- (a+Db)=2, where (¢,-6)-(a+b)eq. Thus »eq. In consequence,
q is not multiplically irreducible.

3.5. BEvery proper s.f.s. k. myltiplically irreducible is prime.

Let us suppose that g is a proper s.f.s.k. and a+beq, but a¢q
and beé q. We shall show that q= {a < G @) - (q e q2(8)) . Obviously
a0 and b 0. It is sufficient to show that (q v, qua))-(q ve g:(0) C .
If 2equs; ga) and e qu, q(b), then by 3.3 there exist ¢, ¢ eq
such that ~z <~ (¢, a) and ~x -2 ~(c,-b). Hence by (4) ~z3~(¢- a)-

(g b) = ~ (0 0+ b) = ~{(eF0) - (e +b) - (¢a+8) - (a-+b)), where
(614+6)- (o +b)- (6, +a)-(a-+b) « g. Hence z¢q. Consequently, q is not
multiplically irreducible.

3.6. If 2,y ¢ A and non z=2y, then there exists @ prime s.L.1.k. q such
that w e q and ¥ ¢ q.

Let P be the class of all 5. f. f. k. containing » and not containing y.
The class P is not empty, since q,(z) e P. Obviously P is partly ordered
by the relation of inclusion. Let € CP be an arbitrary chain. Since the
set-theoretical sum of all &. £. . k. belonging to C is also a s. £. f. k. con-
taining # and not containing y, we infer that C has in P an upper bound.
By the lemma of Zorn, there exists in P a maximal element ¢, i. e,
a proper s.f. f.k. g which is contained in no s. f. £. k. belonging to P.
Obviously, q is multiplically irreducible. Hence, by 3.4, it is prime.

8.7. If w,ye A and non ~y < ~u, then there exists a prime s.f. 8.k,
q such-that zeq and ¥y ¢ q.
A similar proof to that of 3.6 making use of 3.5 is omitted.

8.8. Every M -lattice W= <4, ¢e, +, -y ~, = 1 18 isomorphic with
a -lattice of open subsets of a bicompact To-space.

Let X be the set of all prime filters of 2, ¢ the mapping of X onto
X defined by (26) and let for every aec A

=FH@eq).
qeXx
Since <4, +, -, |, ~> is a quasi- -Boolean algebra, we infer that the con-
ditions (28), (29) and (30) are satisfied. Moreover, the set ¥ considered
as a topological space with the class B(¥) of all subsets h{a), ac A as
the class of neighbourhoods is a bicompact T'y-space and B(X) is a quasi-
field of open subsets of ¥ isomorphic with (A, +, -, ~>, the mapping -k
constituting that isomorphism. The elements 7(0) and h{e) are the
zero element and the unit element of: B (%), respectively. .
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Let %, be the set of all prime s. £ £ k.’s and let X, be the set of all
prime s. f. 5. k.’s. We shall show that

(87) g(X) =%,

Tundeed, let us suppose that ¢ is & prime s. £ f. k. Then by (26) ¢(q,)
is a prime filter. Let us suppose that aeg(q) and ~b <~a. Then
aed—T, i.e. ~a¢q. Hence ~b¢q,. Consequently b eg(q,). Thus
g{q) € %;, and we have g(¥,;) C X,. Now let us suppose that g, is a prime
s.f.5. k. Then g(q,) is by (26) a prime filter. If a € ¢(qu) and a<b, i.e.
o2 ~~b, then ae A—T,. Hence ~a¢ q,. Consequently ~b¢ gy,
Thus b e A—T,, i. e b eg(q). We have proved that g(X,)C%,. Thus

X Cg(%y)-
Let us set for every aeAd
(38) ho)=F(aeq) and ha)=F(aecq).
qe¥y qeXy
Obviously, :
(39) hia)=%-h(a) and hya)= X, h(a).
It is easy to see, making use of 3.6 and 3.7, that
(40) hy(a) C y(b) if and only if @ < b
and
(41) hof@) C ho(b) if and only if ~b < ~a.

Now we shall prove that the conditions (i)-(iv) (p. 71) are satisfied
for X; and X,, i e., that B(X) is a 9-lattice of open subsets of X.

Proof of (i). If qeX,, then by (9) a-~a ¢ q for every a e A. Con-
sequently, q¢ h(a)- ~h(a). Hence (i) holds.

Proof of (ii). Let us suppose that h{a)—h(b) #4, @, be A. Thus
h(a) ¢ h(b). Hence, by (28), a ¢ b. Consequently we have either nona b

or non~b-<~a. By (40) and (41) we infer that either h,(a) hy(b) or

@) @ Ba(b). Hence (% +%) - (h(a)—h(b)) # A.
Proof of (iii). Let H(X,) be the class of all sets hy(a) where a e A.
It is eany to see that '

(42) hy(a)+By(b) = hya+b),  Ry(a)- hy(b) = My(a- D).
Now we shall prove that
(43) ha(a—b) = Tnt (%, —y(a)) + (b)) ,
where Int; denotes the operation of interior relatively ¥,. We have

(44) : hy(@—>b) C (%, —hy(a)) + Iun(b) .
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In fact, if qehy(a—b) and q e hy(a), then a-(a—>d)eq. But a-(a->b) <3d.
Hence b e q, and consequently q e iy (b). Thus hy(a—b)- ky(a) C by(b), which
proves (44).

Let us suppose that for some zed

hy(@) C (xl'—hl(a‘)) +hy(b) .

Hence hy(®)- hy(a) C hy(b). By (42) and (40) z- a<b. Thus by (10) 3 a—b.
Using (40) we obtain hy(x) C hy(a—b). Consequently (43) holds. By (24)
we obtain :

(45) hy(a—b) = hy(a) >1 (D) .
It follows from (11) and (43) that

(46) I(716) = Int, (xx“‘h](a)) .

By (24) we obtain

47) (@) = T ha).

It follows from (42), (43) and (46) that H(X,) is a Heyting algebra
of sets, the operations -, and ], being defined by (24). Hence (ii) is
fulfilled.

Proof of (iv). It follows from (39), (45) that

(48) X% h(a—b) = % -h(a)—=%, h(b) for any  h(a),h(b) ¢ B(X).

Moreover, for every a A the following equality holds:

(49) hy( ~a) = Xy —g(l(a)) -

Indeed, q € X,—g(hy(a)) if and only if qgeX; and q¢ g((a)). These con-
ditions are equivalent to the conditions geX, and q¢ g(h(a)), which
holds if and only if q €%, and ~a e q. Thus (49) holds.

Now we shall prove that

(50) %, hla—>b) = (%, —g(%:- h(@))) +%- 2(D).

On account of (39) it is sufficient to show that he(a—b) = (xg—g(hl(a,)))—[—
4+ hy(b). We have q € hy(a—b) if and only if q € X, and a—b e q. It follows
from (6) and (B) that a-»beq if and only if ~(a-~d)eq, and conse-

.quently if and only if either ~a'eq or beq. Thus q € hy(a—b) it and

only if q eho(~a) -+ ho(b). Using (49) we obtain (50). The conditions (i)-(iv)
being satisfied, we infer that B(¥X) is a 9(-lattice of open subsets of X.
Moreover, let us suppose that k(a)—h(b)= h(c). Then by (32)

Tn(@) >y ha(d) = If0),  and (X g(Mn(a))) + afh) = Ba(0) -
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Hence by (48) and (50) we inter that &y(¢) = hy(a—>b) and hy(c) = hy(a—>b).
Making use of.(40) and (41) we infer that ¢= a—b. Thus

(31) (@) 1 (B) = h(a—>b) -
Moreover we find from (11), (51) th‘gfj .
(52) _ ey =1{Ta).

We infer from (28), (29), (51) and (52) that h is an isomorphism of ¥
onto B(¥), which completes the proof of 3.8.

A. Biatynicki-Birula, who read the manuscript of this paper, has
given the following method of the congtruction of *)(-lattices of sefs.

Let X; be a topological space and let H(¥,) be a Heyting algebra
of open subsets of X, constitating the class of neighbourhoods of X%,.
Let 7 be a one-to-one mapping of ¥, onto a set X, suqh that f(z)=x
for each = ¢ X, -X,. We assume also that

(53) o %%C ] (X f(tnt (£, X))
XeH(%y) )
Let us set X = % +/(¥) =% +%, Then the mapping g of X onto X
defined as follows . :
f(m) for every *e Xy,
FHg)  for every zeX,

(b4) - ' g(m):{

is an involution of X.
Let B(¥) be the class of all subsets of X defined as follows: a_subseb
X C X belongs to B(¥) if and only if it fulfils the following conditions:

(55) X % cH(X),
(56) : X -¥%=2%-—9(Y), whae YecH(X),
(57) X %CgX)%.

It is easy to see that B(X) is a ring of subsets of ¥ Thus X can
be considered as a topological space with the class B(X) of neigh-
bourhoods. It is also easy to verify that for cvery X ¢ B(X) the set
~X = X£—g(X) e B(¥X). Consequently B(¥) is a quasi-field of open
subsets of X. v

We shall show that for any X, T e B(¥) the set

%= (% X% Y)+ ((;‘Ez“!}(x:w')) +X,- V) e B(X).

We obviously have, by (53), 7 ¥, <H(X,). Moreover, Z - X,== (X —g(%- X))+

+ (¥, —¢(Y)) where ¥,-X, ¥ e H(X,). Thus Z- X, = X,—¢(%,- ¥ V) where
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% X ¥ cH(X,). Since 2% = Int,((%—% X)+%-7)C (X% X)+
+%-Y and g(Z) X =g(Z %)= g((%—g(¥, - X) + %, Y) = (%% X))+
+%,-9(Y) we infer on account of ¥,- ¥ CX,;-¢(Y) that Z-%,Cg(%)-X,.
Thus Z < B(¥). ’
Now let us suppose that X ¢B(X) and &eX,-X. Thus by (57)
zeg(X) % Hence x¢ X—g(X)= ~X. Consequently '

%1(:%— 2 X~NX. :
XeB(X)

Since the conditions (i), (i), (iii) and (iv) (p. 71) are satisfied, we infer
that B(X) is a 9(-lattice of sets. o .

A. Bialynicki-Birnla has also remarked that every 9{-lattice is
isomorphic to a 9-lattice of sets of this kind. Indeed, this statement
follows immediately from the proof of 3.8 and from the following
theorem

8.9. Every prime filter q of a -lattice is either a prime filier of the
first kind or a prime filter of the second Find.

To prove 3.9 we shall show that for every prime filter q either q Dg(q)
or g{q) D g. In fact, let us suppose that non ¢g(q) D q. Hence there exists
an a such that a e q and a ¢ g{q). It follows from aég(q) that ~a e q.
Thus a-~a e q. We shall show that g2 g(q). Let us suppose that b eg(q).
It is easy to see that ~b ¢ q. But it follows from P18, A14 and Al16 that
in every (-lattice for any its elements a, b holds

a-~aCh+n~b.

Consequently, b +~5 ¢ q. Since g is a prime filter and ~b ¢ q we infer
that b e q.

Now we shall demonstrate that if g g(g) then g is a prime filter
of the second kind. Indeed, if q 2 g¢(g), then for any element a either
aeq or ~aeq. For, if a¢é g we obtain ~a eg(q) and consequently
~a ¢q. Suppose now that aeq, ~b<~0 and b¢ q. Hence ~beq and
in consequence a&-~beq. Since ~b-<~a we obtain 4-~b-<a-~a-=3d.
On the other hand we obtain ~b < ~a-+b= ~(a-~b). Hence a-~>bCbh.
Thus b € q, which contradicts our assumption. Consequently, q is a prime
filter of the second kind. Now let us suppose that g(q)Dq, acq, a3b
but b ¢ q. Bence ~b € g(q). On the other hand a € g(q). Thus a- ~b € g(q).
Sinece -2 b, we infer that a.~b-<b.~b and hence a-~b - ~a. We find
also that a2 ~a-+b= ~(a-~>b). Hence a-~bC~a and ~acg(q).
In consequence « ¢ q. Thus if g(q) Dg, then q is a prime filter of the
first kind. This completes the proof of 3.9. :
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Functionals on uniformly closed rings
of continuous functions

by
S. Mréwka (Warszawa)

In this paper we are concerned with the following problem: Suppose
X is a completely regular space and let B be a linear ring of continunous
real-valued functions defined on X which satisfies the following con-
ditions:

1° ANl constant functions belong to R. :

2° R is closed with respect to the wwiform convergence (i.e. if {fa}
unijormly converges to 1 and fneR (n=1,2,..), then feR).

Under what conditions imposed on X and R each non-trivial linear
multiplicative functional ¢ (1) defined on R is of the form

(%) o(f) =1(pJ)

where p, is a fixed point of X?

We note some results related to this problem:

If R is the ring of all bounded continuous functions on X, then the
answer to our problem is positive if and only if X is a compact space
(Stone [4]).

If R is the ring of all continuous functions on X then the answer to
the problem is positive if and only if X is a @ -space (Hewitt [1], [2]).

The main role in owr considerations is played by the evaluation
mapping of X into the Tihonov cube build up by means of all members f
of R which satisty the inequality 0 <f(p) <1 (i e. denote by R* the
set of all members f of R which satisfy the above inequality and agree
that the coordinates of points of the Tihonov cube I"™ (m = R) are enu-
merated by means of members of R*. Then the evaluation mapping
can be described as & mapping which carries a point p e X into the point
a e I™ whose fth coordinate is equal to f(p)). We denote this evaluation

- mapping by Fgr.

(1) A functional ¢ is said to be non-trivial provided that ¢ does not vanish jden-
tically. .
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