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Rates of change and derivatives
by
Karl Menger (Chicago)

In Memory of Alexander Wundheiler

1. Introduction. Ever since Lagrange initiated a new epoch in
pure analysis by defining the derivative of a function, the logical clarity
of applied mathematics has suffered from a confusion of those derivatives
with the rate of change of one variable quantity with respect to another.
Yet a mere count of the ideas involved in the two concepts clearly de-
monstrates that the situations studied in pure and in applied mathe-
matics are basically unlike. The derivative associates a function with one
function; for instance, the cosine function with the sine function. The rate
of change associates a variable quantity with two variable quantities; for
instance, the velocity with the distance travelled and the time.

Thig paper is devoted to the clarification of that difference and to
the formulation of articulate rules coordinating the two situations. For
the past 200 years, their synthesis has been immengely successful. In fact,
the application of the derivative to rates of change in the physical uni-
verse has been a contribution of paramount importance to the develop-
ment of science. But that application has been based on intuitive mani-
pulations rather than on a conceptual foundation.

2. Fluents. One of the principal sources of shortcomings in the
traditional literature is the lack of an adequate freatment of variable
quantities. Many who use those words fail to explain them by any (either
explicit or implicit) definition. Others give a definition — quantities
capable of assuming various values — without, however, (either explicitly
or implicitly) defining quantity. Still others, finally, confuse variable
quantities with number variables such as the letters x and ¢ in the general
statement:

x—ct= (/X +¢)(y'x—c) for any number x>0 and any number ¢.

(,,Number” here and in the sequel means: real number.) In order to
forestall the latter (particularly obnoxious) confusion, in the present
paper I will altogether avoid the words variable quantity and replace
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them by the brief term that Newton used in reference to distance trgy-
elled, time, velocity, and the like, namely, fluents.

For any class 4, a fluent with the domain 4 is a class of ordered
pairs in each of which the first member is an element of 4, and the second
member i§ a number — & class that is free of what I will call inconsistent
pairs, that is, pairs whose first members are equal while their second
members are unequal. (Cf. [2]-[5], and [6], especially Chapter VIL.) (The
reason for calling these classes fluents with the domain 4. rather than
real functions on 4 will become apparent in Section 3.)

If 4 is the population of Warsaw and, for any inhabitant « of that
city, ha denotes ’s height in cm, then the class % of all pairs (a, ha) is
a fluent with the domain A.

The observed position on a straight line § of a particle moving
along § (more precisely, its directed distance in cm from a certain point
on 8, called origin) is a fluent if s is defined as the class of all pairs (o, so)
for any act o of reading the scale mark opposite the particle, where s¢
denotes the number read on the scale ag the result of the act o.

For a particle at rest relative to the origin, the range (i. e., the class

of all values) of s consists of only one number. Such a fluent is said to
be constant (1).

3. Functions. The cosine function is a fluent if it is defined in
the customary way as the class of all pairs (x,cosx) for any number x.
Any fluent whose domain is a class of real numbers will be called a function.

The restriction of the word function to fluents of 2 special type
(namely, to the fluents studied in pure mathematics, whose domains
f:onsist of numbers (%)), agrees with the use of the term by Leibniz, who
Introduced it in order to describe certain connections between Newton’s
fluents. One may ask what function in Leibniz’ sense connects s with
the time t; whether s is the sine of t; whether s is the logarithm of some
other given fluent; and so on. But one cannot intelligently ask what
fluent other than a funetion in Leibniz’ senge connects s Witfl t; whether

8 is the pressure of t; and whether the position ig the temperature of
some other given fluent.

» (*) The existence of constant fluents shows that the definition of fluents as quan-
tltles‘papa,ble of assuming various values in absence of a definition of quantity is not
only incomplete but in some ways too restrictive. For, a constant fluent must by no
means be confused with the number that is its only value.

) .(=) More generally, functions include fluents whose
ﬁ:s;?:uﬁsﬁer E],ﬁ;f ordered n-tuples of numbers; of infinite sequences of numbers;
or ol w y similar we]l-o?dered sets of numbers, Fluents whose domains are func-

lons have been called functionals. Fluents, in turn, are special cases of mappings —
classes of mutually consistent Ppairs of any kind. e

domains consist, for some
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4. The substitution of fluents into functions. Let » be any
fluent, that is, for some class A (called the domain of v and dencted by
Domu),
the class of all pairs (o, ua) for any ac 4 ;

and let f be any function whose domain is the class of all numbers. Under
these assumptions,

the class of all pairs (a, f(ua)) for any acA

is a fluent with the domain A that may be called the result of substitut-
ing w into f, and that may be denoted by f(u). If each product of two
flnents is designated by placing a dot between the symbols for the factor
fluents (as in f-g), then one may dispense with the parentheses in the
symbols f(u) and f(ua) for results of substitutions and evaluations; and
one may write (%)

fu is the class of all pairs (a, fua) for any aced .

It will be noted that in the preceding definition of the fluent fu,
the letter f serves as a function variable while the letter u is what may
be called a fluent variable (4); that is to 33y, « may be replaced with de-
signations of gpecific fluents (e. g., the time #) just as f may be replaced
with designations of specific functions (e.g., the cosine function), each
such replacement yielding the definition of the result of substituting
a specific fluent into a specific function (for instance, cost). .

If f is a function whose domain does not include all numbers, then
fu may be defined as

the class of all pairs (a, fua) such that a e Domu and uae¢Domf.

(%) Mere juxtaposition of the symbols for a function and a fluent is also the tra-
ditional designation of the result of substituting the fluent into the function where
the latter has a multi-letter symbol, as in cost and logp for the cosine of the time and
the logarithm of the pressure. No one writes cos(f) or log(p). Only when a fluent is
substituted into a function with a single-letter symbol, such as a Bessel function or
a Legendre polynomial, parentheses are in traditional use; and so they are in f(u),
where a single letter serves as a function variable. In view of the utter mathematical
irrelevance of the number of letters in a symbol for a function, any rational standard-
ization should unify the two cases. ‘

() It will be noted that u is not a number variable. No m'ea.ninghxl definition re-
sults if, in the definition of fu, the letter 7 is replaced with a function symbol, and u
with a numeral. This is a first indication of the dangers in confusing fluents or fluent
variables with number variables.
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It is easy to describe the domain and the range of the fluent fu if,
for any fluent v, any class D, and any class O of numbers, one considers
the following two classes:

v (on D), the class of all pairs in » whose 1st member belongs to D;
o (into C), the class of all pairs in » whose 2nd member belongs to (.

In terms of these concepts (which are also useful in other connections)
one readily proves:

Dom (fu) = Domu (into Domf),

@ Ran (fu) = Ranf (on Ranw)

for any function f and any fluent u.
The following two remarks will clarify the roles of the variables in
formulae (1) and in the definition of fu:

1. f is a funetion variable but not a general fluent variable. Indeed,
{ may be replaced with the designation ¢f the cosine function but not
(if non-vacuous results are to be expected) with the designations of
human height or observed position (as defined in Section 2). While the
cosine of any fluent » is defined and satisfies formulae (1), the position
of a fluent % on a line § remaing undefined, and Domu (into Doms) is
a vacuous symbol for each fluent w.

2. u is a fluent variable but not a number variable. True, upon
replacement of u with, say, 3, the symbol fu happens to remain mean-
ingtul (namely, to yield the value that f assumes for 3). But formulae (1)
and the very definition of fu become nonsensical if 1 is replaced with

the symbol 3, since the number 3 has no domain (°) nor does it assume
a value for a.

5. Relative equality of fluents. Fluents being classes, it is
clear when two fluents are equal, when « is an extension of v, and when
4 i$ & restriction of ». For instance, the fluents » (on D) and v (into C)
are proper restrictions of v if D (or, more generally, the intersection of D
and Domu) is a proper subelass of Domvw, and if ¢ (or the intersection
of ¢ and Ranv) is a proper subclass of Ranov.

() Of course, the number 3 must not be confused with a constant fluent of va-
lue 3 (cf. ()). The constant function 3 of value 3 is the class of all pairs of numbers (x, 3)
for anyv.nurpber x. The reader will note that this paper adheres to the typographical
conve.nhon introduced in the authors book Caleulus. A Modern Approach [8]. Symbols
refer?mg to numbers, to functions, and to operators are printed in roman, in 4talic,
and in bold face type, respectively. This standardization greatly simplifies the reading
of formulae, and saves some parentheses and a great deal of verbiage.
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In pure mathematics, these concepts are satisfactory with regard
to the fluents studied, that is, with regard to functions. Two functions,
f and g, are equal if and only if any pair belonging to either function
also belongs to the other, which is the case if and only if Domf = Domg
and fx = ¢gx for any element x of that common domain.

In science, however, it is often necessary to relate fluents with dis-
joint domains —fluents which, mathematically speaking, are unequal.
Yet a workable and useful definition of scientific equality of v and u
is given, namely, relative to a certain subeclass JI of the Cartesian product
Domu X Domw. I will write

v=4u (rel. II}) or

if and omly if (a, §) € IT implies »8 = ua.

For instance, let s’ be the observed position of a particle moving
along a straight line §’ (more precisely, the particle’s directed distance
from an origin on &), defined as the class of all pairs (¢’, s'0") for any
act o' of reading the scale mark opposite the particle. Physicists fre-
quently compare the fluent s’ with s (as defined in Section 2) relative
to the class I5 of all pairs of simultaneous acts (o, o*). The fluents s and s’
are equal relative to this class I if and only if

(0,0 el} ;
Again, physicists compare s and s’ relative to the class I, of pairs (o, o*)
of acts that are respectively simultaneous with equal readings on two
timers (set in motion at different instants and possibly calibrated in
different units).

Since Galileo and Boyle, most comparisons of fluents in classical
physics have been based, in some way or other, on simultaneity of acts
of observation or of physical states. The comparison of functions, expressed
in the mathematical concept of equality (as defined at the beginning
of Section 5) is implicitly based on equality of numbers; more precisely,
/= g means equality relative to the class of pairs of equal numbers be-
longing to the intersection of Domjf and Domg. In contrast, statisticians
use a great variety (°) of subclasses of the Cartesian products of the do-
mains (or, as many statisticians say, various pairings of the populations
of the wariates).

6. Properties of relative equality. For any class II of pairs,

let IT* denote the class of all pairs (8, a) such that (a, f) belongs to II.
For any two classes II and P, let PII denote the class of all pairs (a, y)

'l)?'u

implies s8¢’ = so.

() In comparing the height b and the weight w in the population of Warsaw,
one may study the class 17 of all pairs (a, o) for any inhabitant a; or the class I7; of all
pairs (a, ), where 8 is the father of a; or the class I7, of all pairs of twins, and so on.
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for which there exists an element g such that (a, §) eI and (3, y) e P.
Finally, let I(C) for any class ¢ denote the class of all pairs (y,y) such
that y e 0. It then is clear that relative equality has the following prop-
erties:

Symmetry. If » =« (rvel. I7), then » = o (rel. IT*). ]

Transgitivity. If » = w(rel. ) and w = v(rel. P), then w = u(rel. PII).
Here, I7C Domux Domv and P C DomwvXx Domw, wherefore PI7C
C Domu X Domw.

Reflexivity. » = u (rel. I(Domu)).

Relative equality of a fluent with another fluent that is the result
of a substitution is of paramount importance in applications of analysis
to science:

w=fu (xel.II) or w=fu

if and only if (a, f) € /7 implies wf = fua.
From the transitivity of relative equality it follows that

if v = fu (rel. II) and w = gv (rel. P), then w = gfu (rel. PII).

7. Rate of change. From this point on, it will be assumed that
the domain of any fluent studied is a limit class. There is no difficulty
about defining when a fluent is continuous. The idea of rate of change
is more complex. The velocity of a moving particle, the slope of a curve,
and similar examples suggest that the rate of change of a fluent w with
respect to a fluent u is itself a fluent. Consequently, its domain must
be clearly defined. Moreover, it will appear that an articulate definition
of that rate of change must be relative to a subclass /7 of Domu x Domaw;
that is to say, that onme must define a fluent

dw

FM (rel.ZII) or

dw/du
g
& relativization comparable to that presupposed by a scientifically work-
able definition of equality.
The salient point of the theory to be expounded is the following.
The domain of dw/du is a subclass of that class I7; in a formula,
T

Dom (dw/du) C IT.
i
Clearly, sinee Domu and Domw are limit classes, so are (in a natural
way) Domu X Domw and Dom (dw/du).
I

To facilitate matters, it will be assumed that Domu and Domw are
endowed with a continuous semi-metrie, by which I mean that a number
d(a’, o) be associated with any two elements o' and « of Domu in such
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a way that imd(ay,,a) = 0 if and only if ima, = a; and that a similar
definifion applies to w. These auxiliary metrics as such will be of no si-
gnificance and may be replaced with any two other metrics that pre-
serve the limits.

For any number d > 0, the pair (&, %) of Domu x Domw is said
to be a d-neighbor of the pair (a,f) if d(£, a) < d and d(y, ) <d. Two
pairs (a, 8) and (£, n) are said to be wu-discriminating if wa = u£. A pair
(ay B) € IT will be called IT-normal if, for each number d > 0, the class IT
containg & u%-discriminating d-neighbor of (a, g).

If (a, ) is II-normal and e is a (finite) number, then I will call ¢ the
value of dw/du for (a, f), and I will write

I

dw/du(a, ) =c

if and only if the following is satisfied. .

Condition c. For each positive integer n, there exists a number
d, > 0 such that
1

<=
n

‘wn—wﬂﬁe

€ —ua

for each w-discriminating d,-neighbor (£, %) e I" of (a, f).
Since (e, f) is JI-normal, clearly no two unequal numbers ¢ and c¢”
can be values of dw/du for (a, f). Accordingly, the said rate of change
I

may be defined as the class of all pairs

((a, ), im 1P

tsa UE—UQ
7B
@merr

for any I7-normal pair («,p) for which the limit exists; that is to say,
such that Condition ¢ is satisfied for some number ec.

Clearly, the value of the rate of change for (a, 8) depends only upon
the values of w and w for the members of neighbor pairs ¢I7. The limit
may exist for each pair (a, f) e I, or for some but not all of these pairs,
or for none. Accordingly, Dom(dw/du) may be II, or a proper subclass

o .

of I, or the vacuous class.

The following remark bears out what has been said in Section 1:
The rate of change is a binary operator, and the words ‘“the rate of change
of a fluent”” remain undefined. The reader should beware of mistaking
the quotients ‘

ugE—ua
a(é, a)



Artur


96 Karl Menger

for a possible basis of a unitary rate of change (or fluxion) of the fluent .
For, as far as u is concerned, the auxiliary distance might well be re-
placed by its double, thereby reducing each of the said quotients to its half,

8. General remarks (?), For any class ¢ and any number P, the
constant fluent of value p with the domain ¢ will be denoted by.p (on ().
For any fluent u, the element o will be called u-changing if o« ¢ Domu
and for each positive integer n there exists an element &, e Domu such
that d(&n, a) <1/n and wé, #ua. The class of all u-changing elements
will be denoted by ChDomu (Ch for characteristic). In this notation,

%(rel‘ I(ChDomu)) =1(on ChDomu), for any fluent .

Here, I(ChDomu) (see Section 5) is the class of all pairs (a, o) for any
o € ChDomu; and the equality is relative to the class of all pairs (a, (a, a))
for any o eChDomu. With the same definition of equality, also the
following more general formula is self-explanatory.

fl—(%j—‘” frel. I(ChDomu)) = p (on ChDomu),

for any fluent « and any two numbers p and q.

It will be noted that the preceding results do not presuppose that w
have a limit anywhere, let alone that « be continuous. If Domlimu de-
notes the class of all « e Domu such that limw exists, then, as one readily

Proves,

du?
T?[ (vel. I{(ChDomu)) = %+ limu, for any fluent u .

The domain of the fluent on the right side is the class of all elements
belonging to both ChDomwu and Domlim». The fluent assumes the value
ﬂa-{—li}nu for each a belonging to that domain. The equality is relative
to the class of pairs (a, (a, a)) for any « in that domain. Any polynomial
of u can be treated similarly.
If u is continuous at a, and (a, f) belongs to Dom (dw/du), then w is
S 2 3 . T
continuous at f in the following restricted sense: For any positive integer n

thfzrg exists & number d; > 0 such that |wy—wf| <1/n for each u-dis-
criminating dp-neighbor (£, ) of (a, g) in I7.

() Most of the following remarks were suggested to th thor by hi
Prot. e wt 28 e author by his colleague
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9. The derivative of a function. Df is defined as the class

of all pairs
. fx—fa ¥ . .
a, Im ~a for any a e Domf such that the limit exists.
xf];)a;:ﬂf ’

This definition can be rephrased in such a way as to subsume under
the definition of a rate of change. For this purpose it is necessary to
have at one’s disposal a symbol for the class of all pairs (x,x) for any
number x. I will use (8) the letter j, and refer to this traditionally sym-
bolless class as the idemtity function.

The class j plays a twofold role in rephrasing the definition of .Df.
Firstly, § is the fluent with respeet to which the rate of change of the
fluent # will be considered. Secondly, § {(on Domf) (that is, the class (?)
of all pairs (x,x) for any x ¢ Dom§) is the class relative to which I will
congider the rate of change of j with respect to j.

In view of the fact that a pair of numbers (x,y) belongs to § (on
Domf) if and only if x e Domf and y=x, it is clear that

g(rel.j (on Domj)} or _df/dj
7 j(on Domf)

is the class of all pairs

((a,,a), lim ;{x:;{'a
xoa JX—j&
xeDomf
that is, for any a e Domf such that the lLimit exists.

The domain of this rate of change and DomDf are disjoint classes, since
the latter consists of numbers and the former of pairs of equal numbers
(a, a) such that a e DomDf. But except for this fact, the rate of change
of f with respect to j is equal to Df. The difference between them is com-
parable to that between the rational number $ and the integer 3. Hence

THEOREM 1. The derivative of a function f is essentially the rate of
change of f with respect to § and relative to § (on Domf). In a formula,

) for any a <Dom Df,

df .
Df= & (rel.j (on Domf))
where the equality s relative to the class II of all pairs ((x ,x),x) for any
x ¢ Dom Df.

(® Cf. [1]. Oceasionally, I have used the letter I for the identity function. But
it seems preferable to reserve italic capitals for functions of several places and to de-
signate one-place functions by non-capital letters. Also the symbol id has been sug-
gested for the identity function.

(*) Of course, § (on Domf) =1 (Domf) if I(C) is defined as in Section 6.
Fundamenta Mathematicae, T. XLVI. 7
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10. On functionally connected fluents. Suppose that w — fy

. n
and that (a, §) is I7-normal. Assume further that
dw]du(a, fy=c¢ and Dfua=c’.
i

Since (a, 8) is II-normal, there exist arbitrarily close %-discriminating
neighbor pairs (£, n) of (a, 8). For each sufficiently close pair of this king,

wn—wh
uE —ua

is arbitrarily close to c¢. In view of w;r_—fu, this means that

fué—fua
uE—ua

ig arbitrarily close to c. If u is continuous at a, then the said difference.

quotient is also close to ¢’; wherefore ¢ = ¢’. The preceding reagoning
shows that, if « is continuous at o, the existence of Djfuo implies the
existence of dw/du(a, B).

T

In order to infer, conversely, from the existence of the latter number
that of Dfua, one must assume that, for any number x e Domjf that is
sufficiently close to wa, there is an element & #a and an element %’
sueh that (&, %’) is a close neighbor pair of (a, 8) belonging to I7 and
that 4’ = x. I will say that » is Darbous-continuous at « if w satisfies
the following condition: For each positive integer m, each & such that
d(£, ¢) < 1/m and ué # e, and each number x between ué and ua, there
exists an element & of Domw such that a(&, o) <1l/m and uf = x.
I WJll call I quasi-continuous at (a, B) if for each positive integer m there
exists & positive integer n such that d(&, o) < 1/n implies the existence
of an element 5 such that (&, #) « I7 and d(n, f) < 1/m. In this terminology,
the preceding results can be summarized as follows: .

TrEoREM IL. If w &:fu and u is continuous at o and Dfua exists,
then so does dugdu(a » B)- If u is Darboua-continuous at a, of IT is quasi-

continuous at (a, f), and if dw/du(a, ) emists, then so does Dfua. In
either case, "
dujz/du(a, B) = Dfua.

In the preceding theorem, f is only a function variable and, there-
ff?re, must not be replaced with designations of fluents other than funec-
tmng. In contrast, w and w are general fluent variables that may, in
paarm'cular, be replaced with the designations of functions — for insta;lce
continuous nowhere differentiable funections, ’

Rutes of change and derivatives : 99

If f is replaced with a designation of the sine funetion, then, in view
of Dsin = cos, Theorem II yields the following
COROLIARY. If w = sinu, then dw/du == cosu.
I

Here, the fluent variables » and w may be replaced with designa-
tions of specific fluents, e. g., the time ¢ and the position s of a certain
oscillator, and II with the designation of a specific class of pairs, e. q.,
Galileo’s class I" of pairs of simultaneous acts of clock readings and mark
readings. Or «# and w may be replaced with the abscissa # and the ordi-
nate y along a sine curve in the Cartesian plane, and I7 with the class I
of pairs of equal points on that curve. In this way one obtains:

I s = sint, then dsr/dt = ¢ost.

Ity = sing, then dy/dr = cosm.
I

But while % and w are fluent variables, it is perfectly clear that they
are not number variables. Replacing in the corollary % and w with de-
signations of numbers one obtaing false implications. If « and w are
replaced with = and 0, respectively, in the resulting implication

if 0= sinm, then d0/dn=cosx
the antecedent is valid while the consequent iz nonsensical.

11. Reciprocal rates of change. The element (a, ) of IIC
C Domux Domw will be called [7-binormal if for each n fhe class II
contains an 1[n-neighb0£ (&, 1) of (a, B) such that u& = ua and wy 7 wp.
Clearly, if (a, f) is II-binormal, then (8, a) is II*-binormal.

TreorEM IIL. If (a, B) is II-binormal and the numbers d'wédu(a, 8

and duldw (B, a) ewist and are 0, then
H'
dw/du(a, p)- du/dw(f, a) =1.
Fig In*

For each (&, 7)< IT such that ué&~wua and wy =~ wf, one has

wn—wp uE-—ua

wE—muo wn—wh
Since (a, f) is II-binormal, I contains pairs (&, 7) arbitrarily close to
(a, B) for which both difference quotients mentioned in the preceding
formula are numbers 7 0. Since by assumption the two rates of change
exigt and are = 0, their product equals 1.

12. The chain rule. Consider three fluents u, v, w and two classes
I1 C Domu x Domo and P C Domy X Domaw. Assume that (e, p) be
IT-binormal and that P is quasi-continuous at (B,y). Clearly, (a,y)e

7*
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€ PIT C Domwu X Domw. There exist arbitrarily close ne'ghbors (£, %) e IT
of (e, ) such that ué s ua and vy 7 vf; and arbitrarily close to y there
exists an element { of Domw such that (7, ) ¢ P. Clearly,

om—vf wl—wy wl—wy
wE—ua vp—of  ub—ua’

It the corresponding rates of change exist, they satisfy the chain rule
expressed in the following

TeworEM IV. If (a, ) is II-binormal and P is quasi-continuous
at (8,y), then

dv/du(a, B)- dw/dv (B, y) = dw/du(a, y)
i P Prr
if the three rates of change exist.

13. The rate of change of totally unconnected fluents.
Theorems III and IV hold even for fluents that are not functionally
connected with one another. Consider in a Cartesian plane, e.g., the
ellipse E given by

{@*+4y*=1 (on E)},

that is, the class of all points P in the plane such that 2>P -+ 4y2P = 1.
Clearly, neither of the fluents # (on E) and y (on E) is a function of the
other relative to I(E), that is, the class of all pairs (P, P) for any P on E.
For instance, y assumes unequal values for two points on E whose ab-
scissae are equal, Notwithstanding the lack of any functional connection
between = (on F) and y (on ), Theorem IIT mplies

dy/do(P, P)-da/dy(P, P)=1, whete IT=IT*=I(E),

for any point P on E where both rates of change exist and are == 0.
Of course, in a neighborhood of each such point,  (on E) and y (on E)

are funetionally connected. For instance, along the open quarter of B

in the first quadrant:
=11 =3I

where )/ indicates the positive square root, and the juxtaposition of the

function and fluent symbols indicates substitution of the fluents into
the functions. According to Theorem 11,

and o= )1—4y = yI— 4y,

1 g 1 aP
dyjds(P,P)= =L 4p__1_ aP
;A 2Y1—j. 2V1i—P
Similarly, do}az/‘dy can be connected with y. For each P, the product of
the two rates of change is 1, in agreement with Theorem IIT.
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But it is quite different examples that illustrate the true width of

the idea of rate of change and the full generality of Theorems IIT and IV.

This is achieved by examples of fluents » and w such that dw/du exists
Ir

without w being a function of w relative to I7 in any open subclass of
Domu; in other words, in cases where every open subclass of Domu
includes two elements o and o such that

(a,f)yell, (a,p')ell, wua=wua" and

wf % wp’
and, nonetheless, dw/du exists. In fact, such exa.mpies of  and w exist
Ir

in the realm of functions, where I7 is a subclass of § (that is, a class of
pairs of equal numbers).

Let g denote Cantor’s nowhere decreasing function such that g0 = 0,
gl =1, and which is constant on every interval in the complement of
Cantor’s discontinuum D. Set

gp=g¢ (on D) and jp=74 (on D).

Then it is easy to show that

djp/dgp =0 (on D);
that is to say,
xeD.

djp/dgp(x,x) =0 for each

Yet each open subeclass of D includes pairs of unequal numbers x, x’
such that gpx = gpx’ while, of course, jpx # jpx’.
From a remark in Section 8 it follows that, if f is a differentiable
function, then
d(fgp)/dgp = Dfgp,

where ‘Dfgp is the result of substituting gp into Df. .Cleff.rly, gx = gx’
implies fgx = fgx’. Consequently, just like jp, the fun(.atlon jip+ fgp is 1.1013
a function of gp in any open subclass of D. Yet, in view of the linearity

" of the rate of change operator, the rate of change of jp+ fgp with respect

to gp exists, and, more specifically,
d(jp+fgp)/dyp = Dfgp -

Any continuous function is the derivative of a differentiable funetion f.
Hence

THEOREM V. On D, any continuous function connects with g the ?'ate
of change with respect to g of some function h even though h is mot function-
ally connected with g in any open subclass of D.
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Kennzeichnung von Bogen
yon

H.-J. Kowalsky (Erlangen)

Als Bogen bezeichnet man bekanntlich jeden topologischen Raum
der zu dem abgeschlossenen reellen Intervall <0,1) hombomorph ist.
Eine Kennzeichnung der Bogen liefert der folgende Satz von J. Lennes:

Es sei B ein Hausdorffscher Rawm mil abzihlbarer Basis, und B sei
eine Teilmenge von B, die die Punkte a und b enthill. B ist genaw dann
ein Bogen, wenn B ein Kontinuum ist und wenn es in B eine Relation <
mit folgenden Figenschaften gibt: (1) Die Relation < ist eine lineare Ord-
nung von B. (2) Piir jeden Punkt p e B gilt a <p <b. (3) Gill p < g, s0
ist die Menge {m: p < < ¢} abgeschlossen.

Diese Charakterisierung ist deswegen wenig hefriedigend, weil in den
Voraussetzungen die Existenz einer Ordnungsrelation gefordert wird.
Nachstehend soll daher ein anderes Kriterinm angegeben werden, das
eine Kennzeichnung der Bogen durch innere, rein topologische Eigen-
schaften gestattet. Interessant ist dabei, daf die wesentlichen Voraus-
setzungen aus reinen Zusammenhangseigenschaften bestehen.

Satz 1. Bin topologischer Raum B ist dann und nur dann homdo-
morph zu {0, 1), <0, 1) oder (0,1), wenn er folgende Eigenschaften besitet:

(1) F dst ein separabler T'-Baum mit mindestens zwei Punkten.

(2) E ist zusammenhingend und lokal susammenhingend.

(8) Unter je drei michi-leeren, 2usammenhingenden, echten Teilmengen
von B gibt es stets zwei, die B nichi iiberdecken.

Beweis. Die Bedingungen (1) und (2) sind offenbar notwendig. Im
Falle des Intervalls <0,1> kann man die Notwendigkeit der Eigen-
schaft (3) folgendermaBen erkennen: Rine zusammenhingende echte
Teilmenge von (0, 1) kann die Punkte 0 und 1 nicht gleichzeitig ent-
halten. Unter je drei nicht-leeren, zusammenhingenden, echten Teil-
mengen von <0,1> gibt es daher zwei, die den einen Endpunkt nicht
enthalten. Tn den anderen beiden Fillen schiieBt man analog, wobei an
Stelle des Enthaltenseins eine Hiufungseigenschaft zu treten hat. Da die
Bedingungen (1)-(3) topologisch invariant sind, ist damit ihre Notwendig-
keit allgemein nachgewiesen.
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